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GLOSSARY

Variety A measure of the number of possible states or
actions.

Entropy A probabilistic measure of variety.
Self-organization The spontaneous reduction of entropy

in a dynamic system.
Control Maintenance of a goal by active compensation

of perturbations.
Model A representation of processes in the world that

allows predictions.
Constructivism The philosophy that models are not pas-

sive reflections of reality, but active constructions by
the subject.

CYBERNETICS is the science that studies the abstract
principles of organization in complex systems. It is con-
cerned not so much with what systems consist of, but
how they function. Cybernetics focuses on how systems
use information, models, and control actions to steer to-

ward and maintain their goals, while counteracting various
disturbances. Being inherently transdisciplinary, cyber-
netic reasoning can be applied to understand model and
design systems of any kind: physical, technological, bi-
ological, ecological, psychological, social, or any com-
bination of those. Second-order cybernetics in particular
studies the role of the (human) observer in the construction
of models of systems and other observers.

I. HISTORICAL DEVELOPMENT
OF CYBERNETICS

A. Origins

Derived from the Greek kybernetes, or “steersman,” the
term “cybernetics” first appears in Antiquity with Plato
and in the 19th century with Ampère, who both saw it as the
science of effective government. The concept was revived
and elaborated by the mathematician Norbert Wiener in his
seminal 1948 book, whose title defined it as “Cybernetics,
or the study of control and communication in the animal
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and the machine.” Inspired by wartime and prewar results
in mechanical control systems such as servomechanisms
and artillery targeting systems, and the contemporaneous
development of a mathematical theory of communication
(or information) by Claude Shannon, Wiener set out to
develop a general theory of organizational and control
relations in systems.

Information Theory, Control Theory, and Control Sys-
tems Engineering have since developed into independent
disciplines. What distinguishes cybernetics is its emphasis
on control and communication not only in engineered, arti-
ficial systems, but also in evolved, natural systems such as
organisms and societies, which set their own goals, rather
than being controlled by their creators.

Cybernetics as a specific field grew out of a series
of interdisciplinary meetings held from 1944 to 1953
that brought together a number of noted postwar intel-
lectuals, including Wiener, John von Neumann, Warren
McCulloch, Claude Shannon, Heinz von Foerster, W. Ross
Ashby, Gregory Bateson, and Margaret Mead. Hosted by
the Josiah Macy Jr. Foundation, these became known as
the Macy Conferences on Cybernetics. From its origi-
nal focus on machines and animals, cybernetics quickly
broadened to encompass minds (e.g., in the work of
Bateson and Ashby) and social systems (e.g., Stafford
Beer’s management cybernetics), thus recovering Plato’s
original focus on the control relations in society.

Through the 1950s, cybernetic thinkers came to
cohere with the school of General Systems Theory
(GST), founded at about the same time by Ludwig von
Bertalanffy, as an attempt to build a unified science by un-
covering the common principles that govern open, evolv-
ing systems. GST studies systems at all levels of gener-
ality, whereas Cybernetics focuses more specifically on
goal-directed, functional systems which have some form
of control relation. While there remain arguments over the
relative scope of these domains, each can be seen as part
of an overall attempt to forge a transdisciplinary “Systems
Science.”

Perhaps the most fundamental contribution of cybernet-
ics is its explanation of purposiveness, or goal-directed be-
havior, an essential characteristic of mind and life, in terms
of control and information. Negative feedback control
loops which try to achieve and maintain goal states were
seen as basic models for the autonomy characteristic of
organisms: their behavior, while purposeful, is not strictly
determined by either environmental influences or internal
dynamical processes. They are in some sense “indepen-
dent actors” with a “free will.” Thus cybernetics foresaw
much current work in robotics and autonomous agents.
Indeed, in the popular mind, “cyborgs” and “cybernetics”
are just fancy terms for “robots” and “robotics.” Given
the technological advances of the postwar period, early
cyberneticians were eager to explore the similarities be-

tween technological and biological systems. Armed with
a theory of information, early digital circuits, and Boolean
logic, it was unavoidable that they would hypothesize dig-
ital systems as models of brains, and information as the
“mind” to the machine’s “body.”

More generally, cybernetics had a crucial influence
on the birth of various modern sciences: control theory,
computer science, information theory, automata theory,
artificial intelligence and artificial neural networks, cogni-
tive science, computer modeling and simulation science,
dynamical systems, and artificial life. Many concepts cen-
tral to these fields, such as complexity, self-organization,
self-reproduction, autonomy, networks, connectionism,
and adaptation, were first explored by cyberneticians
during the 1940s and 1950s. Examples include von
Neumann’s computer architectures, game theory, and
cellular automata; Ashby’s and von Foerster’s analysis
of self-organization; Braitenberg’s autonomous robots;
and McCulloch’s artificial neural nets, perceptrons, and
classifiers.

B. Second-Order Cybernetics

Cybernetics had from the beginning been interested in the
similarities between autonomous, living systems and ma-
chines. In this postwar era, the fascination with the new
control and computer technologies tended to focus atten-
tion on the engineering approach, where it is the system
designer who determines what the system will do. How-
ever, after the control engineering and computer science
disciplines had become fully independent, the remaining
cyberneticists felt the need to clearly distinguish them-
selves from these more mechanistic approaches, by em-
phasizing autonomy, self-organization, cognition, and the
role of the observer in modeling a system. In the early
1970s this movement became known as second-order
cybernetics.

They began with the recognition that all our knowledge
of systems is mediated by our simplified representations—
or models—of them, which necessarily ignore those as-
pects of the system which are irrelevant to the purposes
for which the model is constructed. Thus the properties of
the systems themselves must be distinguished from those
of their models, which depend on us as their creators. An
engineer working with a mechanical system, on the other
hand, almost always know its internal structure and be-
havior to a high degree of accuracy, and therefore tends
to de-emphasize the system/model distinction, acting as if
the model is the system.

Moreover, such an engineer, scientist, or “first-order”
cyberneticist, will study a system as if it were a passive,
objectively given “thing,” that can be freely observed, ma-
nipulated, and taken apart. A second-order cyberneticist
working with an organism or social system, on the other
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hand, recognizes that system as an agent in its own right,
interacting with another agent, the observer. As quantum
mechanics has taught us, observer and observed cannot be
separated, and the result of observations will depend on
their interaction. The observer too is a cybernetic system,
trying to construct a model of another cybernetic system.
To understand this process, we need a “cybernetics of cy-
bernetics,” i.e., a “meta” or “second-order” cybernetics.

These cyberneticians’ emphasis on such epistemologi-
cal, psychological, and social issues was a welcome com-
plement to the reductionist climate which followed on the
great progress in science and engineering of the day. How-
ever, it may have led them to overemphasize the novelty
of their “second-order” approach. First, it must be noted
that most founding fathers of cybernetics, such as Ashby,
McCulloch, and Bateson, explicitly or implicitly agreed
with the importance of autonomy, self-organization, and
the subjectivity of modeling. Therefore, they can hardly be
portrayed as “first-order” reductionists. Second, the intel-
lectual standard bearers of the second-order approach dur-
ing the 1970s, such as von Foerster, Pask, and Maturana,
were themselves directly involved in the development of
“first-order” cybernetics in the 1950s and 1960s. In fact,
if we look more closely at the history of the field, we see a
continuous development toward a stronger focus on auton-
omy and the role of the observer, rather than a clean break
between generations or approaches. Finally, the second-
order perspective is now firmly ingrained in the founda-
tions of cybernetics overall. For those reasons, the present
article will discuss the basic concepts and principles of
cybernetics as a whole, without explicitly distinguishing
between “first-order” and “second-order” ideas, and in-
troduce cybernetic concepts through a series of models of
classes of systems.

It must further be noted that the sometimes ideological
fervor driving the second-order movement may have led a
bridge too far. The emphasis on the irreducible complexity
of the various system-observer interactions and on the sub-
jectivity of modeling has led many to abandon formal ap-
proaches and mathematical modeling altogether, limiting
themselves to philosophical or literary discourses. It is
ironic that one of the most elegant computer simulations
of the second-order idea that models affect the very sys-
tem they are supposed to model was not created by a cy-
berneticist, but by the economist Brian Arthur. Moreover,
some people feel that the second-order fascination with
self-reference and observers observing observers observ-
ing themselves has fostered a potentially dangerous de-
tachment from concrete phenomena.

C. Cybernetics Today

In spite of its important historical role, cybernetics has not
really become established as an autonomous discipline.

Its practitioners are relatively few, and not very well or-
ganized. There are few research departments devoted to
the domain, and even fewer academic programs. There are
many reasons for this, including the intrinsic complexity
and abstractness of the subject domain, the lack of up-to-
date textbooks, the ebb and flow of scientific fashions, and
the apparent overreaching of the second-order movement.
But the fact that the Systems Sciences (including General
Systems Theory) are in a similar position indicates that the
most important cause is the difficulty of maintaining the
coherence of a broad, interdisciplinary field in the wake of
the rapid growth of its more specialized and application-
oriented “spin-off” disciplines, such as computer science,
artificial intelligence, neural networks, and control en-
gineering, which tended to sap away enthusiasm, fund-
ing, and practitioners from the more theoretical mother
field.

Many of the core ideas of cybernetics have been assim-
ilated by other disciplines, where they continue to influ-
ence scientific developments. Other important cybernetic
principles seem to have been forgotten, though, only to
be periodically rediscovered or reinvented in different do-
mains. Some examples are the rebirth of neural networks,
first invented by cyberneticists in the 1940s, in the late
1960s and again in the late 1980s; the rediscovery of the
importance of autonomous interaction by robotics and AI
in the 1990s; and the significance of positive feedback
effects in complex systems, rediscovered by economists
in the 1990s. Perhaps the most significant recent develop-
ment is the growth of the complex adaptive systems move-
ment, which, in the work of authors such as John Holland,
Stuart Kauffman, and Brian Arthur and the subfield of
artificial life, has used the power of modern computers
to simulate and thus experiment with and develop many
of the ideas of cybernetics. It thus seems to have taken
over the cybernetics banner in its mathematical modeling
of complex systems across disciplinary boundaries, how-
ever, while largely ignoring the issues of goal-directedness
and control.

More generally, as reflected by the ubiquitous prefix
“cyber,” the broad cybernetic philosophy that systems are
defined by their abstract relations, functions, and informa-
tion flows, rather than by their concrete material or com-
ponents, is starting to pervade popular culture, albeit it in a
still shallow manner, driven more by fashion than by deep
understanding. This has been motivated primarily by the
explosive growth of information-based technologies in-
cluding automation, computers, the Internet, virtual real-
ity, software agents, and robots. It seems likely that as the
applications of these technologies become increasingly
complex, far-reaching, and abstract, the need will again
be felt for an encompassing conceptual framework, such
as cybernetics, that can help users and designers alike to
understand the meaning of these developments.
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Cybernetics as a theoretical framework remains a sub-
ject of study for a few committed groups, such as the
Principia Cybernetica Project, which tries to integrate
cybernetics with evolutionary theory, and the American
Society for Cybernetics, which further develops the
second-order approach. The sociocybernetics movement
actively pursues a cybernetic understanding of social sys-
tems. The cybernetics-related programs on autopoiesis,
systems dynamics, and control theory also continue, with
applications in management science and even psycho-
logical therapy. Scattered research centers, particularly
in Central and Eastern Europe, are still devoted to spe-
cific technical applications, such as biological cybernet-
ics, medical cybernetics, and engineering cybernetics, al-
though they tend to keep closer contact with their field of
application than with the broad theoretical development
of cybernetics. General Information Theory has grown as
the search for formal representations which are not based
strictly on classical probability theory.

There has also been significant progress in building
a semiotic theory of information, where issues of the
semantics and meaning of signals are at last being seri-
ously considered. Finally, a number of authors are seri-
ously questioning the limits of mechanism and formalism
for interdisciplinary modeling in particular, and science
in general. The issues here thus become what the ultimate
limits on knowledge might be, especially as expressed in
mathematical and computer-based models. What’s at stake
is whether it is possible, in principle, to construct models,
whether formal or not, which will help us understand the
full complexity of the world around us.

II. RELATIONAL CONCEPTS

A. Distinctions and Relations

In essence, cybernetics is concerned with those properties
of systems that are independent of their concrete mate-
rial or components. This allows it to describe physically
very different systems, such as electronic circuits, brains,
and organizations, with the same concepts, and to look for
isomorphisms between them. The only way to abstract a
system’s physical aspects or components while still pre-
serving its essential structure and functions is to consider
relations: How do the components differ from or connect
to each other? How does the one transform into the other?

To approach these questions, cyberneticians use high
level concepts such as order, organization, complexity,
hierarchy, structure, information, and control, investigat-
ing how these are manifested in systems of different types.
These concepts are relational, in that they allow us to an-
alyze and formally model different abstract properties of
systems and their dynamics, for example, allowing us to

ask such questions as whether complexity tends to increase
with time.

Fundamental to all of these relational concepts is that of
difference or distinction. In general, cyberneticians are not
interested in a phenomenon in itself, but only in the dif-
ference between its presence and absence, and how that
relates to other differences corresponding to other phe-
nomena. This philosophy extends back to Leibniz, and is
expressed most succinctly by Bateson’s famous definition
of information as “a difference that makes a difference.”
Any observer necessarily starts by conceptually separat-
ing or distinguishing the object of study, the system, from
the rest of the universe, the environment. A more detailed
study will go further to distinguish between the presence
and absence of various properties (also called dimensions
or attributes) of the systems. For example, a system such
as billiard ball can have properties, such as a particular
color, weight, position, or momentum. The presence or
absence of each such property can be represented as a bi-
nary, Boolean variable, with two values: “yes,” the system
has the property, or “no,” it does not. G. Spencer Brown,
in his book “Laws of Form,” has developed a detailed
calculus and algebra of distinctions, and shown that this
algebra, although starting from much simpler axioms, is
isomorphic to the more traditional Boolean algebra.

B. Variety and Constraint

This binary approach can be generalized to a property hav-
ing multiple discrete or continuous values, for example,
which color or what position or momentum. The conjunc-
tion of all the values of all the properties that a system
at a particular moment has or lacks determines its state.
For example, a billiard ball can have color red, position
x and momentum p. The set of all possible states that a
system can be in defines its state space. An essential com-
ponent of cybernetic modeling is a quantitative measure
for the size of the state space, or the number of distinct
states. This measure is called variety. Variety represents
the freedom the system has in choosing a particular state,
and thus the uncertainty we have about which state the
system occupies. Variety V is defined as the number of
elements in the state space S, or, more commonly, as the
logarithm to the basis two of that number: V = log2(|S|).

The unit of variety in the logarithmic form is the bit. A
variety of one bit, V = 1, means that the system has two
possible states, that is, one difference. In the simplest case
of n binary variables, V = log2(2n) = n is therefore equal
to the minimal number of independent dimensions. But in
general, the variables used to describe a system are neither
binary nor independent. For example, if a particular type of
berry can, depending on its degree of ripeness, be either
small and green or large and red (recognizing only two
states of size and color), then the variables “color” and
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“size” are completely dependent on each other, and the
total variety is 1 bit rather than the 2 you would get if you
would count the variables separately.

More generally, if the actual variety of states that the
system can exhibit is smaller than the variety of states
we can potentially conceive, then the system is said to be
constrained. Constraint C can be defined as the difference
between maximal and actual variety: C = Vmax − V . Con-
straint is what reduces our uncertainty about the system’s
state, and thus allows us to make nontrivial predictions.
For example, in the previously cited example if we detect
that a berry is small, we can predict that it will also be
green. Constraint also allows us to formally model rela-
tions, dependencies, or couplings between different sys-
tems, or aspects of systems. If you model different systems
or different aspects, or dimensions of one system together,
then the joint state space is the Cartesian product of the in-
dividual state spaces: S = S1 × S2 × · · · Sn . Constraint on
this product space can thus represent the mutual depen-
dency between the states of the subspaces, like in the berry
example, where the state in the color space determines the
state in the size space, and vice versa.

C. Entropy and Information

Variety and constraint can be measured in a more general
form by introducing probabilities. Assume that we do not
know the precise state s of a system, but only the proba-
bility distribution P(s) that the system would be in state
s. Variety can then be expressed through a formula equiv-
alent to entropy, as defined by Boltzmann for statistical
mechanics:

H (P) = −
∑

s∈S

P(s) · log P(s). (1)

H reaches its maximum value if all states are equiprob-
able, that is, if we have no indication whatsoever to assume
that one state is more probable than another state. Thus
it is natural that in this case entropy H reduces to variety
V . Again, H expresses our uncertainty or ignorance about
the system’s state. It is clear that H = 0, if and only if the
probability of a certain state is 1 (and of all other states 0).
In that case we have maximal certainty or complete infor-
mation about what state the system is in.

We defined constraint as that which reduces uncertainty,
that is, the difference between maximal and actual uncer-
tainty. This difference can also be interpreted in a different
way, as information, and historically H was introduced
by Shannon as a measure of the capacity for information
transmission of a communication channel. Indeed, if we
get some information about the state of the system (e.g.,
through observation), then this will reduce our uncertainty
about the system’s state, by excluding—or reducing the
probability of—a number of states. The information I we

receive from an observation is equal to the degree to which
uncertainty is reduced: I = H (before) − H (after). If the
observation completely determines the state of the system
(H (after) = 0), then information I reduces to the initial
entropy or uncertainty H .

Although Shannon came to disavow the use of the
term “information” to describe this measure, because it
is purely syntactic and ignores the meaning of the sig-
nal, his theory came to be known as Information Theory
nonetheless. H has been vigorously pursued as a mea-
sure for a number of higher-order relational concepts,
including complexity and organization. Entropies, corre-
lates to entropies, and correlates to such important results
as Shannon’s 10th Theorem and the Second Law of Ther-
modynamics have been sought in biology, ecology, psy-
chology, sociology, and economics.

We also note that there are other methods of weighting
the state of a system which do not adhere to probability
theory’s additivity condition that the sum of the probabil-
ities must be 1. These methods, involving concepts from
fuzzy systems theory and possibility theory, lead to al-
ternative information theories. Together with probability
theory these are called Generalized Information Theory
(GIT). While GIT methods are under development, the
probabilistic approach to information theory still domi-
nates applications.

D. Modeling Dynamics

Given these static descriptions of systems, we can now
model their dynamics and interactions. Any process or
change in a system’s state can be represented as a trans-
formation: T: S → S: s(t) → s(t + 1). The function T by
definition is one-to-one or many-to-one, meaning that an
initial state s(t) is always mapped onto a single state
s(t + 1). Change can be represented more generally as a
relation R ⊂ S × S, thus allowing the modelling of one-to-
many or many-to-many transformations, where the same
initial state can lead to different final states. Switching
from states s to probability distributions P(s) allows
us to again represent such indeterministic processes by
a function: M : P(s, t) → P(s, t + 1). M is a stochastic
process, or more precisely, a Markov chain, which can
be represented by a matrix of transition probabilities:
P(s j (t + 1) | si (t)) = Mi j ∈ [0, 1].

Given these process representations, we can now study
the dynamics of variety, which is a central theme of cy-
bernetics. It is obvious that a one-to-one transformation
will conserve all distinctions between states and therefore
the variety, uncertainty or information. Similarly, a many-
to-one mapping will erase distinctions, and thus reduce
variety, while an indeterministic, one-to-many mapping
will increase variety and thus uncertainty. With a gen-
eral many-to-many mapping, as represented by a Markov
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process, variety can increase or decrease, depending on
the initial probability distribution and the structure of the
transition matrix. For example, a distribution with variety
0 cannot decrease in variety and will in general increase,
while a distribution with maximum variety will in general
decrease. In the following sections we will discuss some
special cases of this most general of transformations.

With some small extensions, this dynamical represen-
tation can be used to model the interactions between sys-
tems. A system A affects a system B if the state of B
at time t + 1 is dependent on the state of A at time t .
This can be represented as a transformation T : SA × SB →
SB : (sA(t), sB(t)) → sB(t + 1). sA here plays the role of the
input of B. In general, B will not only be affected by an
outside system A, but in turn affect another (or the same)
system C . This can be represented by another a trans-
formation T ′: SA × SB → SC : (sA(t), sB(t)) → sC (t + 1).
sC here plays the role of the output of B. For the outside
observer, B is a process that transforms input into output.
If the observer does not know the states of B, and therefore
the precise transformations T and T ′, then B acts as a black
box. By experimenting with the sequence of inputs sA(t),
sA(t + 1), sA(t + 2), . . . , and observing the corresponding
sequence of outputs sC (t + 1), sC (t + 2), sC (t + 3), . . . ,
the observer may try to reconstruct the dynamics of B. In
many cases, the observer can determine a state space SB so
that both transformations become deterministic, without
being able to directly observe the properties or compo-
nents of B.

This approach is easily extended to become a full theory
of automata and computing machines, and is the foun-
dation of most of modern computer science. This again
illustrates how cybernetic modeling can produce useful
predictions by only looking at relations between variables,
while ignoring the physical components of the system.

III. CIRCULAR PROCESSES

In classical, Newtonian science, causes are followed by
effects, in a simple, linear sequence. Cybernetics, on the
other hand, is interested in processes where an effect feeds
back into its very cause. Such circularity has always been
difficult to handle in science, leading to deep conceptual
problems such as the logical paradoxes of self-reference.
Cybernetics discovered that circularity, if modelled ade-
quately, can help us to understand fundamental phenom-
ena, such as self-organization, goal-directedness, identity,
and life, in a way that had escaped Newtonian science.
For example, von Neumann’s analysis of reproduction as
the circular process of self-construction anticipated the
discovery of the genetic code. Moreover, circular pro-
cesses are in fact ubiquitous in complex, networked sys-

tems such as organisms, ecologies, economies, and other
social structures.

A. Self-Application

In simple mathematical terms, circularity can be repre-
sented by an equation representing how some pheno-
menon or variable y is mapped, by a transformation or
process f , onto itself:

y = f (y). (2)

Depending on what y and f stand for, we can distinguish
different types of circularities. As a concrete illustration,
y might stand for an image, and f for the process whereby
a video camera is pointed at the image, the image is reg-
istered and transmitted to a TV screen or monitor. The
circular relation y = f (y) would then represent the situ-
ation where the camera points at the image shown on its
own monitor. Paradoxically, the image y in this situation
is both cause and effect of the process, it is both object and
representation of the object. In practice, such a video loop
will produce a variety of abstract visual patterns, often
with complex symmetries.

In discrete form, Eq. (2) becomes yt+1 = f (yt ). Such
equations have been extensively studied as iterated maps,
and are the basis of chaotic dynamics and fractal geom-
etry. Another variation is the equation, well known from
quantum mechanics and linear algebra:

ky = f (y). (3)

The real or complex number k is an eigenvalue of f , and
y is an eigenstate. Eq. (3) reduces to the basic Eq. (2) if
k = 1 or if y is only defined up to a constant factor. If
k = exp(2π i m/n), then f n(y) is again y. Thus, imagi-
nary eigenvalues can be used to model periodic processes,
where a system returns to the same state after passing
through n intermediate states.

An example of such periodicity is the self-referential
statement (equivalent to the liar’s paradox): “this state-
ment is false.” If we start by assuming that the statement
is true, then we must conclude that it is false. If we assume
it is false, then we must conclude it is true. Thus, the truth
value can be seen to oscillate between true and false, and
can perhaps be best conceived as having the equivalent of
an imaginary value. Using Spencer Brown’s calculus of
distinctions, Varela has proposed a similar solution to the
problem of self-referential statements.

B. Self-Organization

The most direct application of circularity is where y ∈ S
stands for a system’s state in a state space S, and f for
a dynamic transformation or process. Equation (2) then
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states that y is a fixpoint of the function f , or an equi-
librium or absorbing state of the dynamic system: if the
system reaches state y, it will stop changing. This can be
generalized to the situation where y stands for a subset
of the state space, y ⊂ S. Then, every state of this subset
is sent to another state of this subspace: ∀ x ∈ y: f (x) ∈ y.
Assuming y has no smaller subset with the same prop-
erty, this means that y is an attractor of the dynamics. The
field of dynamical systems studies attractors in general,
which can have any type of shape or dimension, including
zero-dimensional (the equilibrium state discussed above),
one-dimensional (a limit cycle, where the system repeat-
edly goes through the same sequence of states), and fractal
(a so-called “strange” attractor).

An attractor y is in general surrounded by a basin B(y):
a set of states outside y whose evolution necessarily ends
up inside: ∀ s ∈ B(y), s �∈ y, ∃ n such that f n(s) ∈ y. In a
deterministic system, every state either belongs to an at-
tractor or to a basin. In a stochastic system there is a third
category of states that can end up in either of several at-
tractors. Once a system has entered an attractor, it can no
longer reach states outside the attractor. This means that
our uncertainty (or statistical entropy) H about the sys-
tem’s state has decreased: we now know for sure that it is
not in any state that is not part of the attractor. This spon-
taneous reduction of entropy or, equivalently, increase in
order or constraint, can be viewed as a most general model
of self-organization.

Every dynamical system that has attractors will eventu-
ally end up in one of these attractors, losing its freedom to
visit any other state. This is what Ashby called the prin-
ciple of self-organization. He also noted that if the sys-
tem consists of different subsystems, then the constraint
created by self-organization implies that the subsystems
have become mutually dependent, or mutually adapted.
A simple example is magnetization, where an assembly
of magnetic spins that initially point in random direc-
tions (maximum entropy), end up all being aligned in the
same direction (minimum entropy, or mutual adaptation).
Von Foerster added that self-organization can be enhanced
by random perturbations (“noise”) of the system’s state,
which speed up the descent of the system through the
basin, and makes it leave shallow attractors so that it can
reach deeper ones. This is the order from noise principle.

C. Closure

The “attractor” case can be extended to the case where
y stands for a complete state space. Equation (2) then
represents the situation where every state of y is mapped
onto another state of y by f . More generally, f might
stand for a group of transformations, rather than a single
transformation. If f represents the possible dynamics of

the system with state space y, under different values of
external parameters, then we can say that the system is
organizationally closed: it is invariant under any possible
dynamical transformation. This requirement of closure is
implicit in traditional mathematical models of systems.
Cybernetics, on the other hand, studies closure explicitly,
with the view that systems may be open and closed si-
multaneously for different kinds of properties f1 and f2.
Such closures give systems an unambiguous identity, ex-
plicitly distinguishing what is inside from what is outside
the system.

One way to achieve closure is self-organization, leav-
ing the system in an attractor subspace. Another way is to
expand the state space y into a larger set y∗ so that y∗ re-
cursively encompasses all images through f of elements
of y: ∀ x ∈ y: x ∈ y∗; ∀ x ′ ∈ y∗: f (x ′) ∈ y∗. This is the tra-
ditional definition of a set y∗ through recursion, which is
frequently used in computer programming to generate the
elements of a set y∗ by iteratively applying transforma-
tions to all elements of a starting set y.

A more complex example of closure is autopoiesis
(“self-production”), the process by which a system recur-
sively produces its own network of physical components,
thus continuously regenerating its essential organization
in the face of wear and tear. Note that such “organiza-
tional” closure is not the same as thermodynamic closure:
the autopoietic system is open to the exchange of matter
and energy with its environment, but it is autonomously
responsible for the way these resources are organized.
Maturana and Varela have postulated autopoiesis to be
the defining characteristic of living systems. Another fun-
damental feature of life, self-reproduction, can be seen
as a special case of autopoiesis, where the self-produced
components are not used to rebuild the system, but to as-
semble a copy of it. Both reproduction and autopoiesis
are likely to have evolved from an autocatalytic cycle,
an organizationally closed cycle of chemical processes
such that the production of every molecule participat-
ing in the cycle is catalysed by another molecule in the
cycle.

D. Feedback Cycles

In addition to looking directly at a state y, we may
focus on the deviation �y = (y − y0) of y from some
given (e.g., equilibrium) state y0, and at the “feedback”
relations through which this deviation depends on it-
self. In the simplest case, we could represent this as
�y(t + �t) = k �y(t). According to the sign of the de-
pendency k, two special cases can be distinguished.

If a positive deviation at time t (increase with respect
to y0) leads to a negative deviation (decrease with respect
to y0) at the following time step, the feedback is negative
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(k < 0). For example, more rabbits eat more grass, and
therefore less grass will be left to feed further rabbits.
Thus, an increase in the number of rabbits above the equi-
librium value will lead, via a decrease in the supply of
grass, at the next time step to a decrease in the number of
rabbits. Complementarily, a decrease in rabbits leads to an
increase in grass, and thus again to an increase in rabbits. In
such cases, any deviation from y0 will be suppressed, and
the system will spontaneously return to equilibrium. The
equilibrium state y0 is stable, resistant to perturbations.
Negative feedback is ubiquitous as a control mechanism
in machines of all sorts, in organisms (for example, in
homeostasis and the insulin cycle), in ecosystems, and in
the supply/demand balance in economics.

The opposite situation, where an increase in the devi-
ation produces further increases, is called positive feed-
back. For example, more people infected with the cold
virus will lead to more viruses being spread in the air by
sneezing, which will in turn lead to more infections. An
equilibrium state surrounded by positive feedback is nec-
essarily unstable. For example, the state where no one is
infected is an unstable equilibrium, since it suffices that
one person become infected for the epidemic to spread.
Positive feedbacks produce a runaway, explosive growth,
which will only come to a halt when the necessary re-
sources have been completely exhausted. For example,
the virus epidemic will only stop spreading after all peo-
ple that could be infected have been infected. Other exam-
ples of such positive feedbacks are arms races, snowball
effects, increasing returns in economics, and the chain
reactions leading to nuclear explosions. While negative
feedback is the essential condition for stability, positive
feedbacks are responsible for growth, self-organization,
and the amplification of weak signals. In complex,
hierarchical systems, higher-level negative feedbacks
typically constrain the growth of lower-level positive
feedbacks.

The positive and negative feedback concepts are eas-
ily generalized to networks of multiple causal relations. A
causal link between two variables, A → B (e.g., infected
people → viruses), is positive if an increase (decrease) in
A produces an increase (decrease) in B. It is negative,
if an increase produces a decrease, and vice versa. Each
loop in a causal network can be given an overall sign by
multiplying the signs (+ or −) of each of its links. This
gives us a simple way to determine whether this loop will
produce stabilization (negative feedback) or a runaway
process (positive feedback). In addition to the sign of a
causal connection, we also need to take into account the
delay or lag between cause and effect, e.g., the rabbit pop-
ulation will only start to increase several weeks after the
grass supply has increased. Such delays may lead to an
oscillation, or limit cycle, around the equilibrium value.

Such networks of interlocking positive and negative
feedback loops with lags are studied in the mathemati-
cal field of System Dynamics, a broad program modelling
complex biological, social, economic and psychological
systems. System Dynamics’ most well-known application
is probably the “Limits to Growth” program popularized
by the Club of Rome, which continued the pioneering
computer simulation work of Jay Forrester. System dy-
namics has since been popularized in the Stella software
application and computer games such as SimCity.

IV. GOAL-DIRECTEDNESS AND CONTROL

A. Goal-Directedness

Probably the most important innovation of cybernetics
is its explanation of goal-directedness or purpose. An
autonomous system, such as an organism, or a person,
can be characterized by the fact that it pursues its own
goals, resisting obstructions from the environment that
would make it deviate from its preferred state of affairs.
Thus, goal-directedness implies regulation of—or control
over—perturbations. A room in which the temperature
is controlled by a thermostat is the classic simple exam-
ple. The setting of the thermostat determines the preferred
temperature or goal state. Perturbations may be caused
by changes in the outside temperature, drafts, opening of
windows or doors, etc. The task of the thermostat is to
minimize the effects of such perturbations, and thus to
keep the temperature as much as possible constant with
respect to the target temperature.

On the most fundamental level, the goal of an au-
tonomous or autopoietic system is survival, that is, main-
tenance of its essential organization. This goal has been
built into all living systems by natural selection: those that
were not focused on survival have simply been eliminated.
In addition to this primary goal, the system will have var-
ious subsidiary goals, such as keeping warm or finding
food, that indirectly contribute to its survival. Artificial
systems, such as thermostats and automatic pilots, are not
autonomous: their primary goals are constructed in them
by their designers. They are allopoietic: their function is
to produce something other (“allo”) than themselves.

Goal-directedness can be understood most simply as
suppression of deviations from an invariant goal state. In
that respect, a goal is similar to a stable equilibrium, to
which the system returns after any perturbation. Both goal-
directedness and stability are characterized by equifinality:
different initial states lead to the same final state, implying
the destruction of variety. What distinguishes them is that a
stable system automatically returns to its equilibrium state,
without performing any work or effort. But a goal-directed
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system must actively intervene to achieve and maintain its
goal, which would not be an equilibrium otherwise.

Control may appear essentially conservative, resisting
all departures from a preferred state. But the net effect
can be very dynamic or progressive, depending on the
complexity of the goal. For example, if the goal is defined
as the distance relative to a moving target, or the rate of
increase of some quantity, then suppressing deviation from
the goal implies constant change. A simple example is a
heat-seeking missile attempting to reach a fast moving
enemy plane.

A system’s “goal” can also be a subset of acceptable
states, similar to an attractor. The dimensions defining
these states are called the essential variables, and they
must be kept within a limited range compatible with the
survival of the system. For example, a person’s body tem-
perature must be kept within a range of approximately
35–40◦C. Even more generally, the goal can be seen as
a gradient, or “fitness” function, defined on state space,
which defines the degree of “value” or “preference” of one
state relative to another one. In the latter case, the prob-
lem of control becomes one of on-going optimization or
maximization of fitness.

B. Mechanisms of Control

While the perturbations resisted in a control relation can
originate either inside (e.g., functioning errors or quan-
tum fluctuations) or outside of the system (e.g., attack by
a predator or changes in the weather), functionally we
can treat them as if they all come from the same, external
source. To achieve its goal in spite of such perturbations,
the system must have a way to block their effect on its
essential variables. There are three fundamental methods
to achieve such regulation: buffering, feedback and feed-
forward (see Fig. 1).

Buffering is the passive absorption or damping of per-
turbations. For example, the wall of the thermostatically
controlled room is a buffer: the thicker or the better insu-
lated it is, the less effect fluctuations in outside temperature
will have on the inside temperature. Other examples are
the shock absorbers in a car, and a reservoir, which pro-
vides a regular water supply in spite of variations in rain

FIGURE 1 Basic mechanisms of regulation, from left to right:
buffering, feedforward and feedback. In each case, the effect of
disturbances D on the essential variables E is reduced, either by
a passive buffer B, or by an active regulator R.

fall. The mechanism of buffering is similar to that of a sta-
ble equilibrium: dissipating perturbations without active
intervention. The disadvantage is that it can only dampen
the effects of uncoordinated fluctuations; it cannot sys-
tematically drive the system to a non-equilibrium state, or
even keep it there. For example, however well-insulated,
a wall alone cannot maintain the room at a temperature
higher than the average outside temperature.

Feedback and feedforward both require action on the
part of the system to suppress or compensate the effect
of the fluctuation. For example, the thermostat will coun-
teract a drop in temperature by switching on the heating.
Feedforward control will suppress the disturbance before
it has had the chance to affect the system’s essential vari-
ables. This requires the capacity to anticipate the effect of
perturbations on the system’s goal. Otherwise the system
would not know which external fluctuations to consider as
perturbations, or how to effectively compensate their in-
fluence before it affects the system. This requires that the
control system be able to gather early information about
these fluctuations.

For example, feedforward control might be applied to
the thermostatically controlled room by installing a tem-
perature sensor outside of the room, which would warn
the thermostat about a drop in the outside temperature, so
that it could start heating before this would affect the in-
side temperature. In many cases, such advance warning is
difficult to implement, or simply unreliable. For example,
the thermostat might start heating the room, anticipating
the effect of outside cooling, without being aware that
at the same time someone in the room switched on the
oven, producing more than enough heat to offset the drop
in outside temperature. No sensor or anticipation can ever
provide complete information about the future effects of
an infinite variety of possible perturbations, and therefore
feedforward control is bound to make mistakes. With a
good control system, the resulting errors may be few, but
the problem is that they will accumulate in the long run,
eventually destroying the system.

The only way to avoid this accumulation is to use feed-
back, that is, compensate an error or deviation from the
goal after it has happened. Thus feedback control is also
called error-controlled regulation, since the error is used
to determine the control action, as with the thermostat
which samples the temperature inside the room, switching
on the heating whenever that temperature reading drops
lower than a certain reference point from the goal temper-
ature. The disadvantage of feedback control is that it first
must allow a deviation or error to appear before it can take
action, since otherwise it would not know which action to
take. Therefore, feedback control is by definition imper-
fect, whereas feedforward could in principle, but not in
practice, be made error-free.
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The reason feedback control can still be very effective is
continuity: deviations from the goal usually do not appear
at once, they tend to increase slowly, giving the controller
the chance to intervene at an early stage when the devia-
tion is still small. For example, a sensitive thermostat may
start heating as soon as the temperature has dropped one
tenth of a degree below the goal temperature. As soon as
the temperature has again reached the goal, the thermo-
stat switches off the heating, thus keeping the temperature
within a very limited range. This very precise adaptation
explains why thermostats in general do not need outside
sensors, and can work purely in feedback mode. Feedfor-
ward is still necessary in those cases where perturbations
are either discontinuous, or develop so quickly that any
feedback reaction would come too late. For example, if
you see someone pointing a gun in your direction, you
would better move out of the line of fire immediately, in-
stead of waiting until you feel the bullet making contact
with your skin.

C. The Law of Requisite Variety

Control or regulation is most fundamentally formulated
as a reduction of variety: perturbations with high variety
affect the system’s internal state, which should be kept as
close as possible to the goal state, and therefore exhibit a
low variety. So in a sense control prevents the transmis-
sion of variety from environment to system. This is the
opposite of information transmission, where the purpose
is to maximally conserve variety.

In active (feedforward and/or feedback) regulation,
each disturbance from D will have to be compensated by
an appropriate counteraction from the regulator R (Fig. 1).
If R would react in the same way to two different distur-
bances, then the result would be two different values for
the essential variables, and thus imperfect regulation. This
means that if we wish to completely block the effect of
D, the regulator must be able to produce at least as many
counteractions as there are disturbances in D. Therefore,
the variety of R must be at least as great as the variety of
D. If we moreover take into account the constant reduc-
tion of variety K due to buffering, the principle can be
stated more precisely as:

V (E) ≥ V (D) − V (R) − K (4)

Ashby has called this principle the law of requisite variety:
in active regulation only variety can destroy variety. It
leads to the somewhat counterintuitive observation that the
regulator must have a sufficiently large variety of actions
in order to ensure a sufficiently small variety of outcomes
in the essential variables E . This principle has important
implications for practical situations: since the variety of
perturbations a system can potentially be confronted with

is unlimited, we should always try maximize its internal
variety (or diversity), so as to be optimally prepared for
any foreseeable or unforeseeable contigency.

D. Components of a Control System

Now that we have examined control in the most general
way, we can look at the more concrete components and
processes that constitute a control system, such as a simple
thermostat or a complex organism or organization (Fig. 2).
As is usual in cybernetics, these components are recog-
nized as functional, and may or may not correspond to
structural units.

The overall scheme is a feedback cycle with two in-
puts: the goal, which stands for the preferred values of the
system’s essential variables, and the disturbances, which
stand for all the processes in the environment that the sys-
tem does not have under control but that can affect these
variables. The system starts by observing or sensing the
variables that it wishes to control because they affect its
preferred state. This step of perception creates an internal
representation of the outside situation. The information in
this representation then must be processed in order to de-
termine: (1) in what way it may affect the goal and (2) what
is the best reaction to safeguard that goal.

Based on this interpretation, the system then decides on
an appropriate action. This action affects some part of the
environment, which in turn affects other parts of the envi-
ronment through the normal causal processes or dynamics
of that environment. These dynamics are influenced by the
set of unknown variables which we have called the distur-
bances. This dynamical interaction affects among others
the variables that the system keeps under observation. The
change in these variables is again perceived by the system,
and this again triggers interpretation, decision and action,
thus closing the control loop.

FIGURE 2 Basic components of a control system.



P1: GPB Final Pages

Encyclopedia of Physical Science and Technology EN004I-161 June 8, 2001 15:58

Cybernetics and Second-Order Cybernetics 165

This general scheme of control may include buffering,
feedforward and feedback regulation. Buffering is implicit
in the dynamics, which determines to what degree the dis-
turbances affect the observed variables. The observed vari-
ables must include the essential variables that the system
wants to keep under control (feedback or error-controlled
regulation) in order to avoid error accumulation. However,
they will in general also include various nonessential vari-
ables, to function as early warning signals for anticipated
disturbances. This implements feedforward regulation.

The components of this scheme can be as simple or as
complex as needed. In the thermostat, perception is simply
a sensing of the one-dimensional variable room tempera-
ture; the goal is the set-point temperature that the thermo-
stat tries to achieve; information processing is the trivial
process of deciding whether the perceived temperature
is lower than the desired temperature or not; and action
consists of either heating, if the temperature is lower, or
doing nothing. The affected variable is the amount of heat
in the room. The disturbance is the amount of heat ex-
changed with the outside. The dynamics is the process by
which inside heating and heath exchange with the outside
determine inside temperature.

For a more complex example, we may consider a board
of directors whose goal is to maximize the long-term
revenue of their company. Their actions consist of vari-
ous initiatives, such as publicity campaigns, hiring man-
agers, starting up production lines, saving on administra-
tive costs, etc. This affects the general functioning of the
company. But this functioning is also affected by factors
that the board does not control such as the economic cli-
mate, the activities of competitors, the demands of the
clients, etc. Together these disturbances and the initia-
tives of the board determine the success of the company,
which is indicated by variables such as amount of orders,
working costs, production backlog, company reputation,
etc. The board, as a control system, will interpret each of
these variables with reference to their goal of maximizing
profits, and decide about actions to correct any deviation
from the preferred course.

Note that the control loop is completely symmetric: if
the scheme in Fig. 2 is rotated over 180◦, environment be-
comes system while disturbance becomes goal, and vice
versa. Therefore, the scheme could also be interpreted as
two interacting systems, each of which tries to impose its
goal on the other one. If the two goals are incompatible,
this is a model of conflict or competition; otherwise, the
interaction may settle into a mutually satisfactory equilib-
rium, providing a model of compromise or cooperation.

But in control we generally mean to imply that one
system is more powerful than the other one, capable of
suppressing any attempt by the other system to impose
its preferences. To achieve this, an asymmetry must be

built into the control loop: the actions of the system (con-
troller) must have more effect on the state of the envi-
ronment (controlled) than the other way around. This can
also be viewed as an amplification of the signal travel-
ling through the control system: weak perceptual signals,
carrying information but almost no energy, lead to pow-
erful actions, carrying plenty of energy. This asymmetry
can be achieved by weakening the influence of the envi-
ronment, e.g., by buffering its actions, and by strengthen-
ing the actions of the system, e.g., by providing it with
a powerful energy source. Both cases are illustrated by
the thermostat: the walls provide the necessary insula-
tion from outside perturbations, and the fuel supply pro-
vides the capacity to generate enough heat. No thermo-
static control would be possible in a room without walls
or without energy supply. The same requirements ap-
plied to the first living cells, which needed a protective
membrane to buffer disturbances, and a food supply for
energy.

E. Control Hierarchies

In complex control systems, such as organisms or or-
ganizations, goals are typically arranged in a hierarchy,
where the higher-level goals control the settings for the
subsidiary goals. For example, your primary goal of sur-
vival entails the lower-order goal of maintaining sufficient
hydration, which may activate the goal of drinking a glass
of water. This will in turn activate the goal of bringing the
glass to your lips. At the lowest level, this entails the goal
of keeping your hand steady without spilling water.

Such hierarchical control can be represented in terms of
the control scheme of Fig. 2 by adding another layer, as in
Fig. 3. The original goal 1 has now itself become the result
of an action, taken to achieve the higher level goal 2. For
example, the thermostat’s goal of keeping the temperature
at its set-point can be subordinated to the higher order
goal of keeping the temperature pleasant to the people
present without wasting fuel. This can be implemented
by adding an infrared sensor that perceives whether there
are people present in the room, and if so, then setting the
thermostat at a higher temperature T1, otherwise setting
it to the lower temperature T2. Such control layers can be
added arbitrarily by making the goal at level n dependent
on the action at level n + 1.

A control loop will reduce the variety of perturbations,
but it will in general not be able to eliminate all variation.
Adding a control loop on top of the original loop may
eliminate the residual variety, but if that is not sufficient,
another hierarchical level may be needed. The required
number of levels therefore depends on the regulatory abil-
ity of the individual control loops: the weaker that abil-
ity, the more hierarchy is needed. This is Aulin’s law of
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FIGURE 3 A hierarchical control system with two control levels.

requisite hierarchy. On the other hand, increasing the num-
ber of levels has a negative effect on the overall regulatory
ability, since the more levels the perception and action sig-
nals have to pass through, the more they are likely to suffer
from noise, corruption, or delays. Therefore, if possible,
it is best to maximize the regulatory ability of a single
layer, and thus minimize the number of requisite layers.
This principle has important applications for social orga-
nizations, which have a tendency to multiply the num-
ber of bureaucratic levels. The present trend toward the
flattening of hierarchies can be explained by the increas-
ing regulatory abilities of individuals and organizations,
due to better education, management and technological
support.

Still, when the variety becomes really too great for one
regulator, a higher control level must appear to allow fur-
ther progress. Valentin Turchin has called this process a
metasystem transition, and proposed it as a basic unit, or
“quantum,” of the evolution of cybernetic systems. It is re-
sponsible for the increasing functional complexity which
characterizes such fundamental developments as the ori-
gins of life, multicellular organisms, the nervous system,
learning, and human culture.

V. COGNITION

A. Requisite Knowledge

Control is not only dependent on a requisite variety of ac-
tions in the regulator: the regulator must also know which

action to select in response to a given perturbation. In the
simplest case, such knowledge can be represented as a
one-to-one mapping from the set D of perceived distur-
bances to the set R of regulatory actions: f : D → R, which
maps each disturbance to the appropriate action that will
suppress it. For example, the thermostat will map the per-
ception “temperature too low” to the action “heat,” and the
perception “temperature high enough” to the action “do
not heat.” Such knowledge can also be expressed as a set
of production rules of the form “if condition (perceived
disturbance), then action.” This “knowledge” is embod-
ied in different systems in different ways, for example,
through the specific ways designers have connected the
components in artificial systems, or in organisms through
evolved structures such as genes or learned connections
between neurons as in the brain.

In the absence of such knowledge, the system would
have to try out actions blindly, until one would by chance
eliminate the perturbation. The larger the variety of distur-
bances (and therefore of requisite actions), the smaller the
likelihood that a randomly selected action would achieve
the goal, and thus ensure the survival of the system. There-
fore, increasing the variety of actions must be accompa-
nied by increasing the constraint or selectivity in choosing
the appropriate action, that is, increasing knowledge. This
requirement may be called the law of requisite knowl-
edge. Since all living organisms are also control systems,
life therefore implies knowledge, as in Maturana’s often
quoted statement that “to live is to cognize.”

In practice, for complex control systems control actions
will be neither blind nor completely determined, but more
like “educated guesses” that have a reasonable probabil-
ity of being correct, but without a guarantee of success.
Feedback may help the system to correct the errors it thus
makes before it is destroyed. Thus, goal-seeking activity
becomes equivalent to heuristic problem-solving.

Such incomplete or “heuristic” knowledge can be quan-
tified as the conditional uncertainty of an action from R,
given a disturbance in D: H (R | D). (This uncertainty is
calculated as in Eq. (1), but using conditional probabilities
P(r | d)). H (R | D) = 0 represents the case of no uncer-
tainty or complete knowledge, where the action is com-
pletely determined by the disturbance. H (R | D) = H (R)
represents complete ignorance. Aulin has shown that the
law of requisite variety (4) can be extended to include
knowledge or ignorance by simply adding this conditional
uncertainty term (which remained implicit in Ashby’s
non-probabilistic formulation of the law):

H (E) ≥ H (D) + H (R | D) − H (R) − K (5)

This says that the variety in the essential variables E can
be reduced by (1) increasing buffering K , (2) increasing
variety of action H (R), or (3) decreasing the uncertainty
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H (R | D) about which action to choose for a given distur-
bance, that is, increasing knowledge.

B. The Modeling Relation

In the above view of knowledge, the goal is implicit in the
condition–action relation, since a different goal would re-
quire a different action under the same condition. When we
think about “scientific” or “objective” knowledge, though,
we conceive of rules that are independent of any particu-
lar goal. In higher order control systems that vary their
lower order goals, knowledge performs the more gen-
eral function of making predictions: “what will happen
if this condition appears and/or that action is performed?”
Depending on the answer to that question, the control sys-
tem can then choose the best action to achieve its present
goal.

We can formalize this understanding of knowledge by
returning to our concept of a model. We now introduce
endo-models, or models within systems, as opposed to
our previous usage of exo-models, or models of systems.
Figure 4 shows a model (an endo-model), which can be
viewed as a magnification of the feedforward part of the
general control system of Fig. 2, ignoring the goal, distur-
bances and actions.

A model starts with a system to be modeled, which
we here call the “world,” with state space W = {wi } and
dynamics Fa : W → W . The dynamics represents the tem-
poral evolution of the world, like in Fig. 2, possibly under
the influence of an action a by the system. The model it-
self consists of internal model states, or representations
R = {r j } and a modeling function, or set of prediction
rules, Ma : R → R. The two are coupled by a percep-
tion function P: W → R, which maps states of the world
onto their representations in the model. The prediction
Ma succeeds if it manages to anticipate what will hap-
pen to the representation R under the influence of ac-
tion a. This means that the predicted state of the model
r2 = Ma(r1) = Ma(P(w1) must be equal to the state of the
model created by perceiving the actual state of the world

FIGURE 4 The modeling relation.

w2 after the process Fa : r2 = P(w2) = P(Fa(w1)). There-
fore, P(Fa) = Ma(P).

We say that the mappings P , Ma and Fa must commute
for M to be a good model which can predict the behavior of
the world W . The overall system can be viewed as a homo-
morphic mapping from states of the world to states of the
model, such that their dynamical evolution is preserved. In
a sense, even the more primitive “condition-action” rules
discussed above can be interpreted as a kind of homo-
morphic mapping from the events (“disturbances”) in the
world to the actions taken by the control system. This ob-
servation was developed formally by Conant and Ashby
in their classic paper “Every good regulator of a system
must be a model of that system.” Our understanding of
“model” here, however, is more refined, assuming that
the control system can consider various predicted states
Ma(r1), without actually executing any action a. This re-
covers the sense of a model as a representation, as used
in Section I.B and in science in general, in which obser-
vations are used merely to confirm or falsify predictions,
while as much as possible avoiding interventions in the
phenomenon that is modelled.

An important note must be made about the epistemol-
ogy, or philosophy of knowledge, implied by this under-
standing. At first sight, defining a model as a homomorphic
mapping of the world would seem to imply that there is
an objective correspondence between objects in the world
and their symbolic representations in the model. This leads
back to “naive realism” which sees true knowledge as a
perfect reflection of outside reality, independent of the
observer. The homomorphism here, however, does not
conserve any objective structure of the world, only the
type and order of phenomena as perceived by the sys-
tem. A cybernetic system only perceives what points to
potential disturbances of its own goals. It is in that sense
intrinsically subjective. It does not care about, nor has it
access to, what “objectively” exists in the outside world.
The only influence this outside world has on the system’s
model is in pointing out which models make inaccurate
predictions. Since an inaccurate prediction entails poor
control, this is a signal for the system to build a better
model.

C. Learning and Model-Building

Cybernetic epistemology is in essence constructivist:
knowledge cannot be passively absorbed from the envi-
ronment, it must be actively constructed by the system
itself. The environment does not instruct, or “in-form,”
the system, it merely weeds out models that are inade-
quate, by killing or punishing the system that uses them.
At the most basic level, model-building takes place by
variation-and-selection or trial-and-error.
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Let us illustrate this by considering a primitive aquatic
organism whose control structure is a slightly more sophis-
ticated version of the thermostat. To survive, this organ-
ism must remain in the right temperature zone, by moving
up to warmer water layers or down to colder ones when
needed. Its perception is a single temperature variable with
3 states X = {too hot, too cold, just right}. Its variety of
action consists of the 3 states Y = {go up, go down, do
nothing}. The organism’s control knowledge consists of
a set of perception-action pairs, or a function f : X → Y .
There are 33 = 27 possible such functions, but the only
optimal one consists of the rules too hot → go down, too
cold → go up, and just right → do nothing. The last rule
could possibly be replaced by either just right → go up or
just right → go down. This would result in a little more ex-
penditure of energy, but in combination with the previous
rules would still keep the organism in a negative feedback
loop around the ideal temperature. All 24 other possible
combinations of rules would disrupt this stabilizing feed-
back, resulting in a runaway behavior that will eventually
kill the organism.

Imagine that different possible rules are coded in the
organism’s genes, and that these genes evolve through
random mutations each time the organism produces off-
spring. Every mutation that generates one of the 24 com-
binations with positive feedback will be eliminated by
natural selection. The three negative feedback combina-
tions will initially all remain, but because of competition,
the most energy efficient combination will eventually take
over. Thus internal variation of the control rules, together
with natural selection by the environment eventually re-
sults in a workable model.

Note that the environment did not instruct the organ-
ism how to build the model: the organism had to find out
for itself. This may still appear simple in our model with
27 possible architectures, but it suffices to observe that
for more complex organisms there are typically millions
of possible perceptions and thousands of possible actions
to conclude that the space of possible models or control
architectures is absolutely astronomical. The information
received from the environment, specifying that a particu-
lar action or prediction is either successful or not, is far too
limited to select the right model out of all these potential
models. Therefore, the burden of developing an adequate
model is largely on the system itself, which will need to
rely on various internal heuristics, combinations of pre-
existing components, and subjective selection criteria to
efficiently construct models that are likely to work.

Natural selection of organisms is obviously a quite
wasteful method to develop knowledge, although it is re-
sponsible for most knowledge that living systems have
evolved in their genes. Higher organisms have developed
a more efficient way to construct models: learning. In

learning, different rules compete with each other within
the same organism’s control structure. Depending on their
success in predicting or controlling disturbances, rules are
differentially rewarded or reinforced. The ones that receive
most reinforcement eventually come to dominate the less
successful ones. This can be seen as an application of con-
trol at the metalevel, or a metasystem transition, where
now the goal is to minimize the perceived difference be-
tween prediction and observation, and the actions consist
in varying the components of the model.

Different formalisms have been proposed to model
this learning process, beginning with Ashby’s homeostat,
which for a given disturbance searched not a space of pos-
sible actions, but a space of possible sets of disturbance →
action rules. More recent methods include neural networks
and genetic algorithms. In genetic algorithms, rules vary
randomly and discontinuously, through operators such as
mutation and recombination. In neural networks, rules are
represented by continuously varying connections between
nodes corresponding to sensors, effectors and intermedi-
ate cognitive structures. Although such models of learning
and adaptation originated in cybernetics, they have now
grown into independent specialisms, using labels such as
“machine learning” and “knowledge discovery.”

D. Constructivist Epistemology

The broad view espoused by cybernetics is that living sys-
tems are complex, adaptive control systems engaged in
circular relations with their environments. As cyberneti-
cians consider such deep problems as the nature of life,
mind, and society, it is natural that they be driven to ques-
tions of philosophy, and in particular epistemology.

As we noted, since the system has no access to how
the world “really” is, models are subjective constructions,
not objective reflections of outside reality. As far as they
can know, for knowing systems these models effectively
are their environments. As von Foerster and Maturana
note, in the nervous system there is no a priori distinc-
tion between a perception and a hallucination: both are
merely patterns of neural activation. An extreme interpre-
tation of this view might lead to solipsism, or the inability
to distinguish self-generated ideas (dreams, imagination)
from perceptions induced by the external environment.
This danger of complete relativism, in which any model
is considered to be as good as any other, can be avoided
by the requirements for coherence and invariance.

First, although no observation can prove the truth of
a model, different observations and models can mutually
confirm or support each other, thus increasing their joint
reliability. Thus, the more coherent a piece of knowledge
is with all other available information, the more reliable it
is. Second, percepts appear more “real” as they vary less
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between observations. For example, an object can be de-
fined as that aspect of a perception that remains invariant
when the point of view of the observer is changed. In the
formulation of von Foerster, an object is an eigenstate of
a cognitive transformation. There is moreover invariance
over observers: if different observers agree about a per-
cept or concept, then this phenomenon may be considered
“real” by consensus. This process of reaching consensus
over shared concepts has been called “the social construc-
tion of reality.” Gordon Pask’s Conversation Theory pro-
vides a sophisticated formal model of such a “conversa-
tional” interaction that ends in an agreement over shared
meanings.

Another implication of constructivism is that since all
models are constructed by some observer, this observer
must be included in the model for it to be complete. This
applies in particular to those cases where the process of
model-building affects the phenomenon being modelled.
The simplest case is where the process of observation it-
self perturbs the phenomenon, as in quantum measure-
ment, or the “observer effect” in social science. Another
case is where the predictions from the model can perturb
the phenomenon. Examples are self-fulfilling prophecies,
or models of social systems whose application in steering
the system changes that very system and thus invalidates
the model. As a practical illustration of this principle, the
complexity theorist Brian Arthur has simulated the seem-
ingly chaotic behavior of stock exchange-like systems by
programming agents that are continuously trying to model
the future behavior of the system to which they belong, and
use these predictions as the basis for their own actions. The
conclusion is that the different predictive strategies can-
cel each other out, so that the long-term behavior of the
system becomes intrinsically unpredictable.

The most logical way to minimize these indetermina-
cies appears to be the construction of a metamodel, which
represents various possible models and their relations with
observers and the phenomena they represent. For example,
as suggested by Stuart Umpleby, one of the dimensions of
a metamodel might be the degree to which an observation
affects the phenomenon being observed, with classical,
observer-independent observations at one extreme, and
quantum observation closer to the other extreme.

However, since a metamodel is a still a model, built
by an observer, it must represent itself. This is a basic
form of self-reference. Generalizing from fundamental
epistemological restrictions such as the theorem of Gödel
and the Heisenberg indeterminacy principle, Lars Löfgren

has formulated a principle of linguistic complementar-
ity, which implies that all such self-reference must be
partial: languages or models cannot include a complete
representation of the process by which their representa-
tions are connected to the phenomena they are supposed
to describe. Although this means that no model or meta-
model can ever be complete, a metamodel still proposes a
much richer and more flexible method to arrive at predic-
tions or to solve problems than any specific object model.
Cybernetics as a whole could be defined as an attempt
to build a universal metamodel, that would help us to
build concrete object models for any specific system or
situation.
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