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Abstract

We consider agent-based modeling from a semiotics
perspective, with application to the simulation of
Socio-Technical Organizations. After outlining our
semiotic approach, we consider the role of constraints
present in the virtual environment, including the
virtual physics, common communication structures,
and shared knowledge, for constraining the decision-
making capabilities of the constituent agents.

Introduction

The modern environment is an interlocking collec-
tive of large numbers of groups of people interacting
with computer systems, and which themselves inter-
act with a variety of physical systems to maintain
them under conditions of good control. The vast com-
plexity and quantity of information involved makes
simulation approaches necessary, and yet the exist-
ing formalisms available for simulation are not suf-
�cient to reect their full characteristics. In partic-
ular, simulations built on strict formalisms such as
discrete-event systems or hybrid control cannot cap-
ture the inherent freedom available to humans in-
teracting with such systems; and simulations built
on classical rule-based Arti�cial Intelligence (AI) ap-
proaches are too brittle and speci�c to allow for the
emergent phenomena which characterize such sys-
tems.

Recently, emphasis has been placed on concepts
of autonomous and/or intelligent agents as the hall-
mark of a new paradigm for information systems.
An agent-based modeling approach between collec-
tive automata systems such as used in Arti�cial Life
(ALife) and full AI may provide a robust capability to

simulate human-machine interaction at the collective
level.

Our concept of a semiotic agent (Joslyn and
Rocha 2000) distinguishes agents speci�cally as
decision-making systems. These have a su�cient free-
dom over a variety of possible actions to make speci�c
predictions of their actions impossible at the targeted
scale of observation. Clearly this class includes AI
systems, but leaves out simpler collective automata or
state-transition systems typical of ALife. We call this
approach semiotic, as it focuses on the use and com-
munication of symbols by and between agents and
their environments.

We have also argued (Rocha and Joslyn 1998)
that interesting emergent behavior in agent systems
must arise from considering them as systems in in-
teraction with some form of environment with a su-
�ciently rich set of properties in and of itself. We
thereby further distinguish semiotic agents from pure
decision-making algorithms (Wolpert et al. 1999),
in that they are embedded in (hopefully rich) vir-
tual environments in which they take actions which
have consequences for the future of the agents them-
selves. Thereby, these environmental interactions in-
duce constraints on the freedom of decision-making
on the part of the semiotic agents.

In this paper, we �rst discuss the current state
of the use of agents with respect to both decision
theory and modeling and simulation. We then out-
line the semiotic approach to agent simulation and
our project in modeling Socio-Technical Organiza-
tions (stos). We conclude with a discussion of re-
cent work which demonstrates the signi�cance of con-
straints present in the virtual enironments in agent-
based simulations for greatly increasing system per-
formance and/or robustness, and in particular those
revealed by the decomposition of the virtual environ-
ment into a virtual physics, shared communication

cliff
Text Box
Joslyn, Cliff A: (2000) "Virtual Environments as Constraints on Decision-Making in Agent Models of Socio-Technical Organizations", in: 2000 Workshop on Virtual Worlds in Simulation, Simulation Series, v. 32:2, ed. K. Bellman and C. Landauer, pp. 120-126, Society for Computer Simulation



structures, and shared knowledge.

Agent Approaches to Modeling and

Simulation

The history of computer science has seen a \march of
paradigms", as programming theory has moved from
procedural through functional to object-oriented
models, now culminating in this agent-based ap-
proach (Dyer 1999). Hype has now led to the sit-
uation where nearly anything can be identi�ed as
an agent: in robotics, robots are mechanical agents
in real environments; in information systems agents
are software servants of a user; in software engineer-
ing, agents are \super-objects", combining encapsu-
lation with autonomous process control and indpen-
dent threading; in ALife, agents are simple state-
determined automata connected according to vari-
ous complex temporal or topological schemes in order
to demonstrate \emergent behavior" as complex dy-
namical processes; in AI, complex software system
with a great deal of on-board computational intel-
ligence and planning ability interact in small collec-
tions and simple environments; and �nally in decision
theory, political scientists regard individuals engaging
in collective choice processes as agents.

In abstracting away from these disparate senses of
agency we discern their common properties, including
asynchrony, interactivity, mobility, distribution, and
randomness of trials over various initial conditions.
While this list is common to most agent models, they
still do not capture the essential qualities which most
people bring to the concept of \agency". These quali-
ties are a kind of independence, the fact that the agent
is doing something of and by itself. This refers to a
kind of self-control, or, in a word, autonomy. From
this property alone, all of the above follow.

We also recognize a number of aspects of the con-
cept of autonomy, including boundaries distinguish-
ing the domain of the agent from the rest of the
environment; the quantitative degree of autonomy,
since this is a relative concept; the identity of the
autonomous system which follows from the identi�-
cation of the boundary, and thus the ability to dis-
tinguish between that which is inside and outside the
boundary; and �nally a closure of some aspects of
the world which are entrained within the boundary
(identity) of the agent and thereby closed o� from
other interactions (Joslyn 1998).

The list of properties above is actually quite fa-
miliar to us from the foundations of systems theory
(Bunge 1992, Joslyn 1999). Indeed, based on the
above criteria there is very little to distinguish an
\agent" from some general sense of \system". In

seeking a coherent sense of agent that will be dis-
tinguished not only from other software engineer-
ing senses (agents are not just subroutines or ob-
jects), but also from \objects" or \systems" in gen-
eral (agents are not just systems), we focus on the
concept of autonomy with respect to action. In
other words, our concept of agent is a system (ob-
ject) which has an inherent freedom to make choices

or decisions over possible actions.

Semiotic Agents

We will call such agents semiotic to distinguish them
from all others. We will discuss the particular sense
of semiotic system below, but say here that it is re-
lated to some common ideas in the literature, partic-
ularly the AI concepts of \reactive" vs. \deliberative"
processes (Sloman and Brian 1999), and indeed, we
would argue that all (deliberative) AI systems are
semiotic in that sense. However, we are also moti-
vated by the ALife and complex systems critique of
AI, which allows for emergent phenomena through
autonomy as opposed to external programming of
elaborate internal models and planning mechanisms.
Thus our goal is to construct semiotic agents which
are su�ciently, but minimally su�ciently, complex to
have autonomy of action.

Comparing traditional ALife approaches of large
collections of simple agents with the AI approach
of small collections of complex agents, our goal is
to aim solidly between them, implementing agents
which are relatively simple, and thus whose collec-
tions can have emergent properties, but with su�-
cient memory bases and uncertainty structures to al-
low for deliberative capabilities.

Our fundamental architecture for semiotic agents
is shown in Fig. 1. The system takes measurements
from its environment, and constructs generalized \be-
liefs": stored representations of the current state and
memories of past states. There is also an internal
representation of \desires", namely potential goals
states. A decision node decides among potential ac-
tions, which are then taken back into the environ-
ment. Finally, those actions interact with the dynam-
ical processes in the environment, which then feed
back to the agent in the form of future perceptions.
In this way, the consequences of the agent decisions
have an explicit impact on its future development.

This architecture is based on the principles of a
generalized control architecture, where the autonomy
of the system is allowed by its manifestation of a
closed causal generalized negative feedback control
relation with its environment (Powers 1989); the au-
tonomy of action necessary for semioic agents is al-
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Figure 1: Architecture of a semiotic agent.

lowed in virtue of the dynamical incoherence of the
memory structure and the indepenent representation
of the decision function; and in avoiding AI imple-
mentations, casting beliefs and desires as relatively
simple, non-propositional uncertainty structures.

What characterizes these systems is that they in-
volve processes of perception, interpretation, deci-
sion, and action with their environments. The mem-
ory structures required by such dynamically incoher-
ent systems further entails the presence of represen-
tations stored internally to the agent, in particular of
measured states of a�airs, goals, and possible actions.

Thus we turn to semiotics, or the general science
of signs and symbols. Originally a humanities sub-
�eld of linguistics (Deely 1990), semiotics has come
to become more prominent �rst in text and media
analysis, and then in biology (Deely 1992), computer
engineering, and control engineering (Meystal 1996).

Semiotic processes involve the interpretation of
sign tokens maintained in coding relations with their
interpretants. Thus semiotics in general is concerned
with issues of sign typologies, digital/analog and sym-
bolic/iconic representations, the \motivation" (in-
trinsic relations of sign to meaning) of signs, and
mappings among representational systems.

Semiotics further decomposes semiotic relations
along three axes: syntactic, concerning the formal re-
lations among sign tokens; semantic, concerning the
interpretation of tokens by agents as standing for en-
vironmental observables; and pragmatic, concerning
the repurcusions of those interpretations for the agent
in its environmental context, in other words, the pur-

poses or goals of sign interpretation.
Thus the semiotic agent-based modeling approach

can be summarized as follows:

� Simulated agents operate within environments

which have their own rules, or their own \virtual
physics".

� Agents have action capabilities which must be
considered relative to those environments.

� The possible decisions that agents can make
must be considered relative to those possible ac-

tions. Thus we assert that pure decision models
such as (Richards, McKay and Whitman, 1998;
Wolpert et al., 1999) cannot fully realize the full
emergent capabilities of agent communities in
complex environments. Various decision capa-
bilities include deterministic input/output state
systems, mutable transfer functions in terms of
evolutionary (external selection) or adaptive (in-
ternal selection) processes, and �nally, the use of
culture as shared knowledge among agents to aid
in agents decision-making.

� Data is seen as information transmission among

agents.

� Knowledge is seen as the interpretation of data

by agents

� Communication among agents must be seen
as relative to the knowledge and internals of the
agent.

� Control is seen as a form of decentralized con-

straint over decision-making in agents, poten-
tially from many sources, including everything
above.

Modeling Socio-Technical Organiza-

tions

Our application area is in the simulation of socio-
technical organizations (stos) such as generalized
command and control organizations or utility infras-
tructure systems. The pressing needs are to assess
the stability and vulnerabilities of stos, and to pro-
tect their robustness against disruption in the event
of destablizing forces, such as inherent dynamical in-
stability, structural modi�cation, or information dis-
ruption or disinformation, perhaps through deliber-
ate attack or sabatouge.

stos are characterized by a complex structure
involving the hybrid interaction of physical systems
with agent (human) organization Fig. 2:
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Figure 2: Socio-Technical Organizations.

� A target system, which itself consists of: a
physical system which is deterministic (typ-
ically, and as we will assume here, a contin-
uous dynamical system), involving the ow of
physical objects or substances through a com-
plex enviornment (\terrain"); and an informa-

tion network which is semi-automated, largely
computer-based, and dependent on data acquisi-
tion, telemetry information, and control actions
with the dynamical system.

� The target sytem acts as the environment to
an organization of (human or computationl)
agents or actors, which also has a complex struc-
ture consisting of: operators, atomic units
which interact in prescribed ways with the in-
formation network; supervisory levels, which
establish operational boundaries over lower or
parallel systems, and alter system parameters;
and ultimately the goals of the various corporate,
military, and/or governmental organizations in-
volved, including economic and political forces.

The boundaries among these levels, in particu-
lar between the target system and the organization,
should be drawn functionally, distinguishing those
components which must be considered as semiotic
agents in virtue of their autonomy of decision mak-
ing, and those which might not be. In particular, a
human, if su�ciently constrained by conditions in the
environment or communication system, might be rep-
resentable as a deterministic component of the target
system; and conversely, a computer system of suf-
�cient freedom and complexity might be considered
part of the organization.

Bounded Freedom on Decision Making

In stos, the agents are culturally coherent, with a
broad base of shared knowledge; agent communica-
tion and interaction is mediated by a computer-based
information network with a speci�c set of protocols;
and agents must take actions in a real physical envi-
ronment (terrain or an infrastructure network).

These three aspects of shared knowledge, shared
communication structure, and a shared virtual
physics thus compose the virtual environments in
agent simulations of stos. In turn, each of these
aspects is also addressable from a semiotic perspec-
tive, by emphasizing that semiotic agents operate in a
context of bounded freedom on their decision-making
capacities.

Typical agent models possess one or more of these
aspects, but they all become necessary when develop-
ing agent models of stos. Recently, researchers have
demonstrated that such constraints can be crucial in
providing robustness and stability in multi-agent sys-
tems. In the remainder of this paper, we will point
to some recent results from the literature which ex-
plicate this.

Virtual Physics

Agents are embedded in a virtual physical environ-
ment, whether simulating aspects of a real environ-
ment or a purely synthetic world. Decisions about
actions are thereby constrained relative to the prop-
erties of these environments. Such constraint are a
source of robustness and improved performance. Two
recent research results provide examples.

Gordon and Spears (Gordon et al., 1999; Spears
and Gordon, 1999) use agent models to simulate dis-
tributed sensor grids. Their virtual environment con-
sists of a two dimensional continuous square grid, in
which point agents with masses mi are embedded.
The environment is equipped with a virtual force law
F = Gmimj=r

2, where r is the distance between any
two agents, and an arbitrary distance constant R.
When r > R the force is attractive, and when r < R

repulsive. When r > 1:5R there is no e�ect.
An agent's only possible action is to move in re-

sponse to the sum of the forces acting on it. In virtue
of the geometric property of hexgonal structures aris-
ing from intersecting circles (Fig. 3), the result is the
agent collective constructing an hexagonal grid as the
system reaches equilbrium, as shown in Fig. 4.

In this case, the agents have a single property
(mass) and action (movement). When granted a sec-
ond property, a binary \spin", and a modi�cation of
the force law so that the distance r is renomralization
to r=

p
2 only if the two particles in question have the



Figure 3: From (Spears and Gordon, 1999): \How
circles create hexagons."

same spin, what results is a square lattice (see Fig. 5,
Fig. 6).

Another example is provided in the work of (Pep-
per and Smuts 1999). Their experiment involves sim-
ulated evolution on a discrete square grid with vari-
ous agents, including cells with vegetation, foragers,
and predators. They were attempting to determine
the conditions under which populations with stable
mixtures of altruistic and sel�sh behaviors can arise.

The particular aspect of their simulation of inter-
est to us here is the dependence on the structure of
the virtual environment, in particular on the distri-
bution of vegatation in the environment, which is a
food resource for the foragers. Vegatation was dis-
tributed in square patches separated by gaps. Fig. 7
shows a patch size of three and a gap wideth of two.

Fig. 8 shows the distribution of the frequency of
alarm-calling (an altrustic behavior) in the popula-
tion as a function of patch width and gap. It is clear
that an intermediate degree of structure in the envi-
ronment is necessary to achieve robust performance:
if the patches are too large or close together, su�-
cient resources are available to allow altruism to be
swamped out as deselective; if too small or far apart,
there are insu�cient resources to support any popu-
lation.

Communication

Agents can take actions into their environments, and
can communicate with other agents. So an important
question for any agent-based simulation is the follow-
ing: is a communication act an actual action into the
environment, or not?

Now it is certainly true that all communication
acts through any real or simulation environment in

Figure 4: From (Spears and Gordon, 1999): \A good
hexagonal lattice results by t = 1000."

Figure 5: From (Spears and Gordon 1999): \Forming
a square with particles of two spins."

fact take place through some kind of process in that
environment. In real situations, our communica-
tion tokens have energy, require time to produce and
transmit, usually have mass, and interact dynami-
cally with physical processes. However, we usually
ignore the energetic costs of token production, trans-
mission, and reception, such as ignoring the thermal
e�ects of speech or the mass of ink on paper.

Thus we will assume that in our agent simula-
tions, communication is a distinct process, and is
not part of the stream of actions taken speci�cally
by agents. Thus the freedom of decision making of
semiotic agents is also constrained by the semiotic
structures used to record, transmit, and interpret in-
formation.

Perhaps the best example here is the long-
standing semiotic work of Edwin Hutchins (Hutchins
1996, Hutchins and Hazlehurst, 1991). In both real
naval systems and agent simulations of communica-
tion processes, Hutchins and his colleagues have ex-
plored or simulated agent learning mediated by situ-



Figure 8: From (Pepper and Smuts 1999), Table 2: \Final frequency of alarm-callers as a functin of path
and gap width. * indicates extension."

Figure 6: From (Spears and Gordon 1999): A square
lattice (also uses a spin-ip repair mechanism).

ated exchange of semiotic tokens.
Hutchins and Hazlehurst (1991) simulated the

ability of a community of evolutionary agents to learn
environmental correlations, namely those between
moon phase and tides (see Fig. 9). These neural-net
based agents, in addition to standard learning, also
generated communicational artifacts recording their
knowledge, which were left in the environment to be
discovered and interpreted by future generations of
agents. Fig. 10 shows a \perfect" such artifact. In
the experiment, learning mediated through such ex-
changes performed dramatically better than direct
learning alone.

Figure 7: From (Pepper and Smuts 1999), Figure 1:
\A representative resource distribution pattern."

Shared Knowledge

Finally, decisions of agents may be constrained by
a shared set of knowledge or beliefs, for example
through a common biological evolution or cultural
transmission (training or education). A cogent exam-
ple here is the work of Richards, McKay and Richards
(1998).

They modi�ed the decision-theory problem of col-
lective choice on the part of a group of agents with
mutually conicting preferences. Arrow's classical
result shows that non-transitive collective behavior
can result in cycling among the choices, and thus no
overall result. Richards et al. have demonstrated
that if the possible preferences are supplemented with
shared knowledge among the agents in the form of
structural relations among the choices (e.g. A is di-
rectly related to B and C, but C is not related to B
directly), then unique collective choices are available
for sizes of decision sets much larger than without.



Figure 9: From (Hutchins and Hazlehurst 1991), Ta-
ble 1: Moon and tide \language".

Figure 10: From (Hutchins and Hazlehurst 1991),
Figure 4: \A perfect artifact".
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