
 PNWD-4230

1

Hybrid Triple/Relational Knowledge Store Concepts1

Alan Chappell, Patrick Paulson, Eric Stephan, and Cliff Joslyn

[alan.chappell; patrick.paulson; eric.stephan; cliff.joslyn]@pnl.gov

Pacific Northwest National Laboratory

1. Summary

This whitepaper describes a mechanism for representing and storing both triple-based

information and information about those triples. Triples refer to information coded as two

entities and a relationship between them. Triple-based information can be stored in a “triple

store” which supports pattern-based querying for retrieval of the information.

We discuss a mechanism to augment the triple store with a coordinated relational store to

hold additional information about the triples that is difficult to store in a triple store alone. This

will enable more effective storage of triple-based information along with descriptive and

quantitative data recording provenance, uncertainty quantification, temporal coding, and other

metadata about the individual triples. This will further enable the productive use of the

additional information in querying processes to enhance the efficiency of triple retrieval.

Such a hybrid store mechanism removes the need for reification. No extra statements are

required in the triple store so there is no associated bloat. Patterns of interest are not changed,

so querying is only as complex as the desired pattern. Further, the hybrid may actually improve

performance of querying over triple stores by allowing for the segmenting of the triples, thereby

substantially reducing the number of triples over which pattern matching query mechanisms

must search.

Section 2 describes the overall goals of this project, Section 3 defines the requirements the

implemented system must meet, Section 4 gives an overview of the adopted design along with a

proposed implementation approach and Section 5 discusses other considered alternatives.

1
 This paper written as part of the Battelle Threat Anticipation Initiative. Inquiries on the content should be directed

to the authors. Inquiries on the initiative should be directed to Imran Bashir [bashiri@battelle.org].

 PNWD-4230

2

2. Goal

As part of an ongoing effort to implement a tool that depends on semantically informed

inference processes, this effort is supporting storage of and access to information represented

as triples. Triples refer to information coded as two entities and a relationship between them. A

triple-based representation was chosen for its support and enabling of many aspects of the

overall goals of the effort. The majority of information of interest to the target system can easily

and understandably be represented as triples. A set of widely used standards, technologies, and

research communities exist for triple-based representation and for access, i.e., query, of that

representation. For example, RDF (W3C 2009) and SPARQL (W3C 2008) are widely used

standards for formalization of triples and triple querying respectively.

However, through the exploration of desired use cases, we have identified the need to

represent supplemental information about the triples. The user may wish to know the source

for a given piece of information. Similarly, they may wish to restrict inference processing to

what was known before a given point in time. For these and other situations, provenance and

other descriptive information are needed about the triples. While the standards discussed

above support the representation of this information via reification, the formalisms provided

diminish many of the natural benefits of the triple-based representations. Using reification,

descriptions of data become larger, abstract, and complex. Section 5.5.1 discusses use of

reification and the associated issues in greater depth. For these reason, here we explore other

approaches that preserve the benefits of a triple-based representation, but allow the desired

augmentation through representation of descriptive information about the triples.

3. Requirements

The representation of metadata about a triple is a problem generic to may uses of triple-

based information beyond this specific effort. While little formal research is being published in

this area, many commercial projects are developing custom, focused solutions with little effort

to generalize.

The following sections discuss the detailed system and functional requirements for this

effort. These requirements guided our development process and also act to characterize a class

of problems to which this solution may generalize. Other systems with similar requirements are

likely to find the proposed system useful in addressing those requirements.

 PNWD-4230

3

3.1. System Requirements

3.1.1 Adherence to Standards

Adherence to standards has been established as a priority for this project. Adherence to

standards enables the use of technologies and communities built around the standards. The

availability of such tools and assistance can significantly reduce development cost and promote

reuse. Further, adherence to standards avoids single-vendor solutions and enables greater

flexibility and adaptability. As new community technologies are developed that may outperform

current tools, those new tools may be exploited without large additional investments. Only

when other system requirements preclude standards adherence will such methods be adopted.

When non-standard elements become necessary, boundaries around those elements will be

established as narrowly as reasonably possible. These boundaries will encapsulate the non-

standard aspects and support standards-based interaction across the boundaries.

3.1.2 Performance

Specific performance requirements have not been determined; this would require an

estimate of the size of the applications knowledge base in triples, example queries from a user

interaction, and performance requirements for user interactions. However as a basis we plan to

perform tests along the guidelines of the Semantic Interoperability of Metadata In like and

unLike Environments (Lee 2004) project who performed bench mark tests on a number of Open

Source RDF stores browsing large data stores. In these tests the metrics of primary interest will

be related to load speed of the store, load speed of the browser, and queries with large

expected results.

3.1.3 Cost

No maximum cost requirement has been determined, but designs that enable free

implementations are strongly favored.

3.2. Functional Requirements

3.2.1 Ability to annotate statements

The primary functional requirement of the store is to support the addition of structured

metadata to the binary relations represented in the triple store. These annotations will be

domain and application specific. A particular application will have a fixed number of pre-defined

annotations that can be applied to each statement. While the set of these annotations may

evolve over time, such evolution is infrequent and is primarily additions. The annotations could

include a wide range of information including date and time ranges, source references,

confidence, and many types of provenance, metadata, and knowledge refinement. An RDF

 PNWD-4230

4

Property resource will be associated with each annotation, defining the semantics of the

annotation. Table 1 gives an example list of annotations for a particular application.

Table 1 A list of possible annotations

Annotation Description

Source At least the URL associated

with the source document

Probability A number between zero and

one indicating a subjective

probability or a frequency

Uncertainty interval A lower and upper bound on

the uncertainty of the

statement, perhaps a

confidence interval or

imprecise probability

Temporal interval Pair of quantities indicating

start and end times

Knowledge Refinement Additional information refining

the knowledge represented by

the triple. Example: negation

of a statement

3.2.2 Accessing metadata associated with a triple

For any particular triple, the system must provide access to set, modify, and retrieve the

annotations on that triple. When requested, the system will provide the values of all the

annotations or of specified annotations based on user request.

3.2.3 Partitioning of triples according to attached metadata

For given values and ranges of metadata, the system must identify and return the set of

triples that have the given value or fall within the given range. The system will allow annotation

level configuration over behaviors when data is not present. For example, if a date range query

is requested, the system will support both inclusion and exclusion of triples with no date

specified. The user will be able to select the desired behavior.

When appropriate, the system will further support pattern-based (SPARQL) querying over

the partitioned sets of triples.

 PNWD-4230

5

3.2.4 Pattern-based querying of metadata is not required

Triple-based representation is extremely helpful in formulating and supporting pattern-

based queries of the data. These types of queries are either not required, or are of very limited

use over the triple annotations. Instead, queries over the annotations are predominately

describable independently of values on other annotations. Hence the system need not support

pattern-based queries including metadata values.

3.2.5 Ability to generate RDF representation of annotations

To support interactions with other RDF-based systems, support should be provided by the

store to produce valid RDF for all represented data when requested. Hence, even if reification is

not used for storage, the system should be able to generate RDF-standard reified statements

and associated annotations on those reifications.

4. Design

Given the above requirements, we propose a design for a hybrid triple-RDB store that fulfills

those requirements. The sections below describe this design and provide some interpretations

of such a system. We also describe a possible implementation of this design. Finally, in the

following section, alternative designs that were explored are discussed.

4.1. Hybrid Triple-RDB Store

This design exploits the separable nature of the two sets of data, that represented in the

triples and that in the annotations. Triples continue to be stored in a traditional triple store. This

store is augmented with a coordinated relational store for the metadata. The coordination

between the stores is critical as it allows the hybrid system to exploit both stores. This

coordination is accomplished by creating an identifier for each triple. In simple triple stores this

can be a functional combination of the identifiers for the three elements of the triple, such as

concatenation. If the generated identifier already exists, i.e. the same triple already exist

perhaps from a different source, then simple augmentations can be generated to identify

different triples. More advanced triple stores support a named subgraph or context for each

triple so that arbitrary identifiers can be assigned. In such cases, a unique identifier for each

triple, such as a URI, would be created and assigned within the triple store.

This identifier would then be used as the key into the relational store recording additional

information about the relationship. Contents of the relational store would be domain and

application specific but could include a wide range of information.

This segregation of the data will support efficient retrieval of information when the request

is cleanly decomposable into the separate aspects. Typical query mechanisms over the triple

 PNWD-4230

6

store would function unchanged. Subsequent to the graph query though, it would be easy to

find all sources for information using the unique identifiers of all the triples returned. Similarly, a

query could be restricted by first finding the identifiers in the relational store that meet the

requested criteria, then partitioning those triples for subsequent standard pattern querying.

As described above, the resultant triple store would not be standard RDF. There are easy

extensions to the information that would move the data incrementally closer to the standard if

needed by an application. First, the triple identifier could also be used as an entity in the triple

store allowing for the triple based representation of any of the information in the relational

store or even other information of interest to the system. This could be necessary to support

queries that are not cleanly separable into the triple and relational aspects as described above.

When the queries, or parts of the queries, are separable, the hybrid approach will likely yield

better performance than the complex graph querying than would be required over pure graph

solutions.

Finally, if completely standard RDF is required, perhaps for interaction with another system,

then RDF standard mechanisms (reification) would be added to the stored triple information.

These could be added to the triple store, but more likely would be added post processing to

limit the amount of triple bloat in the triple store cause by reification. Reification further enables

the description of information without stating its truth. As such, the hybrid store would require

additional information in the relational indicating which triples are asserted and which are not.

This type of additional knowledge can be further extended to negation of statements.

Our conceptual design consists of an API that provides the following methods against the

knowledge store:

1. Given criteria for metadata, return an RDF Graph

2. Given a statement id, return the associated metadata from the knowledge store

3. Accept a new triple with the knowledge store along with associated metadata and

return the generated URI for the new statement

4. Update the metadata for a statement with a given URI as the statement id

By ‘RDF Graph’ we refer to a collection of triples that can be operated API. For example, if

the implementation is targeted for the Jena API (HP Labs Semantic Web Research 2004) the RDF

graph would be represented by a Jena Model; for the OpenRDF API (openRDF.org 2008) the RDF

graph might be represented by a SailRepository.

4.2. Interpretations of a separate attribute store

There are several ways to conceptually interpret the described coordinated use of a relation

store with a triple store. We can view the relation store as a compilation of the RDF standard

reifications. We can also view the relational store as “live” properties on the triples. We explore

both these interpretations below.

 PNWD-4230

7

4.2.1 “Compilation” of RDF reification statements

We can view the triples in the triple store and the associated rows in the relational store as

a compilation of the fully reified statements in a standard RDF representation. This compilation

reduces the size of the “original” representation and puts the information in forms more

effectively used to achieve system outcomes. Care must be taken for any given application to

appropriately choose the information to be place in the relational store so that the resulting

compiled form achieves both system and performance goals.

4.2.2 Live properties of triples

Another interpretation is to view the attribute store as holding the “live” properties about

the contents of the triple store. As described by Whitehead and Goland (Whitehead and Goland

2004) a live property “is one where the server performs a computation associated with setting

or retrieving its value”. (Dead properties have values that are maintained exclusively by the

application). Examples of the live properties that might be maintained include the time a triple

was added to the store, the source of a triple, and the confidence associated with a triple. The

decision of what constitutes a live property suitable for storage in the attribute store depends

on the applications using the triple store, but some there are some common characteristics to

consider:

1. The property is defined the time the store is created, rather than being defined by

an application using the store

2. The value of the property is generally set by the storage management software; if

set by an application consistency is maintained by the store

3. Applications are more likely to read the attribute value rather than modify it

4. The attribute is applicable to all triples in the store

An archetypal example of a live property on a file system, for example, is file modification

time.

1. We argue here that the characteristics of live properties have ramifications for

the design of RDF triple stores. In particular

2. Live properties should not be set by applications except through predefined

mechanism provided by the storage software

3. Live properties cannot be modified or removed from the store by applications

except through the store’s predefined mechanism

4. Live properties should be maintained for all triples in the store

5. RDF Applications should be able to be written in aware that ignores the live

properties, since the properties are specific to a particular type of store

 PNWD-4230

8

4.3. Implementation

The knowledge base will be implemented by a Sesame data store and an associated

relational datastore. In consideration of existing RDF APIs and other components of the larger

effort this work supports, the API will be written in Java. The API will tie into a Key Generation

service that will generate unique URIs to serve as statement ids. The interface between the API

and the RDB tables will be via stored procedures. Stored procedures are precompiled and offer

a level of abstraction between the API and the underlying schema. We anticipate the interfaces

between the API and the RDB stored procedure to be stable, while the stored procedure and

underlying schema change as necessary for performance and tuning. In order to simplify

distribution we are initially targeting an embedded RDBMS such as Apache Derby, but if more

functionality is required MySQL or PostgreSQL might be considered. The RDF store will initially

use Sesame’s native storage methods.

The API will consist of two components, one that handles hand shaking across the hybrid

stores when a SPARQL query is initiated. The second component exposes the internals of the

storage mechanism for development of administrative tools such as bulk loading tools, garbage

collection facilities to clean up dangling references, and reporting tools.

4.3.1 Annotating statements using ‘quads’ in the Sesame triple store

The statement id for each statement will be stored along with the statement as its “context”

in the Sesame RDF store. The identifier will be a unique valid URI associated with the triple

store. The identifier will be system generated.

This implementation will require the use of a quad-store; the application will be dependent

on the use of Sesame or similar triple-store rather than a triple store that doesn’t support

quads. As discussed above this approach will also function with non-quad stores, but the

necessary support will not be included in this implementation.

4.3.2 Storing additional information about statements in the relational store

Predefined attributes about statements will be stored in a relational store. These attributes

can be used to group statements according to their provenance, the time they were generated,

and the level of confidence in the statements, for example. Since all statements for a given

application will have the same set of possible attributes, one table can be used to hold metadata

for all statements; the statement id is used as the key for the table. Missing values are allowed.

Evolution of the attributes is supported largely through additional columns in the relational

store with all values for existing rows assumed to be missing/blank.

 PNWD-4230

9

4.3.3 Filtering triples for an application

The API will accept a specification of a filter to apply to metadata and return an RDF graph

that represents only triples that match the specified filter. One method to specify the filter

would be a SPARQL GRAPH query that treats annotations as properties of reified statements;

only statements that match the query would be returned (but the statements themselves,

rather than their reifications, would be in the returned graph).

4.3.4 Accessing relational store

The statement id can be accessed from the Sesame store through the GRAPH syntax of

SPARQL (Figure 1). The statement id can then be passed to the relational API to access metadata

about the statement.

The knowledge base API provides a method that, when presented with the statement id

URI, returns the metadata associated with the statement. Again, one representation for the

metadata would be as triples with the statement-id as the subject and the metadata properties

and values.

4.3.5 Generating an RDF representation of statement annotations

If completely standard RDF is required, perhaps for interaction with another system, then

RDF statement reification would be generated for stored triple information. The unique

statement id can be used as the URI of an RDF Statement resource, and each annotated value

can be represented as a property (using the RDF property associated with the annotation) of the

reified statement. These could be added to the triple store, but more likely would be generated

as needed unless the reified statements where accessed often. This could be one of the

Figure 1 GRAPH syntax in SPARQL (Prud'hommeaux and

Seaborne 2005)

SELECT ?src ?bobNick

FROM NAMED <http://example.org/foaf/aliceFoaf>

FROM NAMED <http://example.org/foaf/bobFoaf>

WHERE

{

 GRAPH ?src

 { ?x foaf:mbox <mailto:bob@work.example> .

 ?x foaf:nick ?bobNick

 }

 }

 PNWD-4230

10

representations of metadata returned by the knowledge base API; with this mechanism a RDF-

compliant version of the metadata can be generated.

5. Other approaches

5.1.1 Reified RDF

The standard RDF method for annotating statements is to create a new resource with type

rdf:Statement. The subject, object, and predicate properties of this resource are analogs of the 3

elements of the annotated triple. The advantages of this approach are:

1. You can say things about statements without asserting the statement.

2. It's pure RDF, and will be supported by any RDF engine

3. It supports multiple levels of annotation – you can annotate the annotation of a

statement.

The disadvantage is a linear increase in the number of statements in the triple store, which can

approach 4n if every one of n statements is reified.

The ability to describe unasserted statements could be extremely important—one needs to

be able to state “curveball says that Iraq has wmd” without having the statement “iraq has

wmd” being asserted in the knowledge base.

5.1.1.1 Comparison of storage requirements

Assume a total of N statements, with A annotation statements about M of these

statements. In addition, P of the statements are asserted.

The reification mechanism requires P + 3M + A statements. In the best case, if there are no

annotations and all statements are asserted, only N statements are required. The worst case,

where every statement is both asserted and annotated, requires 4N + A statements.

The statement-id mechanism requires N + P + A statements – the statements, an additional

statement for each asserted statement, and the annotation statements. The worst case, every

statement is asserted requires 2N + A statements.

If most statements are asserted and few statements are annotated, the reification

mechanism is viable. If few statements are asserted and most statements are annotated, then

the statement-id mechanism might be better. For the TAI, we foresee that most statements will

have one or more annotations, so we settled on the statement-id mechanism.

 PNWD-4230

11

5.1.1.2 Relation to OWL 2

Many of the functional requirements are met by the emerging standard for OWL 2 (Motik,

Patel-Schneider et al. 2009). In particular, OWL 2’s annotation mechanism allows annotations to

be attached to statements and ignored by reasoners. However, mapping OWL 2 to RDF

implementations results in the generation of reified statements(Patel-Schneider and Motik

2009), which this design avoids.

5.1.2 Relational solution

One could also take the approach used by Oracle’s semantic support (Oracle 2008). In this

scheme, RDF is implemented by a table within a relational database. A separate table could be

provided to contain statement metadata; alternatively, additional columns could be added to

the triple-table. This approach seems viable but was rejected because of cost and the lack of

tools to support RDF tools such as standard APIs and SPARQL.

5.1.3 RDF/RDB federation systems

Since 1998 when Tim Berners-Lee (Berners-Lee 1998) articulated the possible link between

the semantic web and Entity Relationships, industry and research communities have been

exploring linkages between RDF and RDB. From our initial review, a preponderance of the

commercial and open source efforts, including D2RQ (Bizer 2007), Virtuoso (Blakeley 2007),

DartGrid (Chen, Wu et al. 2006), SPASQL (Prud’hommeaux), and SquirrelRDF (Steer), focus on

either the federation or abstraction of the two existing databases from a motivation to

integrate. Whether the goal is stated as layering semantic information on existing relational

data stores or as integrating disparate sources of information, the approaches focus on making

productive, coordinated use of existing but separate sources.

The obvious distinction between our research and these efforts is that we are developing a

specialized RDB auxiliary component through the convention of a hybrid to optimize and scale

the RDF store. The relational store may be viewed as an index or compilation of data used to

make certain types of access more effective. The RDB has no purpose or use outside the

augmentation of information in the triple-store.

Despite this distinct difference there have been at least one W3C working group (Malhotra

2009), and different workshops (Prud'hommeaux 2007) studying best practice integration of the

two stores and there have been many lessons learned that we may exploit as guidelines in our

development. All of these solutions bear monitoring to assess if they develop into a more

general solution to the problems we address with our hybrid store.

http://www.w3.org/2007/03/RdfRDB/papers/d2rq-positionpaper/

 PNWD-4230

12

5.1.4 Key generation

As mentioned in the design, a key generation service will be called to build an identifier to

handle coordination between the two stores. Other approaches that have been examined

include creating a URI derived from the contents of the triple or using a blank-node identifier

generated by the triple store

5.1.4.1 Construction from statement contents

A Statement can be represented with a REST (Fielding 2000) type URI that specifies the

content of the statement. For example, assuming that ‘triple:’ is the prefix for a namespace that

is used for this purpose, the statement

http://ns1#t http://ns2#p http://ns1:e

might be represented (using URL escaping) as

triple:http%3A%2F%2Fns1%23t/http%3A%2F%2Fns2%23p/http

%3A%2F%2Fns1%23e

Note that ways of dealing with datatype properties and blank nodes would have to be

determined; this style was rejected because of these complexities.

5.1.4.2 Blank node identifiers

In the Sesame triple store, blank node ids could be generated for the context of each

statement. The blank node ids will be guaranteed to be unique; however there are a couple of

drawbacks:

4. If you extracted the triple store to a serialization and then tried to recreated it, the

recreation may have different values for the blank node identifiers for the triples

5. In OWL-DL, blank nodes cannot be used as the object of two different statements

6. References

Berners-Lee. (1998). "What the Semantic Web can represent." 2009.
Bizer, C. (2007, September 8, 2007). "D2RQ - Lessons Learned." Retrieved February 27, 2009,

from http://www.w3.org/2007/03/RdfRDB/papers/d2rq-positionpaper/.
Blakeley, C. (2007). "Mapping Relational Data to RDF with Virtuoso’s RDF Views." Open-Link

Software.
Chen, H., Z. Wu, et al. (2006). "DartGrid: a semantic infrastructure for building database Grid

applications." Concurrency and Computation: Practice and Experience 18(14).
Fielding, R. T. (2000). Architectural Styles and the Design of Network-based Software

Architectures. Information and Computer Science. Irvine, CA, University of California,
Irvine. Ph.D.

http://ns1/#t
http://ns2/#p
http://ns1:e
http://www.w3.org/2007/03/RdfRDB/papers/d2rq-positionpaper/

 PNWD-4230

13

HP Labs Semantic Web Research. (2004). "Jena Home Page." from http://jena.sourceforge.net/.
Lee, R. (2004). Scalability Report on Triple Store Applications. Cambridge, Mass., MIT.
Malhotra, A. (2009). "W3C Incubator Group Report 26 January 2009." from

http://www.w3.org/2005/Incubator/rdb2rdf/XGR-rdb2rdf-20090126/#StateOfArt.
Motik, B., P. F. Patel-Schneider, et al. (2009). OWL 2 Web Ontology Language: Structural

Specification and Functional-Style Syntax, World Wide Web Consortium.
openRDF.org (2008). OpenRDF.org, home of sesame, OpenRDF.org.
Oracle. (2008). "Semantic Technologies Center." Retrieved 2/27/2009, 2009.
Patel-Schneider, P. F. and B. Motik (2009). OWL 2 Web Ontology Language: Mapping to RDF

Graphs, World Wide Web Consortium.
Prud'hommeaux, E. (2007, 2007). "W3C Workshop on RDF Access to Relational Databases."
Prud'hommeaux, E. and A. Seaborne (2005). SPARQL Query Language for RDF, World Wide Web

Consortium.
Prud’hommeaux, E. SPASQL: SPARQL Support In MySQL.
Steer, D. SquirrelRDF-Querying existing SQL data with SPARQL.
Whitehead, E. J. J. and Y. Y. Goland (2004). "The WebDAV property design." Software: Practice

and Experience 34(2): 135-161.

http://jena.sourceforge.net/
http://www.w3.org/2005/Incubator/rdb2rdf/XGR-rdb2rdf-20090126/#StateOfArt

