
Graph Algorithms in PGAS: Chapel and UPC++

Louis Jenkins
louis.jenkins@rochester.edu

University of Rochester
Rochester, NY, USA

Jesun Sahariar Firoz, Marcin Zalewski, Cliff Joslyn, Mark Raugas
{jesun.firoz,marcin.zalewski,cliff.joslyn,mark.raugas}@pnnl.gov

Pacific Northwest National Laboratory
Seattle, Washington, USA

Abstract—The Partitioned Global Address Space (PGAS) pro-
gramming model can be implemented either with programming
language features or with runtime library APIs, each implementa-
tion favoring different aspects (e.g., productivity, abstraction, flex-
ibility, or performance). Certain language and runtime features,
such as collectives, explicit and asynchronous communication
primitives, and constructs facilitating overlap of communication
and computation (such as futures and conjoined futures) can
enable better performance and scaling for irregular applications,
in particular for distributed graph analytics. We compare graph
algorithms in one of each of these environments: the Chapel
PGAS programming language and the the UPC++ PGAS runtime
library. We implement algorithms for breadth-first search and
triangle counting graph kernels in both environments. We discuss
the code in each of the environments, and compile performance
data on a Cray Aries and an Infiniband platform. Our results
show that the library-based approach of UPC++ currently pro-
vides strong performance while Chapel provides a high-level
abstraction that, harder to optimize, still provides comparable
performance.

I. INTRODUCTION

The Partitioned Global Address Space (PGAS) distributed
memory programming model provides a strong shared-memory
abstraction. PGAS can be implemented at the language-
level, as in the Chapel programming language [1], or as a
third-party library and runtime systems like Unified Parallel
C++ (UPC++) [2], Legion [3], or HPX [4]. Language-based
approaches provide greater productivity via language constructs
and high-level abstractions. Libraries and runtime systems
provide greater flexibility through low-level and explicit com-
munication primitives scheduling policies. These can maximize
both performance and scalability, while also making it easier
to adapt new runtime systems into existing code.

In this paper, we compare the Chapel programming lan-
guage and the UPC++ runtime library for implementing graph
algorithms. Graph algorithms are mostly communication-
bound, having a low computation-to-communication ratio. They
perform irregular remote memory accesses and demonstrate
fine-grained computation. Graph algorithms thus require strong
runtime and language support for efficient implementation. For
example, a good runtime can provide message aggregation and
caching, helping to utilize bandwidth at the cost of latency.

From the runtime perspective, for UPC++, we are interested
in how the one-sided communication primitives and the
completion notification mechanism for asynchronous remote-
memory access (RMA) can be used in graph computation.
Conjoining and chaining of such completion events, together
with one-sided communication primitives, results in better

interleaving of communication and computation for graph
algorithms. Such mechanisms can reduce straggler effects
and can help achieve better scalability for graph algorithms.
In Chapel, we strive to explore its high-level, data-parallel,
task-parallel, and locality constructs, its implicit one-sided
communication, its first-class distributed global-view arrays
and domains, and its built-in reductions, with focus on the
tradeoff between high productivity and performance.

The contributions of the paper are as follows:
• We leverage the one-sided asynchronous non-blocking

communication primitives of UPC++ in conjunction with
future conjoining to expose overlapping communication
and computation in graph algorithms. Such formulation
of algorithms naturally leads to better performance.

• We exploit Chapel’s first-class arrays, domains, and
distributions to handle partitioning of data, discuss ways
to overcome the lack of explicit asynchronous non-
blocking communication primitives to enable overlap of
communication and computation, and discuss patterns to
reduce the amount of fine-grained communication to a
reasonable amount.

• We compare and contrast both approaches, and evaluate
both the raw performance and the amount and quality
of code required to model graph computations in both
Chapel and UPC++.

II. GRAPH ALGORITHMS IN UPC++

UPC++ [2] is a modern C++-based PGAS library. In UPC++,
a part of the distributed memory (shared heap) is considered
as the global address space and all processes have access
to this shared memory segment via global pointers. UPC++
supports one-sided communication through the rget and rput

operations to interact with remote process memory, avoiding
any coordination with the remote process. All communication
in UPC++ is explicit to make the programmer aware of the
cost of communication. UPC++ leverages GASNet-EX [5]
networking middleware for communication. Since most UPC++
communication primitives are asynchronous and non-blocking,
they facilitate interleaving of communication and computation
that are essential for efficient execution of graph algorithms.

The completion of a non-blocking operations in UPC++
(such as an rget/rput) can be queried on an object called
a future, which contains the status of an operation as well
as the result of the operation. When many asynchronous
operations are launched in succession, waiting on individual
completion events (such as futures) can be cumbersome.

978-1-7281-5020-8/19/$31.00 ©2019 IEEE

cliff
Text Box
Firoz, Jesun and Jenkins, LP and Zalewski, Marcin and Joslyn, CA and Raugas, Mark V: (2019) "Graph Algorithms in PGAS: Chapel and UPC++", in: Proc. 2019 Conf. on High Performance Extreme Computing (HPEC 2019), https://doi.org/10.1109/HPEC.2019.8916309

UPC++ provides a mechanism, called future conjoining, that
aggregates all such futures and waits on only one future
for completion notification. For this, the upcxx::make_future

mechanism is used to construct an empty future (say fut_all).
Each asynchronous operation (for example an rget/rput) also
creates a future, which is then passed to the upcxx::when_all

function to combine if with fut_all. In this way, only a
single future handle is obtained to wait on the completion
of all the asynchronous operations (rgets/rputs) that have been
issued. Future conjoining also minimizes the number of calls
to the wait() function, further reducing overhead. The closest
analogue of UPC++ futures in C++ 11 is std::future, which is a
mechanism to access the result of an asynchronous operation.

A. Triangle Counting

We implement a basic triangle counting (TC) algorithm to
demonstrate the UPC++ asynchronous communication primi-
tives (rget) and future conjoining (Listing 1). Each vertex in
the graph obtains its two-hop neighbors in two steps: first an
rget is issued to get the global pointer to the 2-hop neighbor
list (Line 19) from the neighbor’s owner rank. Once the
rget operation finishes, a callback is executed with the .then

construct (Line 20) to issue the second rget operation to fetch
the list of two-hop neighbors (Line 25), after a buffer with the
right size is allocated. After the two-hop neighbors are obtained,
a set intersection is performed between the vertex’s immediate
neighbors and the fetched two-hop neighbors to determine the
closing wedges of the triangles with the common neighbors
(Line 29). Finally, a global sum reduction of all local triangle
counts provides the total triangle counts (Line 40).

There are two important aspects of the implementation of
the algorithm. First an empty future is created (Line 5) to
conjoin all the futures (Line 35) that will be returned as the
completion objects of the outer rget operations (Line 19). Once
all the rgets are issued, the algorithm waits on the conjoining
future (Line 38) to signal completion of all the outer rgets.
Secondly, the inner rget operation returns a future to the
callback function of the outer rget operation (Line 25 and
Line 20). Chaining futures as return types to the callback
ensure that all inner rget operations are completed when
the conjoining future returns completion of all outer rget

operations (Line 38). Through this combination of one-sided
communication primitive (rget) and future conjoining, UPC++
achieves better communication (fetching two-hop neighbors for
different vertices) and computation (set intersections) overlap.

B. Breadth-First Search

We also implement a level-synchronous breadth-first search
(BFS) algorithm in UPC++ (Listing 2). The algorithm maintains
the current and next frontiers of vertices, targeted for each rank,
in two distributed queues (Line 15). The distributed queues
are allocated on the global heap and each rank has a global
pointer to its part. At the beginning of the algorithm, each rank
broadcasts the global pointer pointing to the start of its part
of the distributed queues (Line 29). These global pointers will

1 // local triangle count iterator
2 size_t local_triangle_count = 0;
3 counting_output_iterator counter(local_triangle_count);
4 // the start of the conjoined future
5 upcxx::future<> fut_all = upcxx::make_future();
6 // For each vertex
7 for (uint64_t i = 0; i < num_vertices_per_rank; i++) {
8 auto vtx_ptr = bases[upcxx::rank_me()].local()[i];
9 auto adj_list_start = vtx_ptr.p.local();

10 auto adj_list_len = vtx_ptr.n;
11 auto current_vertex_id = index_to_vertex_id(i);
12 // For each neighbor of the vertex, first get the
13 // global pointer to the adjacency list and size
14 for (auto j = 0; j < vtx_ptr.n; j++) {
15 auto neighbor = adj_list_start[j];
16 if (current_vertex_id < neighbor) {
17 auto rank = vertex_id_to_rank(neighbor);
18 auto offset = vertex_id_to_offset(neighbor);
19 upcxx::future<> fut = upcxx::rget(bases[rank] + offset)
20 .then([=] (gptr_and_len pn) {
21 // Allocate a buffer of the same size
22 std::vector<uint64_t> two_hop_neighbors(pn.n);
23 // rget the actual list
24 return upcxx::rget(pn.p,
25 two_hop_neighbors.data(), pn.n)
26 .then([=, two_hop_neighbors =
27 std::move(two_hop_neighbors]() {
28 // set intersection
29 std::set_intersection(adj_list_start,
30 adj_list_start + adj_list_len,
31 two_hop_neighbors.begin(),
32 two_hop_neighbors.end(), counter);
33 }); });
34 // conjoin the futures
35 fut_all = upcxx::when_all(fut_all, fut);
36 } } }
37 // wait for all the conjoined futures to complete
38 fut_all.wait();
39 ...
40 auto done_reduction = upcxx::reduce_one(
41 &local_triangle_count, &total_triangle_count, 1,
42 [](size_t a, size_t b) { return a + b; }, 0);
43 done_reduction.wait();

Listing 1: Triangle counting in UPC++

be leveraged by each rank to fetch the next active frontier list
destined for the rank.

In each iteration, the algorithm retrieves a vertex from
the current active frontier, checks whether it has already
been visited (Line 95), and if not, puts all its neighbors in
the next frontier queue (Line 105). Neighbors are put into
their respective owner rank’s buffer in the distributed queue
(Line 109). Once the current frontier list traversal is done, each
rank initiates two rget operations to fetch the next frontier list
from other ranks, targeted for the current rank. The first rget

(Line 67) fetches the corresponding global pointer to remote
memory and the length of the frontier list. A buffer of the
same length is allocated and a second rget operation is issued
to obtain the frontier list (Line 70).

These rget operations essentially mimic the functionality of
an all_to_all collective. Here we also utilize future conjoining
(Line 78) and chaining of the completion future of the inner
rget to the callback function to maximize interleaving of
communication and computation. Once each rank finishes
receiving the next frontier list, the algorithm proceeds to the
next step, a global sum reduction is performed on the size of

978-1-7281-5020-8/19/$31.00 ©2019 IEEE

1 // per-destination queues for current and next iteration
2 std::vector<std::vector<std::pair<uint64_t, uint64_t>,
3 upcxxc::allocator<std::pair<uint64_t, uint64_t>>>>
4 frontiersQarr[2];
5 std::vector<std::pair<uint64_t, uint64_t>>
6 received_buf;
7 struct gptr_and_len_pair {
8 // pointer to first element in destination buffer
9 upcxx::global_ptr<std::pair<uint64_t, uint64_t>> p;

10 int n; // number of elements
11 };
12 using BaseQType = std::vector<upcxx::global_ptr<
13 gptr_and_len_pair>>;
14 // Two frontiers, alternating current and next
15 BaseQType gpFrontsQarr[2];
16 // access current queue
17 auto level = 0;
18 auto current_queue_index = [&]() { return level % 2; };
19 auto gpCurFrontQ = [&]() -> auto& {
20 return gpFrontsQarr[current_queue_index()];
21 };
22 // initialize and exchange
23 for (auto i = 0; i < 2; ++i) {
24 gpFrontsQarr[i].resize(upcxx::rank_n());
25 gpFrontsQarr[i][upcxx::rank_me()] =
26 upcxx::new_array<gptr_and_len_pair>(upcxx::rank_n());
27 for (int r = 0; r < upcxx::rank_n(); r++) {
28 gpFrontsQarr[i][r] =
29 upcxx::broadcast(gpFrontsQarr[i][r], r).wait();
30 }
31 }
32 boost::dynamic_bitset<> color_map(num_vertices_per_rank);
33 std::vector<uint64_t> parent_map(num_vertices_per_rank);
34 auto curFrontQ = [&]() -> auto& {
35 return frontiersQarr[current_queue_index()];
36 };
37 while (true) {
38 auto localFrontSize = 0;
39 for(upcxx::intrank_t r = 0; r < upcxx::rank_n(); r++) {
40 // sort and remove duplicates
41 std::sort(curFrontQ()[r].begin(), curFrontQ()[r].end()
42 ,[](auto& a, auto& b) { return a.first < b.first; });
43 std::unique(curFrontQ()[r].begin(), curFrontQ()[r].end()
44 ,[](auto& a, auto& b) { return a.first == b.first; });
45 // Copy the neighbor list per rank to the dist obj
46 gptr_and_len_pair pn;
47 auto destination_buffer_size = curFrontQ()[r].size();
48 pn.n = destination_buffer_size;
49 pn.p = upcxx::try_global_ptr(curFrontQ()[r].data());
50 gpCurFrontQ()[upcxx::rank_me()].local()[r] = pn;
51 // reduce local frontier sizes
52 localFrontSize += curFrontQ()[r].size();
53 }
54 // Reduce to check whether we reached the end
55 auto totalFrontSize = 0;

56 auto done_reduction =
57 upcxx::reduce_all(&localFrontSize, &totalFrontSize, 1,
58 [](size_t a, size_t b) { return a + b; });
59 done_reduction.wait();
60 received_buf.resize(0);
61 // the start of the conjoined future
62 upcxx::future<> fut_all = upcxx::make_future();
63 if (totalFrontSize == 0) break;
64 // Get vertices targeted for me from each rank
65 for (upcxx::intrank_t r = 0; r < upcxx::rank_n(); r++) {
66 upcxx::future<> fut =
67 upcxx::rget(gpcurFrontQ()[r] + upcxx::rank_me())
68 .then([=](gptr_and_len_pair pn) {
69 return upcxx::rget(pn.p,
70 target_neighbor_list.data(), pn.n)
71 .then([=, target_neighbor_list =
72 std::move(target_neighbor_list)]() {
73 received_buf.insert(received_buf.end(),
74 target_neighbor_list.begin(),
75 target_neighbor_list.end());
76 }); });
77 // conjoin the futures
78 fut_all = upcxx::when_all(fut_all, fut);
79 }
80 // wait for all the conjoined futures to complete
81 fut_all.wait(); level += 1;
82 for (upcxx::intrank_t r = 0; r < upcxx::rank_n(); r++) {
83 curFrontQ()[r].resize(0);
84 }
85 // next frontier: sort and remove duplicates
86 std::sort(received_buf.begin(), received_buf.end(),
87 [](auto& a, auto& b) { return a.first < b.first; });
88 std::unique(received_buf.begin(), received_buf.end(),
89 [](auto& a, auto& b) { return a.first == b.first; });
90 for (auto vertex_p : received_buf) {
91 auto vtx = vertex_p.first;
92 auto parent = vertex_p.second;
93 // Check whether the vertex has already been visited.
94 auto v_index = vertex_id_to_index(vtx);
95 if (color_map[v_index]) {
96 continue; //Already visited
97 } else { // Not visited yet
98 color_map.set(v_index);
99 parent_map[v_index] = parent;

100 // Put all its neighbors into the frontier
101 auto vtx_ptr =
102 bases[upcxx::rank_me()].local()[v_index];
103 auto adj_list_start = vtx_ptr.p.local();
104 auto adj_list_len = vtx_ptr.n;
105 for (auto j = 0; j < vtx_ptr.n; j++) {
106 auto neighbor = adj_list_start[j];
107 auto neighborRank = vertex_id_to_rank(neighbor);
108 curFrontQ()[neighborRank].push_back(
109 std::make_pair(neighbor, vtx));
110 } } } } // end while

Listing 2: Breadth-first search in UPC++

the next frontier queue to detect termination (Line 58).

III. GRAPH ALGORITHMS IN CHAPEL

Chapel [1], [6] is Cray’s exascale programming language
that emerged from DARPA’s High Productivity Computing
Systems (HPCS) challenge. Chapel takes PGAS philosophy to
its very limit, focusing heavily on enabling greater productivity
by abstracting the sense of locality and the need to think from
the perspective of individual processors. A processing element
in Chapel is known as a locale. Chapel also provides locale
models that model the underlying topology of the runtime
devices. We utilize Chapel’s default flat locale model in which

locales provide uniform access to all system resources. Also
available are the NUMA locale model, which maps sublocales
to NUMA domains, and the KNL locale model, which support
accessing high-bandwidth memory on Knights Landing and
Xeon Phi processors. Furthermore, in contrast to UPC++, we use
one process per compute node in Chapel where data structures
are shared between worker threads.

In Chapel a task is a set of coroutines that are managed by
the tasking layer, which handles scheduling tasks to threads.
Chapel’s execution begins with an initial task, and all threads
(local or remote), except the one the initial task is multiplexed
on top of, wait for instructions from the initial task in a thread

978-1-7281-5020-8/19/$31.00 ©2019 IEEE

1 iter roundRobin(D : domain, param tag : iterKind)
2 where tag == iterKind.standalone {
3 // Spawn one task per locale
4 coforall loc in Locales do on loc {
5 // Spawn on task per core
6 coforall tid in 0..#here.maxTaskPar {
7 // Compute this task's slice
8 const localD = D.localSubdomain();
9 const localStride = here.maxTaskPar;

10 const localAlignment = localD.stride * tid
11 + localD.alignment;
12 const localRange = localD by localStride
13 align localAlignment;
14 for v in localRange do yield v;
15 } } }
16 var numTriangles : int;
17 forall v in roundRobin(A.domain)
18 with (+ reduce numTriangles) {
19 forall u in A[v].these(ignoreRunning=true) do if v > u {
20 numTriangles += intersectionSize(A[v], A[u]);
21 } }
22 numTriangles /= 3;

Listing 3: Triangle Counting in Chapel

pool managed by the tasking layer. This has the benefit of
greatly simplifying writing distributed memory programs, as it
resembles most shared-memory programming languages.

Chapel takes emulating shared memory a step further by
enabling global-view programming. This is a programming
paradigm that, unlike UPC++, enables (but does not require)
users to think about computations from a level above each
individual task. The compiler enables remote memory access
(RMA) via lexical scoping and task migration: migrating a task
from one locale to another, and then accessing local variables
in the parent scope, results in implicit PUTs and GETs. All
communication is handled by a communication layer (currently
limited to GASNet and uGNI for Cray-specific hardware).

Where communication is explicit and asynchronous in
UPC++, in Chapel it is both implicit and synchronous, with
the compiler and runtime transforming accesses to remote
memory into PUTs and GETs, enabling algorithms to be
written that function and perform well in both shared and
distributed memory contexts. Chapel enables very rich data-
parallel constructs, such as: seamless parallel and distributed
iteration, reductions and scans, and native built-in support for
serial/parallel and local/distributed computation (locality and
parallelism are two disentangled concepts in Chapel).

A. Triangle Counting

In our UPC++ TC implementation, the vertices are cyclically
distributed across all ranks, with one rank per processor.
To emulate this in Chapel (Listing 3), we utilize one of
Chapel’s distributions, which handle mapping indices in the
domain to locales. Of the distributions available, such as Block,
BlockCyclic, and Cyclic, we choose a Cyclic distribution so that
the vertices are mapped cyclically across all locales. Where
Chapel’s for loops are the standard serial iterators, forall loops
are implemented using the leader-follower framework [7],
where the leader task creates follower tasks and divides the
work among them. As the leader-follower iterator for Chapel’s
distributed arrays and domains are implemented by statically

1 // Replicates pairs of an array and a lock on each locale.
2 var globalWorkDom = {0..1} dmapped Replicated();
3 var globalLocks : [globalWorkDom] Lock;
4 var globalWork : [globalWorkDom] Array(int);
5 var globalWorkIdx : int;
6 // Insert root into work queue.
7 on A[0] do globalWork[globalWorkIdx].append(0);
8 var visited : [A.domain] atomic bool;
9 while true {

10 var pendingWork : bool;
11 // Spawn one task per locale (SPMD)
12 coforall loc in Locales with (|| reduce pendingWork)
13 do on loc {
14 // Local work queues to be reduced into
15 var localeLock : [LocaleSpace] Lock;
16 var localeWork : [LocaleSpace] Array(int);
17 ref workQueue = globalWork[globalWorkIdx];
18 removeDuplicates(workQueue);
19 // One task per core, even chunks of work
20 coforall chunk in chunks(0..#workQueue.size,
21 numChunks=here.maxTaskPar)
22 with (|| reduce pendingWork) {
23 // Task-local work queue
24 var localWork : [LocaleSpace] Array(int);
25 for v in workQueue[chunk] {
26 // Check if vertex has been visited
27 if visited[v].testAndSet() == false {
28 pendingWork = true;
29 for neighbor in A[v] {
30 localWork[A[neighbor].locale.id].append(neighbor);
31 } } }
32 // Reduce into local work queue
33 for (lock, _localeWork, _localWork)
34 in zip(localeLock, localeWork, localWork) {
35 lock.acquire();
36 _localeWork.append(_localWork);
37 lock.release();
38 } }
39 // Perform a global reduction into other work queues
40 coforall loc in Locales do on loc {
41 globalLocks[globalWorkIdx].acquire();
42 globalWork[(globalWorkIdx + 1) % 2]
43 .append(localeWork[here.id]);
44 globalLocks[globalWorkIdx].acquire();
45 }
46 globalWork[globalWorkIdx].clear();
47 }
48 // Swap work queue and check if empty
49 globalWorkIdx = (globalWorkIdx + 1) % 2;
50 if !pendingWork then break;
51 }

Listing 4: Breadth-First Search in Chapel

dividing the iteration space of the local subdomain of each
locale into evenly sized chunks, we cyclically distribute the
vertices among tasks via the roundRobin iterator to match
UPC++. Chapel’s coforall spawns one task per iteration, and its
on construct migrates the current task to the requested locale.
By application of Chapel’s built-in reduction intent, which
performs a global reduction across each task and locale in the
user program, we can quickly obtain the number of triangles
via the size of intersection of the neighbor list of each vertex
and its neighbor’s neighbor list.

To emulate UPC++’s asynchronous communication prim-
itives, we intentionally oversubscribe the system to allow
Chapel’s tasking layer to handle load balancing, and to allow
overlap of communication with computation where possible.
The uGNI communication layer will yield the current task

978-1-7281-5020-8/19/$31.00 ©2019 IEEE

Graph |V |(M) |E|(M) E(·) σ(·) Source

Friendster 65.0 1,800.0 55.0 138.0 [8]
com-LiveJournal 4.0 34.6 17.0 43.0 [9]
as-skitter 1.6 11.0 6.0 15.0 [8]
com-Youtube 1.1 3.0 5.0 51.0 [9]
Graph500-scale21 2.0 67.0 51.0 389.0 [9]
Graph500-scale22 4.0 130.0 54.0 460.0 [9]
Graph500-scale23 8.0 260.0 56.0 543.0 [9]
Graph500-scale24 16.0 540.0 59.0 639.0 [9]
Graph500-scale25 32.0 1,000.0 61.0 750.0 [9]

TABLE I: Datasets used for experiments: # vertices and edges in millions;
E(·) = E(deg(v)) is the mean vertex degree; σ(·) = σ(deg(v)) is its
standard deviation; source is the citation for the data set. Top group: strong
scaling. Bottom group: weak scaling.

while waiting for communication to complete, allowing for
the additional tasks from the oversubscription to run. The
GASNet communication layer is not capable of this, as it
will make blocking calls to GASNet such as gasnet_get and
gasnet_put which will block not just the task, but the thread it
is multiplexed on. This prevents overlap, while still allowing
automatic load balancing.

B. Breadth-First Search

For BFS (Listing 4), we replicate two pairs of Arrays, a
simple dynamic array similar to C++’s Vector that serves as our
work queue, and Lock, a simple test-and-test-and-set spinlock.
To determine whether or not a vertex has been visited, we
maintain an array of atomic Booleans that is distributed over
the same domain as the array of vertices, ensuring that the
atomics are always local to it’s corresponding vertex. After
inserting the root into the work queue, we enter our work loop
where we spawn a task per locale and create an array mapped
over LocaleSpace. This creates an Array and corresponding
Lock for each destination locale, essentially performing our
own aggregation.

At each level, we remove duplicates from the current work
queue in a similar way to UPC++, where we sort the array
via a parallel radix sort (using the Chapel’s Sort module) and
mutate the array to eliminate all duplicates. We then evenly
distribute work across tasks on the current locale, where each
task maintains its own aggregation buffer of outgoing work.
After determining that we have not visited a node, we not
only denote that we have pendingWork (so the loop is not
terminated), but we also push the neighbor of the current
vertex to a destination buffer. These task-specific destination
buffers are then reduced into the locale-specific destination
buffer, which in turn gets reduced into the global work queue
to be used in the next phase.

The pendingWork flag is propagated in a reduction across
all tasks and locales, so if any single task pendingWork, it
will be known globally. Then based on whether or not there is
pendingWork, the loop either continues or terminates. Manual
reduction is performed for non-scalar types for efficiency
reasons, although it is possible to implement a custom reduction
operation for it, it is unfortunately not well-optimized.

IV. EXPERIMENTAL RESULTS

Our benchmarks were run on two separate systems with
different hardware and configurations: 1) up to 64 nodes
of a Cray-XC50 cluster with Cray Aries network and Intel
Broadwell 44-core compute nodes, and 2) up to 16 nodes of an
Infiniband cluster with Intel Xeon 20-core compute nodes. In
Chapel, programs are compiled with –fast flag, which ensures
that all optimizations are enabled in both the Chapel compiler
as well as the backend used (GCC).

A. Strong Scaling

 0.1

 1

 10

 100

 1000

 10000

E
x
e
c
.

t
i
m
e

(
s
)

TC

 0.1

 1

 10

 100

 1000

21/1
22/2

23/4
24/8

25/16

Graph500 Scale/#Nodes

BFS

Chapel/Infiniband
UPC++/Infiniband

Chapel/Aries
UPC++/Aries

Fig. 2: Weak scaling
results with Graph500.

The data sets used for strong scaling
measurements are listed in the top
portion of Table I. These were selected
to highlight different data properties,
which can be seen in the results for both
TC and BFS (Figure 1a and Figure 1b,
where missing points are for runs which
didn’t complete). For BFS, Chapel is
within 25% to near-equivalent with
UPC++ on both Aries and Infiniband,
thanks to message aggregation via des-
tination buffering.

B. Weak Scaling

Weak scaling was tested on synthetic
graphs from Graph500 (bottom of Ta-
ble I), where scale 21 runs with one
compute node, and scale 22 with two.
From Figure 2, we can see that for BFS,
both Chapel and UPC++ are comparable,
both on Aries and Infiniband. Due to
the coarser granularity of the commu-
nication involved in this benchmark

compared to TC, we see that Chapel has the potential to match
bare-metal hand-optimized algorithms, while maintaining high-
level semantics.

For TC, Chapel and UPC++ are comparable, we believe due
to extremely high variance in the synthetic dataset causing
load-imbalance. Chapel, when run using an Infiniband conduit
via GASNet, is at least two orders of magnitude slower than
with the native Aries network, but its performance does seem
to improve as the node count increases.

V. DISCUSSION

UPC++ enables programmers to have fine-grained control by
providing access to low-level messaging and communication
primitives. More importantly, flexible completion notifications
of the execution of non-blocking primitives (i.e., with future
conjoining) streamlines interleaving communication and com-
putation that is needed by graph algorithms.

We can identify a number of opportunities for potential
performance improvements in UPC++. For example, currently
UPC++ does not provide an all_to_all collective. In this
work, we manually implement its functionality for exchanging
frontiers in the BFS algorithm. The UPC++ development team

978-1-7281-5020-8/19/$31.00 ©2019 IEEE

 0.1

 1

 10

 100

 1000

E
x
e
c
.

t
i
m
e

(
s
)

as-Skitter LiveJournal Friendster

T
r
i
a
n
g
l
e

C
o
u
n
t
i
n
g

Youtube

 0.01

 0.1

 1

 10

 100

 1000

1 2 4 8 16 32 64

as-Skitter

1 2 4 8 16 32 64

LiveJournal

1 2 4 8 16 32 64

of Nodes

Friendster

1 2 4 8 16 32 64

B
F
S

Youtube

Chapel

UPC++

(a) Aries system

 0.1

 1

 10

 100

 1000

 10000

E
x
e
c
.

t
i
m
e

(
s
)

as-Skitter LiveJournal Friendster
T
r
i
a
n
g
l
e

C
o
u
n
t
i
n
g

Youtube

 0.01

 0.1

 1

 10

 100

1 2 4 8 16

as-Skitter

1 2 4 8 16

LiveJournal

1 2 4 8 16

of Nodes

Friendster

1 2 4 8 16

B
F
S

Youtube

Chapel

UPC++

(b) Infiniband system

Fig. 1: Strong scaling results with real-world graph dataset.

indicated that a library implementation of all_to_all is in
their future road map for 2021. Such a built-in primitive will
ease future implementation of graph algorithms. Asynchronous
graph algorithms in UPC++ may also prove fruitful. Semanti-
cally these algorithms are label-correcting (in contrast to the
label-setting algorithms in our present discussion) and will
eliminate the requirement for global synchronization barriers.
UPC++ provides a construct, rpc_ff (RPC fire and forget),
which can be a promising way to implement such algorithms.
However, this will require implementation of a termination
detection algorithm (e.g., Sinha-Kale-Ramkumar) to detect
global quiescence, either at the library or application level.

On Chapel’s side, there is a lack of portability of performance
between Cray Aries and Infiniband systems, which is due to
the bias towards Cray systems by Cray’s Chapel development
team. Currently, support for the GASNet communication layer
is being tapered in favor of the development of a new libfabric
[10] communication layer that will support both GNI and
Infiniband interconnects. As well, the lack of non-blocking
communication primitives does make it extremely difficult to
match UPC++, but using oversubscription of tasks as a work-
around can suffice.

More benchmarks should be conducted to study precisely
why UPC++ and Chapel vary so much in performance, espe-
cially since Chapel performance varies based on the choice of
network provider. Such studies would benefit from beginning
with a single-node SMP conduit with controlled number of
threads to isolate language feature and compiler maturity versus
network-based influences on performance. Then network effects
might be more systematically taken into account.

There are both performance and productivity differences
between UPC++ and Chapel for irregular algorithms. UPC++
codes in general are more verbose and mastering the use of
asynchronous models of computation, especially the powerful
conjoined futures feature, is non-trivial. However, C++ develop-
ers can come up to speed in the core library relatively quickly.

Chapel has a more succinct syntax, but a learning curve of its
own, and the core language is still evolving. Optimizing Chapel
codes for irregular applications requires greater knowledge of
the language and runtime internals than may be practical to
expect of new users of the language.

ACKNOWLEDGEMENT

We thank John Bachan, Scott Baden, Dan Bonachea for their
valuable help with UPC++. We thank Brad Chamberlain, the
technical lead of the Chapel, for his assistance in closing the
performance gap between UPC++ and Chapel. We thank Cray
for providing access to a Cray-XC50 computer. This work was
supported by the High Performance Data Analytics (HPDA)
program at Pacific Northwest National Laboratory.

REFERENCES

[1] Bradford L Chamberlain, David Callahan, and Hans P Zima. Parallel
programmability and the chapel language. The International Journal of
High Performance Computing Applications, 21(3):291–312, 2007.

[2] UPC++: a PGAS library for c++. https://bitbucket.org/berkeleylab/upcxx/
src/master/. Accessed: 2019-05-20.

[3] Michael Bauer, Sean Treichler, Elliott Slaughter, and Alex Aiken. Legion:
Expressing locality and independence with logical regions. In SC’12:
Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, pages 1–11. IEEE, 2012.

[4] Hartmut Kaiser, Thomas Heller, Bryce Adelstein-Lelbach, Adrian Serio,
and Dietmar Fey. Hpx: A task based programming model in a global
address space. In Proceedings of the 8th International Conference on
Partitioned Global Address Space Programming Models, PGAS ’14,
pages 6:1–6:11, New York, NY, USA, 2014. ACM.

[5] Dan Bonachea and Paul H Hargrove. Gasnet-ex: A high-performance,
portable communication library for exascale. Technical report, Lawrence
Berkeley National Lab.(LBNL), Berkeley, CA (United States), 2018.

[6] et. al Chamberlain, Bradford L. Chapel comes of age: Making scalable
programming productive. 2007.

[7] Bradford L Chamberlain, Sung-Eun Choi, Steven J Deitz, and Angeles
Navarro. User-defined parallel zippered iterators in chapel. In Proceedings
of Fifth Conference on Partitioned Global Address Space Programming
Models, volume 2011, pages 1–11, 2011.

[8] Suitesparse matrix collection. https://sparse.tamu.edu/, March 2019.
[9] DARPA HIVE graphchallenge dataset. http://graphchallenge.mit.edu/

data-sets. Accessed: 2019-05-20.
[10] Libfabric providers. https://chapel-lang.org/docs/platforms/libfabric.html#

libfabric-providers.

978-1-7281-5020-8/19/$31.00 ©2019 IEEE

