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Abstract

The ‘Epistemic Uncertainty Workshop’ sponsored by Sandia National Laboratories was held in Albuquerque, New Mexico, on 6–7

August 2002. The workshop was organized around a set of Challenge Problems involving both epistemic and aleatory uncertainty that the

workshop participants were invited to solve and discuss. This concluding article in a special issue of Reliability Engineering and System

Safety based on the workshop discusses the intent of the Challenge Problems, summarizes some discussions from the workshop, and provides

a technical comparison among the papers in this special issue. The Challenge Problems were computationally simple models that were

intended as vehicles for the illustration and comparison of conceptual and numerical techniques for use in analyses that involve: (i) epistemic

uncertainty, (ii) aggregation of multiple characterizations of epistemic uncertainty, (iii) combination of epistemic and aleatory uncertainty,

and (iv) models with repeated parameters. There was considerable diversity of opinion at the workshop about both methods and fundamental

issues, and yet substantial consensus about what the answers to the problems were, and even about how each of the four issues should be

addressed. Among the technical approaches advanced were probability theory, Dempster–Shafer evidence theory, random sets, sets of

probability measures, imprecise coherent probabilities, coherent lower previsions, probability boxes, possibility theory, fuzzy sets, joint

distribution tableaux, polynomial chaos expansions, and info-gap models. Although some participants maintained that a purely probabilistic

approach is fully capable of accounting for all forms of uncertainty, most agreed that the treatment of epistemic uncertainty introduces

important considerations and that the issues underlying the Challenge Problems are legitimate and significant. Topics identified as meriting

additional research include elicitation of uncertainty representations, aggregation of multiple uncertainty representations, dependence and

independence, model uncertainty, solution of black-box problems, efficient sampling strategies for computation, and communication of

analysis results.
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1. Introduction

This paper summarizes the results of the Epistemic

Uncertainty Workshop [1] held 6–7 August 2002 in

Albuquerque, New Mexico. It reviews the purpose of the

Challenge Problems [2] around which the workshop was

organized, answers some of the questions and concerns

voiced by participants during the workshop about why the

Challenge Problems were structured as they were, and

recounts some of the most interesting points of dispute

and consensus arising from the discussions there. It

also synoptically compares the quantitative answers to

the Challenge Problems offered in the various papers of this

special issue of Reliability Engineering and System Safety.

In most cases, these papers represent the completion in

published form of the presentations made at the workshop.

In a few cases, papers were contributed by researchers who

were not able to participate in the workshop itself. This

paper was not seen by the authors who contributed to this

special issue before they wrote their papers.

In Section 2, we review the origin and intentions behind

the Challenge Problems, and describe several technical

issues that were considered during their development and

during the workshop. In Section 3, we summarize the

proceedings from the workshop, which appear in this special

issue, and provide preliminary quantitative comparisons of

the answers to the Challenge Problems provided by
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the various papers. A brief summary discussion and outline

of future research needs is presented in Section 4.

2. The challenge problems

Over the last 3 years, the Epistemic Uncertainty Project

at Sandia National Laboratories has focused on the question

of how epistemic and aleatory uncertainty [3–7] should be

handled within probabilistic modeling and quantitative risk

analyses. This project investigated the use of both

probabilistic and non-traditional forms of uncertainty

quantification for modeling the performance of complex

engineering systems. We identified a number of technical

questions about which we could find little or no consensus

across the disparate communities of risk analysts, modelers

and information theorists engaged in the quantitative

analysis and simulation of such systems. In order of

importance, these questions were:

(1) How should epistemic uncertainty about a quantity be

represented?

(2) How can epistemic and aleatory uncertainty about a

quantity be combined and propagated in calculations?

(3) How should multiple estimates of uncertain quantities

be aggregated before calculation?

(4) How should the technical issue of repeated uncertain

parameters be handled in practical calculations?

(5) How might various approaches be adapted for use in

practical calculations based on sampling strategies?

As a part of the Sandia Epistemic Uncertainty Project, a

set of Challenge Problems [2] was devised for the purpose

of sparking discussion about the variety of important

practical issues involving epistemic and aleatory uncer-

tainty embodied in these questions.

The Challenge Problems are a series of simple but

numerically explicit problems expressed in clear and

context-free terms that, it is hoped, reduce very complex

analytical issues to purely mathematical and computational

ones. Challenge Problem A addresses the evaluation of the

simple arithmetic expression ða þ bÞa; where a and b are

characterized with different degrees of information. There

are six subproblems to Challenge Problem A, representing

situations ranging from very poor states of information

about the inputs to full information about the distributions of

the inputs. Challenge Problem B involves a somewhat more

complicated mathematical expression that calculates the

steady-state magnification factor for a hypothetical mass-

spring-damper system from inputs about which there is

variously good or poor information.

Of course, the Challenge Problems as constructed are

mere models for the kinds of problems encountered in real

engineering modeling, and thus they neglect many import-

ant issues in uncertainty analysis. Participants at the

workshop asked, for instance, why independence was

assumed among all variables when functional relationships

and stochastic dependence among variables and common-

mode or common-cause failures may actually be the rule

rather than the exception in many real-world engineering

applications [8]. Other participants noted that a major issue

that had been neglected in the design of the Challenge

Problems was that of model uncertainty [9,10], i.e. the

uncertainty in the mapping of inputs to outputs. In many

high-profile problems in risk analysis, ranging from

modeling global climate change to failure rate assessment

in abnormal environments, it is the process models

themselves that are perhaps the most uncertain component

of a quantitative assessment.

The reason that the Challenge Problem set ignored these

and other issues was so they could focus on the even more

fundamental issues of representing and propagating epis-

temic uncertainty. We completely agree that accounting for

dependence among variables and model uncertainty are

crucial issues that deserve special and concentrated

attention. It might be reasonable to consider another set of

challenge problems to address these issues in the future.

Discussions about the Challenge Problems continue on-

line at the ‘Submitted Comments’ section of Sandia

National Laboratories’ Epistemic Uncertainty Project

website (http://www.sandia.gov/epistemic/).

2.1. Motivation of the challenge problems

The intent behind the Challenge Problems was to pose

some simple questions that could serve as archetypes of the

kinds of problems that analysts actually encounter. Given a

simple setting and a clear question, it might be possible for

analysts to agree about the appropriateness of an answer,

irrespective of their beliefs about the interpretation of

probability or their convictions about its universality or

completeness. Moreover, we were concerned that compli-

cated or computationally demanding problems would

discourage individuals from attempting their solution and

thus from participating in the exercise. If people with

radically different points of view could agree on the answer

to a given problem, then the debates that divide them can be

considered purely philosophical. On the other hand, if the

different perspectives lead to radically different answers for

a risk assessment that represent a significant disparity in

predictions and perhaps lead to different final decisions,

then analysts have to face the issues under debate directly

and decide which approach should be used. While designing

the Challenge Problems, we genuinely did not know which

outcome the workshop would witness.

A few of the participants at the workshop complained

that the Challenge Problems were unrealistic to the point of

being nothing more than toy problems without even

pedagogical value. They argued that the sterility of the

context in which the problems were posed both robbed them

of realism and made them impossible to solve because of the

severing of the essential connection between the analyst
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and the engineer (or subject-matter specialist) by which

information is marshaled and accessed. This point of view

maintains that an analyst can, should and actually must have

a constant dialog with the engineers or subject-matter

experts on whose knowledge the assessment is based.

In practice, however, there are surely practical situations

in which communication with the empiricist is inconvenient

or impossible (such as when information must be collected

from papers and reports or when the informant is

unavailable). Our defense of the Challenge Problems is

that they are intended to serve a pedagogical value in

isolating crucial issues involved in the representation and

propagation of epistemic uncertainty. We did not see any

practical way to introduce the iterative refinements typical

of elicitations into the problems. Despite their many

shortcomings as representative models of how a real

analysis is carried out, the problems do seem appropriate

for their limited purpose. If an uncertainty propagation

method cannot produce answers to these simple problems,

then it seems likely that the method is not general enough

for the problems that real analyses pose. Moreover, if

different analysts do not arrive at similar or at least

consistent answers to these simple problems, then the

uncertainty analysis community is more fractionated than is

generally recognized.

2.2. The engineer’s beliefs or believing the engineer

Many probabilists consider it the job of the analyst to

elicit information from the engineer, and think this process

is not done until a complete probabilistic model has been

specified. Formal elicitation [11,12] has proved extremely

valuable in gleaning essential information that would

otherwise be lost in the depths of an engineer’s memory,

or the bowels of a laboratory’s filing cabinets.

However, it is not uncommon for an engineer, at some

point, to disclaim further information about some com-

ponent or process, especially one that has not been the

subject of careful or extensive (or sometimes any) study.

The engineer may answer an elicitation with ‘I don’t know’,

which can sometimes lead to the peculiar situation in which

the analyst insists the engineer knows more than he or she

professes to know.

We believe that, although perhaps often a useful

elicitation device, this insistence may not always be

reasonable. As R.A. Fisher used to quip, it is evidently

easier for the practitioner of natural science to recognize the

difference between knowing and not knowing than this

seems to be for the more abstract mathematician. This

notion of probabilistic omniscience is not a necessary

feature of the probabilistic approach, and indeed, there are

many fields (notably, robust statistics [13]) that reject it

outright.

When deprived of an engineer’s knowledge, the elicita-

tion process usually devolves to finding what the engineer

believes about the component or process, as opposed to what

he may know from specific empirical study. Although there

may be useful knowledge embedded in an engineer’s

subjective beliefs, there may not be an unlimited amount of

such knowledge. Is it ever reasonable to believe an engineer

when he or she claims not to know? It does not seem

heretical to ask about the limits of what can be asserted in an

assessment based on empirical knowledge.

Many probabilists argue that such a quest is naı̈ve in

itself, because the model construction process is inherently

subjective. Yet an analysis that eschews subjective belief

and traffics only in information objectively established by

measurement, census, experiment and theoretical con-

straints should also, it seems, be of some interest in a

quantitative assessment. Such analyses are likely to involve

interval characterizations of uncertainty with little, if any,

structure within the intervals. The non-traditional methods

that have been brought to bear on the Challenge Problems

may develop into tools appropriate for such analyses. This

exercise represented by the Challenge Problems, far from

being merely academic, reflects a sincere desire to under-

stand how to best respect and numerically capture the varied

statements and protestations of the engineers and empiri-

cists on which analysts depend, and how to propagate their

knowledge through mathematical models.

2.3. Aggregation

This section reviews the background of the first of five

technical issues addressed by the Challenge Problems that

are commonly involved in computational problems invol-

ving epistemic uncertainty and that arouse on-going debate

and some considerable confusion among analysts.

Analysts commonly encounter the situation where

multiple estimates of the value of some quantity or variable

are available. In a sense, this is a problem of too much

information because it means the analyst must decide how

to combine this information before proceeding with the

analysis. In some cases, these estimates may be independent

of one another, and they may be dependent in other cases.

Sometimes, in fact, the epistemic relationship among the

estimates may be unclear. The separate estimates can arise

from completely different sources and thus have different

mathematical representations (e.g. a collection of sample

data, a single theoretical interval, semi-quantitative expert

opinion or anecdote, or a probability distribution from

another model). In such situations, not only is there

competing information, but it may be expressed in

conflicting formats. The question for the analyst is how

disparate information embodied in different representations

can be aggregated into a single representation for use in

subsequent calculations. In their design, the Challenge

Problems emphasize this issue.

Before and at the workshop, the aggregation question

provoked considerable discussion. For instance, Vicki Bier

of the University of Wisconsin at Madison argued that

simple intervals whether derived empirically or from expert

S. Ferson et al. / Reliability Engineering and System Safety 85 (2004) 355–369 357



opinion might not necessarily circumscribe all possible

values a variable could take. Roger Cooke of the Technische

Universiteit Delft complained that divorcing the Challenge

Problems from a motivating context prevents an analyst

from inferring which approach should be used for aggrega-

tion. He also suggested that it is not clear that the

aggregation should precede calculations, because one can

sometimes obtain different answers depending on whether

one aggregates multiple estimates then computes, or

computes with the several estimates separately and then

aggregates the results. Further research is clearly necessary

to understand the proper methods and uses of aggregation in

uncertainty analyses. It seems likely that this is a problem

without a universally applicable solution.

2.4. Repeated parameters

Many uncertainty calculi are known to be sensitive to

uncertain parameters or variables that appear multiple times

in one expression. For instance, in expressions involving

intervals that appear multiple times, naively applying

interval analysis [14,15] can yield an unnecessarily wide

answer. In the first Challenge Problem, for example, when

the inputs a ¼ ½0:1; 1� and b ¼ ½0; 1� are propagated through

the function ða þ bÞa; the repetition of the parameter a

causes the answer to be [0.1, 2], even though it can be

demonstrated through other means that the range of real

values that are possible in this case is only [0.692, 2]. In

contrast, naively applying the method of discrete probability

distributions [16–18] leads to results with smaller variances

and lighter tails than are really justified. In both situations,

repeated parameters are a problem because they can

introduce their uncertainty more than once into a

calculation.

The underlying problem is that the perfect dependency

[19] between the different occurrences of the quantity is not

appropriately represented in the calculation. This same issue

arises not only in interval analysis and the propagation of

discrete probability distributions, but also in fuzzy arith-

metic [20], probabilistic logic [21], and most uncertainty

propagation methods. In the case of interval analysis and

fuzzy arithmetic, the existence of repeated parameters can

cause the calculations to overstate the uncertainty of the

results, making them suboptimal and misleading. In the case

of probabilistic methods that are sensitive to repeated

parameters, the uncertainty can be underestimated, which

could be an even worse error in risk analysis.

In sharp contrast, Monte Carlo simulation correctly

accounts for repeated parameters because of the way it

instantiates random values. Indeed, early researchers

recognized this as perhaps the primary advantage of

Monte Carlo methods for uncertainty propagation over

other probabilistic methods such as discrete approximations

[16], transformations [22], or other analytical approaches

[17]. The problem can reappear, however, in stepwise

Monte Carlo simulations in which simulations are chained

together so that the output of one simulation is used as input

to another simulation, or components of the simulations are

performed separately by different teams [23,24].

We believe that any method of propagating uncertainty

through calculations is not mature enough for serious use

unless it has practical strategies to overcome the difficulties

of repeated parameters. The algebraic expression ða þ bÞa

and the mass-spring-damper problem [2] were selected

because they have repeated parameters that cannot be

removed by algebraic rearrangement. During the workshop,

most of the presenters used methods that appropriately

account for the repeated parameter. One presenter initially

chose a different interpretation of the repetition of a; but

later came to agreement with others on the subject.

2.5. Intervals as observations

The Challenge Problems were designed to emphasize the

commonness of epistemic uncertainty, especially as rep-

resented by intervals. We had not at first considered this a

terribly controversial thing to do, but before and during the

workshop, it became clear that some probabilists consider

the idea that uncertainty could legitimately be manifest as

intervals both radical and untenable. Tony O’Hagan of

University of Sheffield wrote before the workshop in the

‘Submitted Comments’ section of the website http://www.

sandia.gov/epistemic/#, “I do not believe there is any real

situation in which one could only know that a parameter lies

in an interval,” and concluded that problems that feature

such uncertainty were ‘non-problems’.

The discussion on this topic has been extensive both

before and during the workshop, and we only want to give a

flavor of it here. It seems to us that real-world situations can

produce uncertainties that are appropriate to characterize as

intervals. Because of the controversy, we briefly mention

four kinds of such situations.

(1) Sometimes a quantity may not have been studied at

all, and the only real information about it comes from

theoretical constraints. Physical limits may be used to

circumscribe possible ranges of quantities even when no

empirical information about them is available. Typically,

these intervals are rather wide, and they are often considered

vacuous statements because they represent no empirical

information. Nevertheless, expressions that involve them

may not be vacuous. The uncertainty they induce in

computations depends on the uncertainties of other

quantities and how all the quantities are combined together

in a mathematical expression.

(2) Some monitoring plans call for periodic inspection of

components. In such cases, a component may be in good

working order at one inspection, but not at the next. When

did the component fail? It seems entirely reasonable to hold

that there was a window of time between the last two

inspections during which the component failed and that the

natural mathematical representation of the failure point is an

interval. Such inferences based on temporal observations
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occur in many domains and circumstances. For instance,

forensic analysis of crime sequencing is often based on

synthesis of the testimonies of multiple witnesses that yield

an interval ‘window of opportunity’.

(3) Physicists, chemists and engineers are taught to

report the plus-or-minus uncertainties associated with the

calibration of measuring devices. Such uncertainties

represent another important example of epistemic uncer-

tainty in the form of intervals. Certainly analog

instruments require reporting the position of a gauge or

needle between two landmark values. A measurement

from a device with a digital readout is associated with an

interval based on the number of reported digits. For

example, the value 12.64 is associated by rounding to the

interval [12.635, 12.645]. There is certainly no statistical

justification for assuming that the correct value is any

closer to the middle of this range than it is to either

endpoint (although one might argue that such limits are

not absolute in the sense that the true measurement has a

zero chance of lying outside of them). Note that this

uncertainty from the intrinsic error of measurements is

independent of sampling error that results in a statistical

distribution of point measurements. In statistical practice,

the uncertainty represented by these measurement inter-

vals is frequently ignored. In some situations, it is

probably reasonable to neglect such uncertainty, but this

is clearly not always the case. For example, the

uncertainty should not be ignored when measuring

devices have an inherently wide imprecision, when

observations are determined indirectly through other

measured quantities, or when pooling multiple data

streams from devices that are not calibrated in the

same way. In such situations, an interval seems an

entirely reasonable way to account for uncertainty of this

kind [25].

(4) In chemical or purity quantifications, there are

sometimes ‘non-detects’ in which the laboratory procedure

can only say that the concentration of a substance is below a

certain amount known as the detection limit. Again, the

uncertainty here is in the form of an interval, and there is no

reason whatever to think that the true concentration is more

likely to be in any particular part of the interval. For

situations in which such uncertainty cannot be neglected in

an assessment, it would seem to be essential to have a way to

handle these interval uncertainties in calculations.

O’Hagan also suggested that an engineer would be

unlikely to know the shape of a distribution function and yet

be unable to specify its parameters except by intervals. It

seems to us, however, that this situation arises commonly. In

a nuclear power plant risk analysis, for instance, it is

common to assume that the failure-free operating time for a

certain kind of component is characterized by a Weibull

distribution, and yet analysts may find it necessary to

determine the distribution’s parameters by fitting. This is a

case in which aleatory and epistemic uncertainty are

intimately intertwined.

2.6. Independence

In probability theory, there are several ways to define the

concept of independence between random variables. For

random variables X and Y characterized by the joint

distribution H with marginals F and G such that PðX #

xÞ ¼ FðxÞ; PðY # yÞ ¼ GðyÞ and PðX # x;Y # yÞ ¼

Hðx; yÞ; independence between X and Y implies, and is

implied by, each of the following conditions:

(i) Hðx; yÞ ¼ FðxÞGðyÞ; for all values x and y;

(ii) PðX [ I;Y [ JÞ ¼ PðX [ IÞPðY [ JÞ; for any subsets

I; J of the real line,

(iii) hðx; yÞ ¼ f ðxÞgðyÞ; for all values x and y,

(iv) EðwðXÞzðYÞÞ ¼ EðwðXÞÞEðzðYÞÞ; for arbitrary functions

w and z, and

(v) fX;Y ðt; sÞ ¼ fXðtÞfY ðsÞ; for arbitrary t and s,

where P is the probability, f ; g and h the density analogs of

F; G and H, respectively, E the expectation, and f the

Fourier transform (characteristic function) in terms of

arguments t and s. When probabilities are precise these

various definitions of independence between random

variables are all equivalent. Each definition implies all the

others. Therefore, there is a single concept of independence

that simultaneously embodies all of these possible defi-

nitions in a traditional probabilistic representation of

uncertainty.

There is a decidedly different story in the context of

imprecise probabilities and related formalisms in general-

ized information theory such as Dempster–Shafer evidence

theory, random set theory, probability bounds analysis, and

possibility theory. Here, the special case of independence,

which is unique in probability theory, disintegrates into

several different cases when probabilities are imprecise.

Couso et al. [26] pointed out that, for imprecise probabil-

ities, the various possible definitions of independence are no

longer equivalent to each other. In fact, the different

definitions induce distinct concepts of independence for

imprecise probabilities. Several concepts [26] might be

called independence, of which four seem especially

germane for risk analyses:

† Repetition independence is when there is stochastic

independence (in the traditional sense) between random

variables that are identically distributed, although their

distribution may be imprecisely known. Repetition

independence is thus the analog in the context of

imprecise probabilities of the constraint in probability

theory that variables are independent and identically

distributed (iid).

† Strong independence, on the other hand, is the complete

absence of any relationship between random variables.

Variables X and Y are strongly independent if the set of

possible joint distributions is the largest set such that

each joint distribution Hðx; yÞ ¼ FðxÞGðyÞ; where F is
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one of the possible distribution functions characterizing

X and G is one of the possible distribution functions

characterizing Y. Variables X and Y would be character-

ized as strongly independent if (i) X and Y result from

random experiments, each governed by a unique albeit

possibly unknown probability distribution, (ii) the

random experiments are stochastically independent (in

the traditional sense), and (iii) there is no known

relationship between the variables that would preclude

some possible combinations of the possible marginal

distributions.

† Epistemic independence arises when an analyst’s uncer-

tainty about either of two outcomes of a random

experiment does not change when some information

about the outcome of one of them becomes known.

Random variables X and Y are epistemically independent

if the conditional probability of each given the other is

equal to its unconditional probability, so that PðXlYÞ ¼
PðXÞ and PðY lXÞ ¼ PðYÞ: In the context of imprecise

probabilities, epistemic independence is defined in terms

of lower bounds on expectations such that Eðf ðXÞlYÞ ¼
Eðf ðXÞÞ and Eðf ðYÞlXÞ ¼ Eðf ðYÞÞ for all functions f

where EðZÞ denotes the infimum of all expectations of Z

over all possible probability distributions that could

characterize Z.

† Random-set independence is the kind of independence

embodied in Cartesian products [27] between Demp-

ster–Shafer structures. For instance, Dempster–Shafer

structures X and Y with mass functions mX and mY

respectively are random-set independent if the Demp-

ster–Shafer structure for their joint distribution has mass

function mðA1 £ A2Þ ¼ mXðA1ÞmY ðA2Þ when A1 is a focal

element of X and A2 is a focal element of Y, with mðAÞ ¼

0 for all subsets not of the form A ¼ A1 £ A2:

Couso et al. [26] reviewed these definitions and gave

simple examples of each of these definitions (and more).

Couso et al. [28] gave examples of how the definitions could

influence numerical calculations. Fetz [29] illustrated the

consequences of the various independence definitions in a

probabilistic assessment for an engineering system. Cozman

and Walley [30] explored the properties of epistemic

irrelevance and epistemic independence.

The Challenge Problems [2] assumed all quantities to be

‘independent’ of one another, which was explained to mean

that ‘knowledge about the value of one parameter implies

nothing about the value of the other’. This corresponds to

epistemic independence, although the correspondence was

not explicitly stated in the Challenge Problems.

3. Summary of the workshop proceedings

There was a considerable diversity of opinions expressed

at the workshop. Opinions diverged on everything from

technical details about the best computational techniques to

issues about interpretation and strategies. Despite this

wealth of disagreement, it is fair to say there was also

considerable consensus about what the answers to the

problems were, and even about how some of the five focal

questions listed in Section 2 should be addressed. This

consensus can be seen by comparing the papers written by

workshop participants assembled in this special issue. For

instance, the similarities are striking among the graphical

depictions of the answers to the Challenge Problems given

by the various authors. Moreover, the sense at the workshop

was that these answers are ‘right’ in the sense that they

present what can be justifiably concluded while respecting

what is unknown. Although some participants steadfastly

maintained that a purely probabilistic approach was fully

capable of accounting for all forms of uncertainty, most

participants agreed that the formal quantification of

epistemic uncertainty introduces new considerations and

that the implicit questions underlying the problem set are

legitimate and important.

Of course, it is possible that the self-selection of

attendees guaranteed such a consensus at the workshop,

and it would be foolish to argue that the idea is dominant in

risk analysis. We suspect, however, that the appropriate

treatment of epistemic uncertainty is an emerging and

important challenge that will receive increased attention in

the coming years.

In the following several sections, we summarize the

approaches used by the various authors of papers in this

special issue and describe the results of preliminary but

quantitative comparisons of their answers to the Challenge

Problems.

3.1. Contributed papers

Each of the 22 contributed papers in this special issue

described a specific approach to the problems of represen-

tation and calculation in the presence of aleatory and

epistemic uncertainty.

Klir [31] discussed the framework he calls generalized

information theory, surveyed the various theories about

imprecise probabilities and how they fit within this frame-

work, and considered the unifying principles that apply to

all of these theories. Helton et al. [32] described how that the

Challenge Problems could be solved by various approaches,

but emphasized that these approaches yield results that must

be considered within their own respective contexts. Fetz and

Oberguggenberger [33] showed that the answers to the

Challenge Problems can differ substantially under different

kinds of independence among the variables. Hall and Lawry

[34] proposed an iterative rescaling method to construct a

random set representation of uncertainty that approximates

the upper and lower cumulative probability distributions.

Kozine and Utkin [35] argued that a theory of imprecise

coherent probabilities is appropriate and necessary to solve

the Challenge Problems, but suggested that this approach

would benefit from the addition of numbers to characterize
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the credibility of disparate, potentially conflicting statistical

evidence. De Cooman and Troffaes [36] reviewed Walley’s

theory [37] of coherent lower previsions, including different

concepts of independence among variables, and showed

why it is a good model for solving uncertainty problems that

possibly involve conflicting information and suggested that

result of aggregation should be independent of the order of

combination.

Ferson and Hajagos [38] claimed that a single technology

based on the bounds around cumulative distribution

functions is sufficient to solve all the problems rigorously

and sometimes optimally. Berleant and Zhang [39] used

their distribution envelope determination method,

implemented with mathematical programming techniques,

to compute bounding envelopes around distribution func-

tions arising from uncertainty about input distributions or

uncertainty about their interdependence. Tonon [40] used

random sets theory to address the spring-mass-damper

problem and observed in this application that it is preferable

computationally to increase the fineness of the discretization

rather than invoking a global optimization tool to ensure the

constituent intervals are perfectly computed.

Red-Horse and Benjamin [41] used a method called

polynomial chaos expansion (PCE), a function-analytic

approximation technique (unrelated to chaos in the dynamical

systems sense), to provide p-box-like bounds on the mean,

standard deviation and 95th percentile for the output of the

mass-spring-damper problem. Li and Hyman [42] developed

their method based on a probability distribution variable

(PDV) as a new data type, compared it to a random interval

approach, and provided answers to the problems as p-boxes

and PDV results. Rutherford [43] used a response surface

method coupled with a coarse-grained Dempster–Shafer

approach to answer many of the Challenge Problems. Ayyub

[44] reviewed the taxonomies for knowledge and uncertainty,

the limits of knowledge construction, and the differences

between recognized and unrecognized ignorance.

O’Hagan and Oakley [45] argued that intervals are

unrealistic models of uncertainty and that probability

distributions can model any realistic kind of uncertainty.

Ben-Haim [46] reviewed his info gap theory and argued that

the Challenge Problems would only have meaning, and

could only be solved within, the context of decision

problems. Kreinovich and Ferson [47] pointed out that a

sampling strategy based on Cauchy deviates can propagate

interval uncertainty though black box models, and that the

Cauchy deviate approach becomes efficient when the

number of variables is large.

Agarwal et al. [48] gave an overview of the appearance

and treatment of uncertainty in multidisciplinary systems,

considered the problem of optimum engineering design

under uncertainty and, using evidence theory, solved

problems in multidisciplinary system analysis that are

extensions of the Challenge Problems. Soundappan et al.

[49] compared Bayesian methods with evidence theory

using Dempster’s rule of combination and measures of

information such as non-specificity and strife for solving

algebraic problems similar to the Challenge Problems.

Cooke [50] derogated the Challenge Problems as being

hopelessly unrealistic, emphasized the importance of

operational definitions for alternative mathematical rep-

resentations of uncertainty, and said that subjectively

estimated probabilities from experts would be sufficient

for any real problem. Bier [51] pointed out that the

endpoints of intervals may not be hard and fast, and that a

subtler model of the range may be necessary. Booker and

McNamara [52] argued that the elicitations from experts can

and should be interactive, with experts seeing the con-

sequences of their estimates on the final answer. Yager [53]

showed how formal decision analysis can be conducted

within Dempster–Shafer theory.

3.2. Who offered answers to the Challenge Problems

Only Helton et al. [32], Ferson and Hajagos [38], and

Berleant and Zhang [39] provided answers to all of the

Challenge Problems. Fetz and Oberguggenberger [33],

Kozine and Utkin [35], De Cooman and Troffaes [36],

and Li and Hyman [42] provided answers to all six

subproblems of Challenge Problem A. Other authors,

including Klir [31], Hall and Lawry [34], Rutherford [43],

and Ayyub [44], provided answers to some of the arithmetic

subproblems of Challenge Problem A. Tonon [40] and Red-

Horse and Benjamin [41] provided answers to Challenge

Problem B, the mass-spring-damper problem.

Several authors elected not to provide any answers to the

Challenge Problems. Some authors, such as Kreinovich and

Ferson [47], Agarwal et al. [48], Soundappan et al. [49],

Cooke [50], Bier [51], and Yager [53], used the forum to

focus on related issues and did not address the problems

themselves. Ben-Haim [46] declined on principle to provide

answers to the Challenge Problems. He argued that

modeling of uncertainty cannot usefully be separated from

the decisions for which the uncertainty model was

constructed. (He also used different numerical values

describing the inputs.) Cooke [50] characterized the

Challenge Problems as “bizarre” and chose not to address

them. O’Hagan and Oakley [45] argued that the Challenge

Problems were profoundly unrealistic, but nevertheless did

address some of the problems and ventured to answer one of

them. However, they added additional information to the

problem statement, which impedes the comparison of their

result with those of other authors. Booker and McNamara

[52] likewise considered the addition of further information,

but, because this information was added in (hypothetical)

subsequent rounds of expert elicitation, their results are

partially comparable to those of other authors.

3.3. Distributional answers to the Challenge Problems

There were two kinds of numerical results given as

answers for the Challenge Problems. Some authors gave
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answers characterizing the distribution of the quantity

(whether the quantity y ¼ ða þ bÞa for Challenge Problem

A, or the steady-state magnification factor Ds for Challenge

Problem B). Other authors gave answers that did not

characterize the entire distribution, but rather only the

expected value (or mean, average value, or expectation) of

the distribution. These two kinds of answers are obviously

quite different. The following section discusses the

distributional answers. Section 3.4 below discusses the

answers given in terms of the expected values.

3.3.1. Challenge Problem A: ðabÞa

Challenge Problem A consisted of six subproblems 1–6,

some of which themselves had subproblems. They all

concerned the evaluation of the expression ða þ bÞa; where

different kinds and degrees of information about the

quantities a and b were available.

In Challenge Problem 1, the available information about

a and b were single intervals for each. Almost all of the

papers that offered an answer to the Challenge Problem 1

agreed that it was best represented by the interval [0.692, 2].

Indeed, several disparate approaches all gave the same

answer in this case. This consensus arose apparently in the

agreement among the authors that, when the inputs are

simple intervals, the solutions to the problem should reduce

to a familiar interval analysis [14]. In some cases, the

answer was expressed explicitly as a simple interval of real

numbers. In other cases, it was expressed as a degenerate

version of a more complicated structure such as a

probability box or a Dempster–Shafer structure that is

mathematically equivalent to the interval. Helton et al. [32]

gave multiple answers to Challenge Problem 1. Not all were

mathematically equivalent to intervals, but all at least had

the same support (range) as the interval [0.692, 2].

The paper by Ayyub [44] and the paper by Booker and

MacNamara [52] disagreed with this consensus. They both

gave the answer to Challenge Problem 1 as [0.79, 2]

(Booker and MacNamara’s [52] ‘first iteration’). This

appears to be due to their use of endpoint sampling to

solve the interval analysis problem. That is, they found the

lower bound as the minimum of the four values {ða1 þ

b1Þ
a1 ; ða1 þ b2Þ

a1 ; ða2 þ b1Þ
a2 ; ða2 þ b2Þ

a2 }: They found the

upper bound as the maximum of the same four values. This

approach can be called the vertex method because it

considers only the corners of the input space. The upper

bound found this way conforms with the standard result

from interval analysis in this case, but the lower bound, of

course, does not. Because the vertex method does not yield

the full range when the function is non-monotonic, it can

underestimate the uncertainty in the result.

There was likewise a strong consensus about the answers

to the Challenge Problems 2a, 2b and 2c. Most of the

authors who characterized the distributions of the answers,

including Klir [31], Helton et al. [32], Fetz and Obergug-

genberger [33], Ferson and Hajagos [38], Berleant and

Zhang [39], and Rutherford [43] (2b only) quantitatively

agreed on the answers to these problems, although they

displayed them in various ways. Klir [31] gave them as a

numerical list of intervals. Most of the authors gave the

answers only graphically, although Berleant and Zhang [39]

gave some of the answers both ways. Some authors

displayed them in cumulative form; some displayed the

results in exceedance (complementary cumulative) form.

Helton et al. [32] gave complementary cumulative plausi-

bility and belief functions (and probability distributions).

Fetz and Oberguggenberger [33] displayed both exceedance

p-boxes and the constituting random intervals themselves.

Such differences are not important quantitatively because

each format can, in principle, be converted to any other.

Where numerical agreement could be checked, the

results from all the papers agreed in the first two or three

decimals places, with a few exceptions that appear to be

either minor typographical errors or small differences in

approximations. The answers agree not only in terms of the

support (range) over which the quantity can vary, but also in

terms of the internal uncertainty structure as to the location

and magnitude of jumps in probability values. The

consensus arises from the fact that all the authors used a

stochastic mixture [54] operation to aggregate the estimate

for the b parameter. A stochastic mixture is formed by

averaging probability values for each of the possible values

of the quantity.

Ayyub’s answers [44] to Challenge Problems 2a, 2b and

2c, also given as a list of intervals, are close to the same

numerical values as given by the other authors, and, when

displayed graphically, are visually indistinguishable from

the answers given by the consensus. However, they are

numerically different to a degree that does not appear to be

from differences in the approximation method; the numbers

often differ in the second decimal place. It seems clear that

these discrepancies are due to Ayyub’s use of the vertex

method to solve the underlying interval calculations.

Helton et al. [32], Fetz and Oberguggenberger [33],

Ferson and Hajagos [38], Berleant and Zhang [39], and Li

and Hyman [42] provided distributional answers to

Challenge Problems 3a, 3b and 3c. Again, there is strong

consensus among the answers obtained, both in terms of the

total range and the internal structure of uncertainty.

Although numerical comparisons are not convenient, the

respective graphs are mostly indistinguishable from one

another among the various papers. One discrepancy is that

the answers given by Helton et al. [32] do not quite reach the

value of y ¼ 2; although they should. The reason for this

slight underestimation of uncertainty is traceable to their use

of a sampling strategy to make interval calculations, which

will almost always miss the minimum and maximum

possible values. Such a difference could be significant in a

risk analysis where probabilities of extreme behaviors are of

interest, such as, for instance, if the value 2 represented a

flashpoint or other critical threshold. In practice, a sampling

strategy would typically include some sort of importance
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sampling procedure to assure that outcomes having low

probability but high consequences are accounted for.

There was marked diversity in the displays given for

problems 3a, 3b and 3c, and several authors displayed

multiple answers for each of the problems under different

assumptions. For instance, Helton et al. [32] also displayed

probability distributions. Fetz and Oberguggenberger [33]

displayed answers obtained under different assumptions

about what independence means. It is difficult to compare

their results to those of other authors because of the

complexity of their graphs. Because Fetz and Oberguggen-

berger [33] assumed strong independence between a and b,

their results could, in principle, be somewhat narrower than

those of the other authors who assumed only random-set

independence. Li and Hyman [42] also displayed results of a

‘refined p-box’ approach that produced results that closely

resemble probability distributions.

Ayyub [44] also offered answers to Challenge Problems

3a and 3b. Although he used a tableau methodology that

superficially seems similar to that used by Berleant and

Zhang [39] and by Ferson and Hajagos [38], Ayyub’s [44]

approach was substantially different from the approaches

used by the other authors. For instance, his use of the vertex

method produced sometimes sharply narrower interval

ranges. Even more significantly in this case, Ayyub [44]

did not estimate the mass associated with these intervals by

multiplying the respective masses associated with the two

intervals ranges for a and b. Instead, he employed a different

operation motivated by a fuzzy sets approach to belief and

plausibility. Although a graphical comparison of Ayyub’s

results with those of the other authors would have been

interesting, his results were only given numerically. Klir

[31] also offered an answer for 3a, but he used inputs

slightly different from those prescribed by Oberkampf et al.

[2], so the results are not comparable. Booker and

MacNamara [52] offered an answer for problem 3c, but it

is difficult to compare it to answers given by other authors

for similar reasons.

Most authors are also apparently in quantitative agree-

ment about the answers to the remaining arithmetic

Challenge Problems (4, 5a, 5b, 5c, and 6). For instance,

Fetz and Oberguggenberger [33], Ferson and Hajagos [38],

Berleant and Zhang [39], Li and Hyman [42], and

Rutherford [43] give essentially the same answer for

problem 4, whether they call the result a p-box or

cumulative belief and plausibility functions. Some of the

displays are noticeably smoother or coarser step functions

than the displays of the other authors. For instance, compare

the answer to problem 4 given by Rutherford [43] (his

Fig. 17) with that given by Li and Hyman [42] (their

Fig. 5.12). Evidently this difference is a result of the number

of discretization steps used to approximately represent the

specified inputs. Similar agreements, notwithstanding minor

discrepancies of smoothness, emerge for the results for the

other Challenge Problems among these authors. Rutherford

[43] did not provide answers to problems 5a, 5b, or 5c.

Helton et al. [32] did not present answers to problems 4,

5a, 5b, 5c, or 6 in terms of bounds on the distribution

functions, but they did display ‘multiple aleatoric distri-

butions’ as collections of possible distribution functions for

the uncertain variable y. The collections were consistent

with the answers given by the other authors in the sense that

all the distributions were entirely inside the respective

bounds.

The answers of Hall and Lawry [34] for problems 4, 5a,

5b, and 5c have very noticeable differences from those of

the other authors. Although they used the same aggregation

operation, they apparently used a different discretization

scheme. Their results are quantitatively different in terms of

the internal uncertainty structures, and, in particular, are

considerably fatter in the right tail of the distributions,

although the locations of the answers on the y-axis conform

with those observed by the other authors.

3.3.2. Challenge problem B: mass-spring-damper

Helton et al. [32], Ferson and Hajagos [38], Berleant and

Zhang [39], Tonon [40], and Red-Horse and Benjamin [41]

offered distributional answers to Challenge Problem B, the

mass-spring-damper problem. The graphed answers are

visually very similar and suggest a substantial quantitative

consensus. There are, however, noticeable differences in

both the left and right bounds. The answers given by

Berleant and Zhang [39] and Tonon [40] suggest that no

values can be lower than one and that there must be some

values greater than two (i.e. the probability of Ds , 2 must

be smaller than one). The answer given by Ferson and

Hajagos [38] is slightly wider for the left bound. Their

answer suggests that some values can be below one, and that

it is possible that all values are below two (i.e. the

probability of Ds . 2 could be as small as zero).

The answer of Red-Horse and Benjamin [41] is more

different still from those of the other authors. They gave two

answers as bounds on distribution functions (power and

linear forms), and both are substantially wider in terms of

uncertainty than the bounds described by other authors,

although their supports appear to be the same. The reason

for the discrepancy may be that the other authors aggregated

the multiple estimates for the individual input variables

before computing Ds; but Red-Horse and Benjamin

computed Ds for each possible combination of inputs and

aggregated the resulting estimates of Ds:

Helton et al. [32] did not present an answer to Challenge

Problem B in terms of bounds on the distribution function

for the variable Ds (although they did for the expected value

of that variable). Instead, they gave multiple aleatoric

distributions for the variable, which are entirely consistent

with the bounds given by the other authors because they all

lie inside the bounds. This collection of distributions does

seem to suggest, however, that the probability of values

larger than four is very small, whereas the answers given by

other authors suggest it might be as large as 0.1 or so.

However, this collection only included 50 distributions.
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With additional iterations, their approach gives a collection

of distributions that tends to cover the envelopes given by

the other authors. For instance, when the number of

distributions simulated approaches 1000, the results suggest

that values less than one or greater than seven are possible,

and that the probability of values being greater than two can

be as small as zero.

Among the authors who provided quantitative answers to

the Challenge Problems in terms of belief and plausibility

functions or bounds on distribution functions, there is very

strong consensus. There are small differences due to the

inefficiency of sampling, or the number of discretization

levels employed. There are, however, answers given by

some authors that deviated more substantially from the

consensus. As we will see in Section 3.4, there is not as

much quantitative agreement when the answers are not

expressed as bounds on distribution functions.

3.4. Bounds on expected values

This section summarizes the results that were expressed

in terms of the expected value of the answer (rather than its

entire distribution). Five papers (Helton et al. [32]; Kozine

and Utkin [35]; De Cooman and Troffaes [36]; Ferson and

Hajagos [38]; and Red-Horse and Benjamin [41]) expressed

their answers to some or all of the Challenge Problems in

terms of bounds on the expected value of the output variable

as shown in Table 1. The approach of De Cooman and

Troffaes [36] and that of Kozine and Utkin [35] were both

based on imprecise probabilities and particularly Walley’s

theory of coherent lower previsions. The Dempster–Shafer

approach of Helton et al. [32] was a similar but weaker (i.e.

more conservative) version of this approach in the sense that

it can yield results that are wider (but no tighter) than can be

justified by other methods. The probability bounds approach

of Ferson and Hajagos [38] was also a similar but still

weaker analysis.

Despite the similarities of their approaches, their

respective answers to the Challenge Problems in these

papers differ to a surprising degree. Table 1 assembles side

by side the numerical answers about the expected value

of the output variable from the five papers for the various

problems. The entries denoted as ‘(graphical)’

represent answers that are not given as interval ranges but

as rather more complicated structures (these entries are

discussed below).

There is some quantitative agreement by the various

authors on a few of the expected values. Within expressed

significant digits, all three papers that gave an answer for

Challenge Problem 1 agreed that is the interval [0.69, 2].

Note here that the bounds on the expected value EðyÞ are the

same as the bounds on the variable y itself obtained in other

papers.

After problem 1, however, the papers display little

agreement. In some cases, the numerical differences are

rather large. This disagreement is apparently partially due to

differences in how multiple estimates were aggregated

before they were combined arithmetically. De Cooman and

Troffaes [36] took the interval data in the Challenge

Problems as rigorous and used intersections of closed

convex sets of probability distributions to aggregate

multiple estimates (or the convex hull of their union when

those intersections were empty). Ferson and Hajagos [38]

used stochastic mixture (i.e. linear opinion pooling) to

aggregate the multiple estimates. Kozine and Utkin [35]

developed a novel approach for aggregation that generalizes

various possible methods and requires the analyst to specify

numerical credibilities that reflect differential confidence of

the analyst in the various estimates. To illustrate the

potential flexibility of their approach, they introduced

credibilities in their solutions to problems 2, 3, and 5 that

did not appear in the statement of the Challenge Problems.

This certainly accounts for part of the observed quantitative

differences in their answers compared to those of the other

authors.

Surprisingly, there was also disagreement about the

answers to Challenge Problems 4 and 6. Because these

problems did not have multiple estimates for any of

Table 1

Comparison of bounds on expected values

Helton et al. [32] Kozine and Utkin [35] De Cooman and Troffaes [36] Ferson and Hajagos [38] Red-Horse and Benjamin [41]

1 – [0.69, 2.0] [0.692201, 2.0] [0.692, 2] –

2a – [0.93, 1.84] [0.956196, 1.8] [0.84, 1.89] –

2b – [0.93, 1.76] [0.956196, 1.7] [0.82, 1.85] –

2c – [0.93, 1.52] [0.692201, 2.0] [0.83, 1.73] –

3a – [0.944, 1.473] [1.04881, 1.2016] [0.83, 1.56] –

3b – [0.964, 1.418] [1.04881, 1.1156] [0.82, 1.44] –

3c – [1.187, 1.242] [0.692201, 2.0] [0.946, 1.25] –

4 [1, 3.7] [0.859, 1.108] [1.00966, 4.08022] [0.9944, 4.416] –

5a (Graphical) [1.45, 2.824] [1.54027, 2.19107] [1.05, 3.79] –

5b (Graphical) [1.373, 2.607] [1.54027, 1.81496] [1.03, 3.48] –

5c (Graphical) [1.802, 2.298] [1.00966, 4.08022] [1.12, 2.94] –

6 [1.05, 3] [1.019, 2.776] [1.05939, 2.86825] [1.052, 2.89] –

B (Graphical) – – [1.17, 3.72] (Graphical)
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the inputs, there could not be any differences arising from

the choices about aggregation methods. There are at least

four possible sources for the observed discrepancies among

the answers:

1. Nesting. Given the relative natures of the various

approaches employed by the different authors, one

might anticipate that their answers would be nested in

a particular way. For instance, the intervals given by

Helton et al. [32] should enclose those given by either

Kozine and Utkin [35] or De Cooman and Troffaes [36].

Likewise, the results given by Ferson and Hajagos [38]

should enclose those given by Helton et al. [32]. In fact,

very little such nesting of results can be observed in the

table above.

2. Differences in truncation. It seems possible and perhaps

likely that the discrepancies among these answers could

in part be the result of different choices about whether or

where the distributions were truncated to finite ranges.

3. Numerical approximation error. Of course, the observed

discrepancies may be attributable to numerical approxi-

mation error in the calculation algorithm and the

accumulated machine round-off error in its computer

implementation of each of the various approaches (e.g. in

the linear programming algorithms). If this were the case,

then the discrepancies would in principle evaporate

under additional computational effort. However, assum-

ing that the authors reported significant digits so that they

reflect the reliability of the respective answers, approxi-

mation error does not seem to be tenable as the full

explanation of the observed discrepancies.

4. Different representations of independence. Finally, the

disagreement about the answers may also be due to

different assumptions about the independence between

the variables. If this were the case, one would expect that

the answers would be nested in some way, which is not

apparent in the answers given in the table.

The answers given by Helton et al. [32] (in their Figs. 16

and 17) for the three subproblems of Challenge Problem 5

were probability distributions, Dempster–Shafer structures

and possibility distributions. They all have supports of

[1, 3.6], so they are quantitatively comparable to the other

answers listed in the table, but the structures are non-

degenerate and therefore structurally different from the

intervals given by all the other authors. Whereas most

authors gave a set of possible values for the expected value,

Helton et al. [32] gave distributions of one kind or another

for the expected value. The recognition of this qualitative

difference between answers is an especially interesting

outcome of the Albuquerque workshop. It points to an issue

even more fundamental than numerical consensus and

discrepancies. Its resolution will involve developing an

agreement about what the answer should look like.

Only three papers gave characterizations of the expected

value of Ds: Helton et al. [32] (in their Fig. 19) described

a Dempster–Shafer structure over the range [1.44, 2.86],

which was computed with a sampling strategy. Red-Horse

and Benjamin [41] (in their Fig. 7) gave a structure that

was similarly structured and computed but had the support

[1.4, 3.6]. Ferson and Hajagos [38] gave the simple interval

[1.17, 3.72], which was based on moment propagation. It is

almost sure that their moment propagation would over-

estimate the uncertainty of the answer, whereas, depending

partially on the number of replications, a sampling strategy

could tend to underestimate the uncertainty.

Overall, there was considerably less quantitative agree-

ment among authors about their estimates of the expected

values for the quantities in the Challenge Problems than

there was about the distributions of the quantities. Although

most authors expressed their estimates of the expectations as

intervals, some authors used more complex uncertainty

structures. Among the answers given as intervals, the

bounds on the expected value depend to a noticeable degree

on the method for aggregation used to solve the problem.

Beyond that, there also appear to be unexplained differences

in the calculated numerical values offered by the various

authors. The source and meaning of these residual

disagreements expressed in the answers about the expected

values have not been fully determined.

3.5. Synopsis of the various approaches

Table 2 summarizes some of the most important features

of the various approaches used in the papers. The second

column of the table specifies which of the Challenge

Problems were solved in each paper. Several papers, such as

Red-Horse and Benjamin [41], Ben-Haim [46], and

O’Hagan and Oakley [45], either partially solved some of

the Challenge Problems or solved other problems that were

related to the Challenge Problems. These efforts are not

reflected in the column, which only mentions a problem if a

complete and final answer was given that can be

quantitatively compared with answers given in the other

papers.

The third column indicates how the uncertain quantities

were represented in each paper. Generally this also indicates

the theoretical approach employed by the authors. In several

cases, there were multiple approaches employed in a single

paper. In such cases, multiple answers were typically

computed for each problem. Sometimes, however, the

different approaches led to the same answer for a particular

problem.

The fourth column of the table indicates how each paper

dealt with the technical problem of aggregation described in

Section 2.3. Many of the papers employed multiple different

aggregation approaches. In this column, the term mixture

indicates that the ‘equal credibility’ specified in the

Challenge Problems [2] of multiple estimates for a quantity

was modeled by equal probability using a stochastic mixture

model in which the distribution functions are (vertically)

averaged together with equal weights.
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Table 2

Summary of approaches to the Challenge Problems

Author(s) Problems

solved

Representation of inputs Aggregation method Computational algorithm Strategy for repeated

parameters

Answer to problem 1

Klir [31] 1,2,3a Dempster–Shafer structures Mixture (Unspecified) (Unspecified) [0.69, 2]

Helton et al. [32] All Probability distributions,

Dempster–Shafer structures,

possibility distributions

Mixture Random sampling Sampling Degenerate Dempster–Shafer

structure over [0.7, 1.98],

probability distribution over

same range (both given

graphically)

Fetz and Oberguggenberger

[33]

1,2,3,4,5,6 Random intervals, sets of

probability measures, fuzzy

sets

Mixture Global optimization Exact evaluation (Given graphically, but

consistent with [0.69, 2])

Hall and Lawry [34] 4,5 Random sets Mixture, other methods Optimization (gradient) Sampling -

Kozine and Utkin [35] 1,2,3,4,5,6 Imprecise coherent

probabilities

(Depends on numerical

credibilities)

Mathematical programming Mathematical programming [0.69, 2.0]

De Cooman and Troffaes [36] 1,2,3,4,5,6 Coherent lower previsions Natural extension of

pointwise maximum, lower

envelope (pointwise

minimum)

Independent natural extension Independent natural extension Vacuous lower prevision over

[0.692201, 2.0]

Ferson and Hajagos [38] All P-boxes Mixture, other methods Cartesian product of intervals

and proababilities

Subinterval reconstitution [0.692, 2]

Berleant and Zhang [39] All Random sets in joint

distribution tableaus

Mixture Interval-based discrete

convolution

Systematic sampling [0.69, 2]

Tonon [40] B Random sets Dempster’s rule, mixture Vertex method Sampling –

Red-Horse and Benjamin [41] B Families of polynomial chaos

expansions

A posteriori mixture Chaos expansion technique Sampling –

Li and Hyman [42] 1,2,3,4,5,6 Probability distribution

variables

Mixture PDV arithemetic Dependency tracking [0.6922, 2.0], refined p-box

over that range

Rutherford [43] 1,2b,4,6 Basic probability assignments

response surface

Mixture, Dempster’s rule ‘Intelligent’ sampling Sampling [0.69, 2]

Ayyub [44] 1,2,3a,3b,6 Tableaus Mixture Vertex method Vertex method [0.7943282, 2.0]

O’Hagan and Oakley [45] 1 Probability distributions Encourage consensus among

experts

Bayesian – (Not comparable)

Ben-Haim [46] None Info-gap model Info-gap theory – Info-gap theory –

Kreinovich and Ferson [47] None Intervals – Cauchy deviate method Sampling –

Agarwal et al. [48] None Interval variables with known

bpas

Dempster’s rule – – –

Soundappan et al. [49] None Evidence theory, Bayesian

probability density functions

Mixture, Bayes’ rule Optimization, probability

integration

Optimization formulation (Not comparable)

Cooke [50] None Subjective probability

distributions

Mixture – – –

Bier [51] None Percentiles of subjective

probability distribution

Mixture, copula-based

methods

– – –

Booker and McNamara [52] 1, 3c Endpoint intervals Convex hull of outputs Vertex method Vertex method [0.79, 2.0]

Yager [53] None Dempster–Shafer structures,

fuzzy measures

Order-weighted averaging – – –
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The fifth column describes the computational algorithm

employed in each paper and the sixth column indicates the

technique used to handle the problem of repeated par-

ameters discussed in Section 2.4. Of course, the phrases

used in these columns can only very crudely characterize the

methods employed in the individual papers, which should

be read for full details. The term sampling means that a

scalar real value was sampled for each input and that these

real numbers were combined arithmetically and propagated

through the response function to obtain an output. This

approach gives the same value to each instance of a repeated

parameter. The observed extreme values computed in this

way were presumed to be the largest and smallest possible

values. The vertex method indicates that only the corners of

the input space were considered in the search for the global

minimum and maximum. In the case of two variables, these

are just the four pairs of endpoints mentioned in Section

3.3.1. For the meanings of other terms used in the table,

consult the individual papers.

The last column of Table 2 gives the answer to the first

Challenge Problem, which was expressed in terms of

intervals. What is shown in the column is whatever the

author(s) of each paper offered as the answer. In most case,

the answer was explicitly given as an interval. Because this

is the simplest problem, it is the only one whose answer can

be conveniently characterized in the table. Of course, this

problem is not representative of the other Challenge

Problems, some of which are much more complicated.

The column illustrates the diversity of different answers

given by the several authors even for the simplest problem.

Nevertheless, the answers also suggest that, emerging

through this diversity, there is a quantitative consensus

among most of the authors.

4. Discussion and future research needs

Is a consensus emerging about how epistemic uncertainty

should be handled in numerical calculations? Is a consensus

emerging about how it should be combined with aleatory

uncertainty? There is, apparently, a partial consensus among

some analysts, at least about several general ideas and

specific methodological details. Among the authors who

provided quantitative answers to the Challenge Problems in

terms of belief and plausibility functions or bounds on

distribution functions, there was very strong consensus,

although there were small differences due to the inefficiency

of sampling, or the number of discretization levels

employed, and different algorithmic strategies. There

appears to be wide agreement that the more epistemic

uncertainty there is about a quantity the less able analysts

will be to characterize the quantity with a precise probability

distribution.

It is abundantly clear, however, that the consensus on

these matters does not include many probabilists. Funda-

mental disagreement remains about the proper statistical

foundation of the new methods. Some researchers criticize

them as misguided and unnecessary. They maintain that the

methods are poor substitutes for the proper use of

probability theory. When such fundamental disputes arise,

it is natural (and historically common) that schools of

thought develop around the respective positions. These

schools of thought foster discourse and progress within

groups of like-minded researchers but generally inhibit

discussion with outsiders. Over time, the paucity of social

and intellectual interactions allows the growth of distinct

jargons within the two schools that further suppresses cross-

communication. The result is often a disadvantageous

fragmentation of the discipline.

The dangers to any discipline of fragmentation are real. It

is important to concentrate on developing areas of

concordance. We should temper the enthusiasm about any

emerging consensus with due attention to the criticisms, and

avoid ignoring the difficult interactions or leaving behind

the nay-sayers. At the same time, we should strive to

understand the dissatisfaction that led to the development of

new approaches and acknowledge the limitations and

inconveniences of standard methods. There will always be

disagreements, but open and inclusive discussion is the path

to a healthy scientific/engineering discipline.

Several participants of the Albuquerque workshop

expressed interest in a follow-up event on related compu-

tational problems involving epistemic uncertainty. Possible

topics for future workshops include questions on handling

model uncertainty and dependence, or lack of information

about dependence, among variables. Several other funda-

mental questions also need further research. For instance,

how can an analyst meaningfully elicit or otherwise acquire

representations of uncertainty within the various non-

traditional theories considered potentially useful in handling

epistemic uncertainty? How can the meaning of the

numerical values (e.g. ‘belief’, ‘possibility’, etc.) be

standardized across multiple informants and users? How

should the results be communicated to decision makers?

How can sampling methods be made efficient for compu-

tationally difficult problems? How should sensitivity

analyses be performed and interpreted in the context of

alternative uncertainty representations? One or more work-

shops could fruitfully be organized around such questions so

as to encourage focused but inclusive discussion.

In addition to the fundamental questions, there are other

issues concerning the mechanics of calculation that deserve

consideration. For instance, it might be useful to hold a

workshop that focuses attention on a significantly more

realistic and complicated problem set. More complex

problems would help to establish that proposed methods

would actually be practicable for use in real-world settings.

It is not clear, however, that such a workshop could be

organized around prescribed challenge problems similar to

those considered in the Albuquerque workshop. The more

realistic and complicated the problems become, the less
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reasonable it becomes to expect participants to solve the

problems themselves before or during the workshop.

Another possible workshop topic concerns the related

issue of how uncertainty can be handled when the model

is a black box whose internal details are not known to

the analyst. Many of the methods of uncertainty

propagation that are in widespread use are ‘intrusive’

in the sense that they must be applied to individual

binary operations such as a particular addition or

multiplication. This greatly limits their applicability to

an important class of problems. In many engineering

applications, there is a need for techniques that can

propagate uncertainty through black box codes that

cannot be decomposed into a composition of binary

operations. These black boxes are often large, legacy

software programs characterized by high input dimen-

sionality, long computation times, and strong disincen-

tives or restrictions against recoding. They often

incorporate iterative convergence testing or an interactive

re-gridding of the mesh for numerical solutions to partial

differential equations that implies that each vector of

real-valued inputs potentially induces a different

sequence of mathematical operations. Such codes cannot,

even in principle, be decomposed into a finite set

sequence of binary operations. Most of the non-

traditional methods discussed at the workshop, and

indeed, most uncertainty methods generally, are intrusive

and cannot be applied to such problems. There is a need

for research to generalize these methods (or invent new

methods) that can be applied to this important class of

problems.
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