
Optimizing Graph Queries with
Graph Joins and Sprinkle SPARQL

Eric L. Goodman, Edward Jimenez
Sandia National Laboratories

Albuquerque, NM, USA

Cliff Joslyn, David Haglin
Pacific Northwest National Laboratory

Richland, WA, USA

Sinan al-Saffar
Semantic Scale LLC,

Tampa, FL, USA

Dirk Grunwald
University of Colorado, Boulder, USA

Abstract—Big data problems are often more akin to sparse
graphs rather than relational tables. As such we argue that
graph-based physical representations provide advantages in
terms of both size and speed for executing queries. Drawing
from research in sparse matrices, we use a compressed sparse
row (CSR) format to model graph-oriented data. We also
present two novel mechanisms for exploiting the CSR format
that both find optimal join strategies and also prune variable
bindings before expensive join operations occur. The first tactic
we call Sprinkle SPARQL, which takes triple patterns of
SPARQL queries and performs low-cost, linear-time set inter-
sections to produce a constrained list of variable bindings for
each variable in a query. Besides constrained lists of variable
bindings, Sprinkle SPARQL also produces metrics that are
consumed by the join algorithm to select an optimal execution
path. The second tactic, graph joins, utilizes the CSR data
structure as an index to efficiently join two variables expressed
in a triple pattern together. We evaluate our approach on two
data sets with over a billion edges: LUBM(8000) and an R-MAT
graph generated with Graph5001 parameters and extended to
have edge labels.

I. INTRODUCTION

Big Data often comes in the form of large graphs, where
entities or nodes are interconnected with edges. Notable
examples include social networks, the internet itself with
hyperlinks forming edges, and biological networks such
as protein-protein interaction networks. In this paper we
examine the Semantic Web, which is a growing body of
data: Linked Data on the web is over 50 billion edges.

The Semantic Web has several standards. The Resource
Description Framework (RDF)2 describes the data. RDF data
consists of lists of triples, a subject, predicate, and object,
where the subject and object are nodes and the predicate is
a labeled edge between them. SPARQL3 is for querying.

In this paper, we analyze and evaluate empirically a
new algorithm for performing SPARQL Queries that we

1http://www.graph500.org/
2http://www.w3.org/RDF/
3http://www.w3.org/TR/rdf-sparql-query/

Figure 1. An example graph showing how the ordering of evaluating triple
patterns is important. Also shows that even with the best ordering, work is
wasted on intermediate results that are later pruned.

call Sprinkle SPARQL. Our key contribution in this paper
is to show that Sprinkle SPARQL fulfills two desiderata
for query engines, namely 1) removing RDF terms4 from
consideration prior to executing a query, and 2) selection of
a near optimal execution plan.

To understand each point, consider the graph in Figure 1
as representing the search space and suppose we have the
following query: SELECT ?X1 ?X2 ?X3 WHERE {?X1
p1 ?X2 . ?X2 p2 ?X3} By inspection, the optimal
path is to first evaluate ?X1 p1 ?X2 followed by ?X2
p2 ?X3 requiring five edge examinations. The other order
examines eight edges. However, even if we select the optimal
path, for a naı̈ve approach, 75% of the intermediate results
created after evaluating ?X1 p1 ?X2 are later pruned from
the final answer. More complex queries easily exacerbate
these two situations.

Sprinkle SPARQL addresses these two issues, using low
cost operations we call Sprinkling to prune dead-ends and to
find a near optimal execution plan. The name stems from the
fact that constraints from each triple pattern sprinkle or rain
down onto associative arrays, one for each variable. For the
data sets we examined, our approach does indeed select the

4http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/#defn
RDFTerm

2014 IEEE International Conference on Big Data

978-1-4799-5666-1/14/$31.00 ©2014 IEEE 17

optimal path for each query. Also, we trimmed intermediate
results by up to 60%. We also introduce the notion of Graph
Joins, which are similar to joins in the relational world but
where we use a graph data structure to index the data in
ways in which the data is expressed.

Borrowing terminology from the Exascale Computing
Study [3], our work advances capability-driven graph
database applications, where the focus is producing re-
sults quickly, rather than capacity-driven applications, where
throughput of many low complexity problems is the key
goal. We show scalability to 128 processors for more com-
plicated queries.

II. RELATED WORK

Almost all previous approaches to processing SPARQL
queries focus on disk-based solutions, either with single
node/single disk-type resources, which can conceivably be
scaled in a task parallel manner, [1, 10, 11, 13], or with
clusters using MapReduce [2, 8]. They make the case that
data sizes are growing to the extent that the problems
cannot be entirely stored in memory. We make an alternative
argument, that there do exist systems with extensive shared
memory on the order of many terabytes. While RDF systems
based on disk storage are likely cheaper than memory
resident approaches, at times performance trumps cost.

Another differentiation between our approach and previ-
ous ones is our focus on parallelizing individual queries. The
single node/single disk-type approaches focus on throughput
of large amounts of simple queries. While throughput is
important to many applications, we are more interested in
speeding up complicated queries. The MapReduce-based
approaches do parallelize, but due to the writing back and
forth to disk, our memory-resident approach is at least an
order of magnitude faster, making it difficult to compare the
two in any meaningful way.

III. DATA STRUCTURES

A common approach, we encode the RDF triples into
integers using a dictionary encoding scheme using an in-
memory hash table to map from strings to integers [6, 5].
Besides the dictionary, there are two fundamental data
structures used by the Sprinkle SPARQL and our graph join
strategy: a common technique for sparse matrix representa-
tion called compressed sparse row (CSR) and a multimap.
The CSR provides a compact data structure that gives the
ability to look up a specific node in the graph and in time
proportional to the outdegree (or indegree) of the node and
find the outgoing (or incoming) edges of the node. The
multimap provides a mapping from predicate type to triples
with the given predicate. These data structures and other
auxiliary structures are discussed in more detail in Figure 2.

IV. OUR APPROACH

Evaluation of basic graph patterns consists of two
phases:1) Sprinkle SPARQL and 2) Graph Joins. Sprinkle
SPARQL evaluates each triple pattern in isolation, storing
in a hash table a list of variable bindings that satisfy
each triple pattern. While triple patterns are evaluated in
isolation, known bindings from previous steps can be used
in later steps. Sprinkle SPARQL creates a constrained list of
bindings before expensive join operations. After creating a
constrained list of bindings, they are then combined together
using what we call graph joins. We discuss each phase
below.

A. Sprinkle SPARQL

To impart some intuition of how Sprinkle SPARQL works,
we start with an example. Consider the query (equivalent in
intent to LUBM query 1) below:

SELECT ?X WHERE {?X tookCourse course1
. ?X isA gradStudent}

Remember the two data structures, the CSR graph and
the multimap. The CSR tells us in constant time the in-
degree of nodes course1 and gradStudent. It is likely that
δ−(course1) � δ−(gradStudent), where δ−(x) denotes
the indegree of x. From the multimap we find in constant
time the number of edges that have predicate value took-
Course and predicate value isA. Both of these counts are
likely much larger than δ−(course1). Thus, the algorithm
will select to expand out from the in-edges of course1. This
is shown in Figure 3(a). We create a hash table that is around
two times the indegree of course1 (for avoiding collisions).
We then iterate over the edges of course1, checking to see
that the predicate type is tookCourse, and if so add the source
nodes to a hash table and increment the counter in the hash
table. This hash table represents the valid variable bindings
for variable ?X. In the figure, the identifiers are strings for
demonstration purposes, but in actuality everything at this
point in the graph is integers.

We next evaluate the second triple pattern. As before, we
can examine the counts for how many edges have predicate
type isA and also the indegree of gradStudent. However,
now that we have examined variable ?X, we can also look
at the total outdegree of the variable bindings in the hash
table. Every time a hash table is updated after a sprinkle,
we also update counts for total indegree and total outdegree
of the nodes present therein. As shown in Figure 3(b), the
algorithm chooses to expand from variable bindings in the
hash table as the total out-edges for the variable bindings is
much less than the indegree of gradStudent and the count of
edges with label isA. Of course there will be wasted work as
some of the out-edges of Bob and Alice are not of predicate
type isA, but the total is much less than other options.

The general procedure for the Sprinkle Phase is to iterate
over each triple pattern in a basic graph pattern, greedily

18

(a) CSR (b) Other data structures

Figure 2. (a) presents the components of the compressed sparse row graph. The Edges array contains a list of all edges, sorted by source. Index provides
offsets into this array for each vertex. Reverse Edges is the same list of edges, but now sorted by the destination. The Reverse Index gives the offsets
for each vertex into this array. The In2Out provides a mapping from an edge in the ReverseEdges array to the corresponding edge in the Edges array.
(b) presents the other data structures that are used. The dictionary provides a mapping from strings in the original RDF format to integers (a hash table).
It also provides the reverse mapping (an array). However, the ids assigned during the dictionary phase are not the same as the ids assigned within the
graph. Thus we need a way to map back and forth between them, which is accomplished with Graph2RDF (an array), and RDF2Graph (a hash table).
The Predicates array gives the label for each of the edges. The ith predicate corresponds to the ith edge in the Edges array. The In2Out array is used to
find the proper label for edges in the Reverse Edges.

selecting the triple pattern with the least amount of work.
The least amount of work is determined by the following:
• If the subject of the triple pattern is constant, the

outdegree of the subject.
• If the subject is a seen variable, the summation of

outdegrees for the bindings.
• If the predicate is constant, the predicate multimap is

queried to determine the number of edges with that
predicate.

• If the predicate is a variable, the sum total of all edges
with a predicate type that is recorded as valid for the
variable.

• If the object is constant, the indegree of the object.
• If the object is a variable, the sum of all indegrees for

all bindings.

B. Graph Joins

After sprinkling, we have a set of hash tables that contain
a constrained list of variable bindings for each variable. We
will refer to the set of bindings contained in the hash table
for a variable ?X as H(?X). It is these hash tables that
we now join together with graph joins. The graph joins
output relational tables where each of the attributes are
associated with a particular variable. We will refer to the
values associated with variable ?X in the table as T (?X).
Also, for a given row r in table T , T (?X, r) is the particular
binding for variable ?X in row r.

During the Sprinkle phase, among the triple patterns
evaluated are those with a single variable, and those bindings
are already captured in the hash tables. As such, to create

our final solution, we need only consider triple patterns with
two or more variables, namely 1) ?S p ?O, 2) ?S ?P o or
s ?P ?O, and 3) ?S ?P ?O. The remainder of this section
discusses the first two possibilities. Due to space constraints,
we will not be discussing the third. We finish the section
with a discussion on selecting the order of graph joins.

1) Graph Joins over ?S p ?O: Let us consider the first
case when the subject and object are variables and the
predicate is a constant. How the graph join is implemented
is further subdivided by whether the variables have been
processed or not by a previous join. There are three different
possibilities: 1) neither ?S nor ?O has been processed by a
previous join, 2) one has been processed by a previous join,
or 3) both have been processed by a previous join.

No variables processed by previous join: When neither
variable has been processed by a previous join, this means
that both variables are represented by a unary relation that
is stored in a hash table, i.e. the output of the Sprinkle
phase. We have two options: iterate over the out-edges of the
bindings currently in H(?S) or iterate over the in-edges of
the bindings currently in H(?O). We know the total number
of out- and in-edges as these numbers are updated after each
sprinkle. Thus we can choose to expand out from the side
with the least amount of work. Iterating over the in- or out-
edges is proportional to the total number of in- or out-edges,
thanks to the index structure of the CSR.

After deciding from which set of bindings to expand, we
iterate over the edges, checking which have type p. For those
edges that do have the proper predicate type, we then look
up the object or subject of the edge (depending on if we

19

(a) Evaluating ?X tookCourse course1 (b) Evaluating ?X isA gradStudent

(c) The Graph and CSR (d) Performing the Graph Join

Figure 3. (a) During the Sprinkle phase, a triple pattern is selected that has the least work either exploring in-edges, out-edges, or edges with a certain label.
In this case, ?X tookCourse course1 is selected. Also, we expand out from the in-edges of course1 as examining all edges with label tookCourse
is much greater than the indegree of course1. Each subject id (Bob and Alice) is added to a hash table representing valid variable bindings for ?X, and
a counter for each binding is incremented. (b) For triple pattern ?X isA gradStudent, since the hash table for variable ?X is non-empty, Sprinkle
SPARQL chooses to expand out from the variable bindings inside the table, rather than look at all the edges coming into gradStudent or all the edges with
label isA Figures (c) and (d) give an example graph join: The query has the single triple pattern ?X follows ?Y. The example graph is shown in Figure (c)
with the corresponding CSR data structures. For readability, we present them with the original strings instead of integers. After the Sprinkle phase there are
two hash tables for each of the variables, H(?X) and H(?Y). For display purposes, there are dashed edges between elements of the hash tables, but this
information is actually contained in the CSR data structures. During the Sprinkle phase and also throughout the Join phase, sums of the total indegree and
outdegree for each variable are kept. In this example, there are four out-edges in H(?X) and three in-edges for variable H(?Y). As such, the in-edges
are explored first and we expand out from H(?Y).

are iterating on out- or in-edges, respectively) in the hash
table of the other variable. If it is present, then we create a
2-tuple with the matching subject and object and add it to an
intermediate binary relational table. Algorithm 1 formalizes
the notion. See Figure 3(c) and 3(d) for an example.

One variable processed by previous join When one
of the two variables in an ?S p ?O-type triple pattern has
already been processed, then the bindings for the processed
variable reside in an intermediate table. The graph join in
this situation is similar to a classic hash join where one of
the tables has been hashed. In our case, the hashed table is

a unary relation of the non-joined variable.

The graph join for this case is similar to Algorithm
1. However, we limit our approach to scanning from the
intermediate table and finding matches in the unary relation,
rather than the other way around. There are potentially
scenarios where it makes sense to hash the intermediate table
and perform the join in the other direction, however we do
not explore this issue in this paper.

Both variables processed by a previous join Our current
join strategy, which will be discussed in Section IV-B3,
has the limitation that all joins after the first one must

20

Algorithm 1. Graph Join for ?S p ?O on Unary relations

1: procedure A← GRAPHJOIN SO(S, p,O) . S and O
are both unary relations. p is a predicate type. A is the
returned intermediate binary relation.

2: σS ←
∑

s∈S δ
+(s)

3: σO ←
∑

o∈O δ
−(o)

4: if σS < σO then
5: for all s ∈ S do
6: for all e ∈ out edges(s) do
7: if type(e) = p then
8: if e.object ∈ O then
9: A.add(s, e.object)

10: end if
11: end if
12: end for
13: end for
14: else
15: for all o ∈ O do
16: for all e ∈ in edges(o) do
17: if type(e) = p then
18: if e.subject ∈ S then
19: A.add(e.subject, o)
20: end if
21: end if
22: end for
23: end for
24: end if
25: return A
26: end procedure

involve variables that have been seen in a previous join. As
such, when processing an ?S p ?O-type triple pattern where
both variables have been processed in a previous join, we
know they will be in the same intermediate table. We march
through all the rows in the table, and validate that there is an
edge with the appropriate type p. Again, to save work, for
a given tuple with subject binding s and object binding o,
we expand out from the node with the smallest out-degree
or in-degree, respectively.

2) Graph Joins over ?S ?P o or s ?P ?O: We will now
discuss how graph joins work on triple patterns of the form
?S ?P o or s ?P ?O. Without loss of generality, we will focus
on ?S ?P o-type patterns. Similar to ?S p ?O-type patterns,
to evaluate ?S ?P o we must consider whether or not the
variables have been seen by a previous join. We consider
when

1) neither ?S nor ?P has been processed by a previous
join,

2) ?S has been seen, but not ?P,
3) ?P has been seen, but not ?S,
4) and when both have been processed by a previous join.

If neither ?S nor ?P has been seen, two choices exist:
to expand out the out-edges of the bindings in H(?S) or
to consider the union of all edges that have an edge label
contained in H(?P). These statistics are known.

If we expand out from nodes in H(?S), we consider each
out-edge in H(?S) and check if the out-edge has a predicate
type that is found in H(?P). If so we create a tuple for the
edge in a binary relation, where one attribute is for ?S and
the other is for ?P. The other direction is to iterate through
all edges that have a type found in H(?P). If the edge has
a subject that is found in H(?S), then the subject-predicate
pair is added to the relation.

If ?S has been seen but not ?P, then it is the same as
when neither has been seen before except that instead of
using H(?S), we instead draw from values in T (?S). If ?S
has not been seen before but ?P has, then we iterate over
the in-edges of the constant object. For each in-edge of o,
we find all corresponding entries in the intermediate table
that has the same predicate type. For each one, we create a
tuple. This particular case has not arisen very often, so we
have not optimized it. We could either hash the in-edges of
o or the intermediate table on the column associated with
?P and do an operation similar to a hash join.

If both ?S and ?P have been processed before by a
previous graph join, then we iterate through all rows of the
intermediate table, and check and see that the ?S attribute
also has an edge of type equal to the ?P attribute going to
o.

3) Join Strategy using Graph Joins: Similar to [12], our
join strategy focuses on sets of basic graph patterns having
triple patterns that are all interrelated. Also similar to [12]
we limit ourselves to execution plans that form a directed
acyclic graph over this graph representation of the triple
patterns. By this we mean we choose a triple pattern to
evaluate first, and then every triple pattern thereafter must
include a variable that has already been processed at least
once. The general approach consists of following three steps,
executed until all triple patterns have been evaluated: 1)
select a triple pattern to evaluate, 2) perform the join and 3)
update the statistics.

V. EVALUATION

We evaluate Sprinkle SPARQL on the Lehigh University
Benchmark (LUBM) [7] and on an R-MAT [4] graph
augmented with edge labels. We generated LUBM(8000),
where 8000 is the number of universities. The number of
triples in LUBM(8000) is approximately 1.1 billion, but
with minimal RDFS [9] expands to ∼1.34 billion triples. We
also generated triples by directly inferring that all graduate
students are also students, resulting in a final total of ∼1.35
billion triples.

R-MAT, or a Recursive Model for Graph Mining, is an
approach for generating graphs that have similar characteris-
tics to real-world graphs such as social networks, the Internet

21

topology, and citation graphs. We created a graph with
approximately 230 edges and used the parameters specified
by Graph500. We added edge labels, drawing from a set T
where we vary |T | from 1000 to 10,000. We assigned edge
labels in a uniform random way from T .

For comparison, we evaluate against a Naı̈ve approach.
The Naı̈ve approach works by giving an ordering to evaluate
the triple patterns, subject to the same constraints as stated
in Section IV-B3. Graph joins are then executed as specified
by the order. As the Naı̈ve method requires an ordering, in
our experiments we attempt to evaluate all possible permuta-
tions, though in some instances we resort to sampling when
the computation time becomes exorbitant.

For both data sets, we compare using two metrics:
• We compare the overall time for an equal number of

processors. As the Naı̈ve approach has n! possible ex-
ecution paths for n triple patterns, we directly compare
against the best and worst times. Also, for relatively
large n, we plot the distribution to give a notion of
how likely each outcome is.

• We also examine the sum of intermediate result sizes:∑n
i=1 nvi · |ri|, where nvi is the number of variables

(number of columns) included in the ith intermediate
result and |ri| is the length of the result (number of
rows), giving a feel for the amount of work that is
pruned with Sprinkle.

A. Test Platforms

We used two platforms, a Cray XMT shared-memory
supercomputer and an SGI Altix UV 10. The Cray system
we use in this study has 128 processors and 1 TB of shared
memory. The SGI Altix UV is another large-scale, shared
memory system but, unlike the XMT, uses industry standards
and commodity parts such as Xeon processors. The machine
we use has 4 Xeon X7550 processors. Each processor has
8 cores/16 threads. Memory for the system is 0.5 TB.

B. LUBM

With experiments on LUBM, we first explore using just
the Cray XMT. In the next subsection we examine relative
scaling on both the Cray XMT and the SGI Altix UV on the
more complicated queries, 2 and 9. We roughly categorize
the LUBM queries in terms of their complexity.

Queries 1, 3, 5, 6, 10: These involve just one variable
triple patterns. For 1, 3, 5, and 10 we present only the 2-
processor results on the Cray XMT. Each of these queries
have two triple patterns, one specifying the type of the
variable ?X, and the other specifying a constraint on ?X.
The trick for good performance on these queries is to select
the latter triple, the constraint. Evaluating first the triple
specifying the type of ?X invariably leads to many matches,
almost all of which are discarded. Sprinkle SPARQL has no
troubles in selecting the constraint triple first, as the degree
on the specified object is quite small in all cases. Table I

Query Sprinkle Naı̈ve Naı̈ve Num
SPARQL Best Worst Procs

1 0.0669 0.0670 45.72 2
2 5.2017 5.5653 6007 128
3 0.0690 0.0663 61.94 2
4 0.3165 0.1452 540.8 2
5 0.0298 0.0102 184.0 2
6 4.4001 0.5622 0.5622 128
7 0.1558 0.1277 1427 2
8 0.3625 0.1924 483.2 2
9 13.7616 7.3303 66.29 128

10 0.0785 0.0687 174.6 2

Table I
THIS TABLE COMPARES TIMES IN SECONDS OF SPRINKLE

SPARQL VERSUS THE BEST AND WORST NAÏVE TIMES. HOW
MANY PROCESSORS WERE USED IN THE RUNS IS ALSO

SPECIFIED.

Query Number of Sprinkle Naı̈ve Percent Naı̈ve
Results SPARQL Best Change Worst

1 4 4 8 100 20,157,123
2 2,528 60,798,953 161,272,120 165 5,539,651,344
3 6 6 12 100 64,478,867
4 34 306 381 19.7 986,917,868
5 719 719 1438 100 89,318,851
6 83,557,706 83,557,706 83,557,706 0 83,557,706
7 67 132 406 208 1,383,110,222
8 7,790 38,950 55,640 42.8 965,241,544
9 2,178,420 307,234,069 326,065,015 6.13 3,233,792,132
10 4 4 8 100 83,557,710

Table II
THIS TABLE COMPARES THE SUMMATION OF INTERMEDIATE JOIN SIZES OF
SPRINKLE SPARQL VERSUS THE BEST AND WORST SUMS VIA THE NAÏVE

METHOD. THE Percent Change COLUMN SPECIFIES THE PERCENTAGE CHANGE
FROM THE SUM OF SPRINKLE SPARQL TO THE BEST SUM OF NAÏVE.

compares times of Sprinkle SPARQL vs. Naı̈ve for all the
LUBM queries we examined.

Table II compares intermediate sizes during the join
phase. However, we note that Sprinkle SPARQL does not
perform any joins when no two variable triple patterns are
present. The result is extracted from the variable’s hash table.
As such, we report the final result size in Table II.

Query 6 asks for all Students. Query 6 does reveal a small
weakness of Sprinkle SPARQL. With only one triple pattern,
the ordering for both methods is the same, so Sprinkle adds
overhead but reaps no benefit. This weakness can easily be
averted by executing the Naı̈ve method in such a situation.

Queries 4, 7, and 8 involve two variables, but are still rel-
atively simple. Table I shows that Sprinkle SPARQL results
in times that are competitive with the best permutation of
Naı̈ve. However, there are many more possible permutations
for these queries, and Figure 5 shows the range of times. The
times vary over many orders of magnitude.

Queries 2 and 9 are the more complicated LUBM
queries and have at their core a triangle. For query 2, the

22

(a) LUBM Query 2 (b) Query 2 Naı̈ve: permutation times (c) Query 2 Naı̈ve: permutaion sums

(d) LUBM Query 9 (e) Query 9 Naı̈ve: permutation times (f) Query 9 Naı̈ve: permutation sums

(g) R-MAT Contraction/Growth of Result Size (h) R-MAT % Change in Intermediate Sizes (i) R-MAT % Change in Time

Figure 4. For LUBM query 2, Figure (a) compares Sprinkle SPARQL against the best and worst permutations of the Naı̈ve approach on the XMT. Figure
(b) shows the range of times the permutations took with 128 procs while Figure (c) examines the sum of intermediate sizes across permutations (and also
processed edges). Figure (d)-(f) are for query 9. (g) On the R-MAT graph, shows the growth in query result size with increasing k for |T | < 4210 and
contraction for |T | > 4210. (h) Shows % change in sum of intermediate sizes from Sprinkle SPARQL to Naı̈ve. For all |T | and number of graph joins,
k, Naı̈ve produces intermediate results that are greater than or equal to Sprinkle SPARQL. (i) Displays the % change in run time from Naı̈ve to Sprinkle
SPARQL. Transparent plane marks 0% change. Sprinkle SPARQL does best in the region |T | > 4210 and where k > 1.

Figure 5. Sorted times for permutations of LUBM Queries 4, 7, and 8
using the Naı̈ve method.

naı̈ve implementation has a large variance, ranging from
5.56 to 6007 seconds. Due to some permutations taking an
inordinate amounts of time, we did not run every possible
permutation. We ran the Naı̈ve approach on 50 different ran-
domly sampled permutations. The runs with 128 processors,
sorted by time, are presented in Figure 4(b). We also present
the summation of intermediate sizes for each query in Figure
4(c). However, the determining factor in run time appears to

be the number of processed edges.
Some orderings amass large numbers of high-degree ver-

tices, resulting in over a trillion edges processed! Of the
sample of 50, we found the best and worst permutations
for the naı̈ve implementation and ran 2 to 128 processors.
Sprinkle SPARQL and the best permutation are about even.

For query 9, Sprinkle SPARQL didn’t do as well as the
best Naı̈ve permutation. From Table II we note the difference
in intermediate sizes is only off by about 6%. As such,
Sprinkle SPARQL couldn’t overcome its extra overhead and
it took roughly twice the time of the best Naı̈ve permutation.
However, Sprinkle SPARQL did select the best ordering.

C. Relative Scalability

In Figure 6 we look at the times and relative scalability of
LUBM queries 2 and 9, the more complicated of the LUBM
queries. For LUBM query 2, the UV showed a relative
speedup of 8.30x over 32 threads. The XMT exhibited a
speedup of 26.92x over 64 processors and 26.62x over 128

23

Figure 6. This figure shows the relative scalability of LUBM queries 2
and 9 on LUBM(8000) for both a Cray XMT and an SGI Altix UV 10.

processors. For LUBM query 9, the UV had a relative
speedup of 10.70x over 32 threads. The XMT had a speedup
of 32.16x for 64 processors and 34.17x for 128 processors.
We believe the decrease in scalability largely arises due
to the decreasing amount of parallelism as the Sprinkle
phase or Join phase progresses. As explained earlier, triple
patterns are evaluated sequentially. Some triple patterns have
very little work, so not all processing power can be used
efficiently in these circumstances. Future work will look at
evaluating multiple triple patterns in tandem.

D. R-MAT

As outlined previously, we generated an R-MAT graph
with a billion edges and then added edge types in a uniform
random way. We selected sequences of that pattern to be
the focus of our study. More precisely, we evaluated path
queries of length k: ?x1 p1 ?x2 p2 ?x3 ... ?xk pk ?xk+1.

We varied |T | from 1000 to 10,000 and k from 1 to 7
and found a curious result as seen in Figure 4(g). We found
that for small |T |, the size of the query result grows with
increasing k. For large |T |, the size of the query contracts
with increasing k. Experimentally, we found the inflection
line to be around |T | = 4210. We will next discuss the
impact that this line has on the performance.

Figure 4(h) shows the percentage change in the sum-
mation of intermediate results from Sprinkle SPARQL to
the Naı̈ve approach. Positive numbers indicate larger inter-
mediate sizes for the Naı̈ve approach relative to Sprinkle
SPARQL. For one graph join, the size is the same for
both methods. For every other data point, Sprinkle SPARQL
reduces the sum. The relative increase ranges from 4.7% to
696%. The effect is dramatic for large |T | and large k.

Savings in intermediate sizes translates into improved per-
formance, shown in Figure 4(i). The figure shows the percent
change in time from Sprinkle SPARQL to Naı̈ve. There is
a transparent plane marking 0%. Again, similar to LUBM
query 6, Sprinkle SPARQL performs significantly worse
than the naı̈ve approach for single graph joins. However,
for k > 2, the performance difference ranges from -16.9%
to 145%. The region where Sprinkle SPARQL performs the
best greater than the inflection line, |T | > 4210.

VI. CONCLUSIONS

We have shown that Sprinkle SPARQL fulfills the two
desiderata we outlined earlier: 1) it removes invalid variable
bindings with low cost Sprinkle operations before expensive
join operations, and 2) it selects a near optimal path for
executing the joins. For all of our experimental studies,
Sprinkle SPARQL does select the optimal execution plan.
While in some cases the best permutation for the Naı̈ve
approach fared better than Sprinkle SPARQL, our algorithm
presents an efficient method to discover that permutation.

Acknowledgments.: This work was partially funded under the
Center for Adaptive Supercomputing Software – Multithreaded Architec-
tures (CASS-MT) at the Dept. of Energy’s Pacific Northwest National
Laboratory. Pacific Northwest National Laboratory is operated by Battelle
Memorial Institute under Contract DE-ACO6-76RL01830.

Sandia National Laboratories is a multi-program laboratory managed and
operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the U.S. Department of Energy’s National Nuclear
Security Administration under contract DE-AC04-94AL85000. This work
was partially funded by Sandia’s University Part-time program, and is part
of Eric Goodman’s dissertation.

REFERENCES
[1] D. J. Abadi, A. Marcus, S. R. Madden, and K. Hollenbach. Sw-store:

a vertically partitioned dbms for semantic web data management. The
VLDB Journal, 18(2):385–406, Apr. 2009.

[2] K. Anyanwu, H. Kim, and P. Ravindra. Algebraic optimization for
processing graph pattern queries in the cloud. Internet Computing,
IEEE, PP(99):1, 2012.

[3] K. Bergman, S. Borkar, D. Campbell, W. Carlson, W. Dally, M. Den-
neau, P. Franzon, W. Harrod, K. Hill, J. Hiller, S. Karp, S. Keckler,
D. Klein, R. Lucas, M. Richards, A. Scarpelli, S. Scott, A. S. T.
Sterling, R. S. Williams, and K. Yelick. Exascale computing study:
Technology challenges in achieving exascale systems, peter kogge,
editor and study lead, 2008.

[4] D. Chakrabarti, Y. Zhan, and C. Faloutsos. R-mat: A recursive model
for graph mining. In M. W. Berry, U. Dayal, C. Kamath, and D. B.
Skillicorn, editors, SDM. SIAM, 2004.

[5] E. Goodman, M. N. Lemaster, and E. Jimenez. Scalable hashing for
shared memory supercomputers. In Proceedings of 2011 International
Conference for High Performance Computing, Networking, Storage
and Analysis, SC ’11, pages 41:1–41:11, New York, NY, USA, 2011.
ACM.

[6] E. L. Goodman, D. J. Haglin, C. Scherrer, D. Chavarrı́a-Miranda,
J. Mogill, and J. Feo. Hashing strategies for the cray xmt. In Workshop
on Multithreaded Architectures and Applications, April 2010.

[7] Y. Guo, Z. Pan, and J. Heflin. Lubm: A benchmark for owl knowledge
base systems. J. Web Sem., 3(2-3):158–182, 2005.

[8] M. Husain, J. McGlothlin, M. M. Masud, L. Khan, and B. M.
Thuraisingham. Heuristics-based query processing for large rdf graphs
using cloud computing. IEEE Trans. on Knowl. and Data Eng.,
23(9):1312–1327, Sept. 2011.

[9] S. Muñoz, J. Pérez, and C. Gutierrez. Simple and Efficient Minimal
RDFS. Web Semantics: Science, Services and Agents on the World
Wide Web, 7(3):220–234, Sept. 2009.

[10] T. Neumann and G. Weikum. The rdf-3x engine for scalable
management of rdf data. The VLDB Journal, 19(1):91–113, Feb.
2010.

[11] T. Neumann and G. Weikum. x-rdf-3x: fast querying, high update
rates, and consistency for rdf databases. Proc. VLDB Endow., 3(1-
2):256–263, Sept. 2010.

[12] M. Stocker, A. Seaborne, A. Bernstein, C. Kiefer, and D. Reynolds.
Sparql basic graph pattern optimization using selectivity estimation.
Proceeding of the 17th international conference on World Wide Web
WWW 08, page 595, 2008.

[13] L. Zou, J. Mo, L. Chen, M. T. Özsu, and D. Zhao. gstore: answering
sparql queries via subgraph matching. Proc. VLDB Endow., 4(8):482–
493, May 2011.

24

