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Abstract

The available of probability or possibility measures
for random set (Dempster-Shafer evidence theoret-
ical) structures are highly desirable. Probabilistic
conditions involve disjointness or specificity, while
possibilistic conditions involve consonance of the
underlying focal elements. Consistency results in
possibilistic distributions, but not measures, but
then a unique approximation is available. Espe-
cially in random interval measurement situations,
this condition is common. In this paper we de-
velop some of the mathematical ideas necessary to
develop a measure of the distortion introduced by
this consonant approximation of a consistent ran-
dom set.

1. Introduction

Random set measurement {mathematically equiv-
alent to the derivation of Dempster-Shafer bod-
ies of evidence from empirical sources) is a well-
justified method for the empirical determinination
of, on the one hand, specialized point-trace forms
like possibility distributions and other normalized
fuzzy sets like fuzzy numbers and intervals; and, on
the other hand, specialized evidence measures (be-
lief and plausibility measures) like possibility mea-
sures [5, 7].

An issue in the use of this method is the underly-
ing class structure of the focal set of observed sub-
sets. This structure can be completely general, or
have a special structure such as specific (singleton
subsets), disjoint, rings (intersecting subsets), con-
sistent (global intersecting subsets), or consonant
(completely nested subsets) [4]. Depending on the
structure present, the resulting point traces and ev-
idence measures have different properties. When
consonant, the plausibility measure is naturally a
possibility measure. In the more general case of
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consistency, while the plausibility measure is not
a natural possibility measure, the trace is a nat-
ural possibility distribution, and a unique and well-
justified possibilistic approximation of the plausi-
bility measure is available. Finally, consistent ap-
proximations of inconsistent random sets are also
available (6].

Consonant random sets provide a good empirical
basis for applications of possibility theory. And
yet, consistent but non-consonant random sets are
a much more common case, for example in problems
requiring the combination of interval measurements
[3, 8]. Possibilistic approximations of these are not
only well justified, they also bring great compu-
tational advantages, since they are representable
in linear, rather than exponential, computational
space and time. But of course such advantages are
bought at the price of approximation: the “less con-
sonant” the underlying consistent random set, the
more the resulting approximated possibility mea-
sure distorts the empirical plausibility measure ac-
tually generated by the measured evidence.

In this paper we develop some of the mathematical
ideas necessary to develop a measure of the distor-
tion introduced by a consonant approximation of a
consistent random set.

2. Random Sets and Fuzzy Measures

Given a finite universe Q := {w;},1 < i < n and
evidence function (basic probability assignment)
m:2% s [0,1], let S := {(Aj,m;) : m; > 0} be
a finite random set generated by m, where (-) is a
vector, A; C ,m; = m(A;),and1 < j < N :=
|8] < 2™ — 1. Let 7 := (m;) be an N-vector. De-
note the focal set as F(S) := {A; : m; > 0}, where
each A; is a focal element, and the core as

C(S) = C(F(S)) = ﬂ Aj.

A E€F(S)
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S has belief and plausibility measures Bel, P1: 2 +—
{0,1], where VA C Q

Bel(4) = Y m;, PlA)= Y m; (1)

A;CA AjLA

and A L B:= AN B = {. Given two random sets
S, S’ on 2, then random set inclusion is defined as
1] 8 € & == VA C Q,PI(A) < PI'(A).

Pl and Bel have the following linear algebraic for-
mulations:

- —

Bel = GSmT, Pi=G"m7,

where:

e Bel := (Bel(A)) and Pl := (P}(A4)) are 2" — 1-
vectors of the belief and plausibility measure
values VA C ;

e GE and G" are 2™ — 1 x 2" — 1 matrices where
for 1 <jk<2® 1

ae [ 1 AcA
3k~ 1 0, otherwise

e L AL A
ik 0, otherwise -

Note that GS can be derived as the tensor

product ®
c_ (1 1\*"
<=5 1)

and G™ = 1 - G'S, where G'S is GS reflected
through the columns.

Bel and Pl are fuzzy measures v:2% — [0,1}, and
are thereby monotonic with A C B — v(A) <
v(B), and normal with »(Q2) = 1. A fuzzy measure
is decomposable in a conorm U:[0,1]2 ~ [0,1] (a
commutative, monotonic, associative operator with
identity 0) if

V(AU B)Uv(AN B) = v(A) Uv(B).

For any fuzzy measure v, define the trace p,:Q
[0,1] as the singleton measure value p,(w;) =
v({w;}). For a random set S, denote its trace as
05 = pp1, so that

Plw)= Y m. @

Ajdw;

Denote the n-vector 5= (pf) := (p°(w;)). Decom-
posability is equivalent to distributionality:
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Theorem 1 [4] A fuzzy measure v is decom-
posable in U if and only if VA C Q,v(4) =
Uiea po(ws)

where we use operator notation for LI in virtue of its
associativity. Note that normalization of v results
in normalization of the trace | |, cq p(wi) = 1.

Any fuzzy measure determines its distribution: v —
pv. Decomposable fuzzy measures are moreover
uniquely determined by their distributions, so that
v < p,. This is a great advantage computation-
ally, since |v| grows with 2", but |p,| grows only
with n. Thus a distributional fuzzy measure can
be characterized by vastly less information than its
non-distributional cousins.

For a random set S, define the numerical aggre-
gator as the n x N matrix H := [h;;], where
hij == xa;(w;) and x4, is the characteristic func-
tion of Aj;, so that

1, w;,€A;
xa, () :={ 0 wigh;

The j’th column of H is the vector representation
of the characteristic function of Aj;, so that H is a
boolean matrix with no column repeated. Letting
H(:) be the ¢’th row of H, an N-vector, then

pi = H@@) -7,

A; € F(S), wie.

pT =HmT 3)

so that the left and right sides of (3) are the vector
and matrix representations of (2) and (1) respec-
tively.

We now introduce some example structures to be
used below. Let Q@ = {z,y, 2} so that n = 3. The
structure of 2% is shown in a three dimensional
boolean hypercube in Fig. 1, with the subsets of
Q related by inclusion relations. The example ran-
dom set S = {({z,2},.3), ({y,2}, 2), ({z}, 5)} is
shown on the left of Fig. 2, with the Bel and PI
measures on the center and right, where zero values
are not shown. For example, we have Bel({z}) =

0,PI({z,2}) = .5 = p(z) = .5.
3. Probability and Possibility

When VA; € F(S),]A;] = 1 then S is called spe-
cific, and Pr := Bel = Pl is a probability mea-
sure. Pr is decomposable for U = +,, where
T+py = (x +y) A1l and A is the minimum op-
erator. Normalization of Pr implies that +;, = +
here, so that

Pr(AU B) + Pr(An B) = Pr(A) + Pr(B)
Pr(AU B) = Pr(A) + Pr(B) - Pr(ANn B)
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Figure 2. (Left) An example random set. (Center) Bel. (Right) Pl and p.

{x.y.2}

xy} {y.z}
{x) {z}

Figure 1. The structure of 2%.

and p := p becomes a probability distribution with
Pr(A) =3, cap(w:)

When, for an arbitrary permutation of the j, and
letting A9 = 0, VAj,A;_1 C Aj, then § is called
consonant and II := Pl is a possibility measure.
I1 is decomposable for the maximum operator V, so
that II(AUB)VII(ANB) = I1(A) VPr(B), and from
the monotonicity of v and the fact that AN B C
AUB,II(AU B) =II(A) VII(B). 7 := pis now a
possibility distribution with TI(4) = V., m(ws).
Further, we have

m(A;) = T — Wiy, (4)
where A, is that A; such that 4; = {wy,ws,...,wi},

and 7,41 := 0 by convention.

4. Consistent Random Sets and Their
Consonant Approximations

Other fuzzy measures available on random sets
are decomposable, but it is strongly suggested [4]
that possibility and probability are the only mea-
sures for which not only are the measure values
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P1(A) determined by the singletion measure values
pi = P1({w;}), but so also is the identity of the focal
elements A; from the universe elements w;.

Therefore, the availability of probabilistic or pos-
sibilistic representations of random sets is a very
valuable thing to do. However, the constraints of
specificity or consonance are severe, rarely occur-
ring in a pure form in generalized measurement sit-
uations. Thus we wish to identify where reasonable
approximations which produce probability and pos-
sibility measures might be available, and at what
cost in terms of accuracy and computation.

When C(S) # 0, then S is called consistent. Of
course, all consonant random sets are consistent,
with C(S) = that A; such that |A;| is minimal.
Consistent random sets have the following useful
property:

Theorem 2 [2] A random set S is consistent if and
only if V,eqp%(wi) = 1.

So given a consistent random set S, its plausibility
measure Pl is not a possibility measure, but its trace
p5 is a possibility distribution, which we identify as
n* := pS. Since, in turn, every possibility distribu-
tion determines a unique possibility measure, it is
possible to construct a new possibility measure IT*
based on pS from VA C Q,11*(4) := Vo0 7" (wi),
and from (4) a new evidence function m* and conso-
nant random set S*. Dubois and Prade have shown:

Theorem 3 {1] If S is a consistent random set,
then 8 C S.

While we are considering general finite random sets,
we have a special interest in random intervals de-
fined as statistical collections of half-open intervals
of IR [5]. These structures are common in uncertain
measurement problems. Note that while random
intervals are defined on a continuous space, they are
finite collections of intervals, and thus treatable as
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finite random sets. An example is shown in Fig. 3,
including the resulting possibilistic histogram.

ﬂ(x)A
1T+ —
——0
5
0 —
L 1 J . 4 >
1 2 3 4 X
——— 4
— 4 mA)
————— 2

Figure 8. (Bottom) A consistent random in-
terval. (Top) Its possibilistic histogram.

We now wish to characterize finite consistent ran-
dom sets in general. For simplicity, consider a gen-
eral consistent random set & which is complete in
the sense that there is a unique singleton focus, and
that there is positive evidentiary value for all sub-
sets containing the focus:

IMw* € Q,C(8) = {w*},

F(8) = {A C Q" € 4).
Then F(S) is the n — 1-dimensional simplex dom-
inated by w*. Thus N = 2"~} and H® := H is
the n x 2"~! matrix shown in Fig. 4, choosing the
permutation of the w; so that

2 (5)
Thus from (3) we have
T = H°mT, (6)

where now 7 is a 2"~ ! vector.

Given 7* characterized in this way, we now wish to
construct S*. From (3), (4), and (6) we have

e
m; = mW -

*

i+l
= HC@mT - HG + 1)mT

where H®(n + 1) is the zero vector (0,0,...,0). We
can thus construct a new n x 2"~! matrix H’C such
that

Ml = HL g1 Mg, ™
where 7* is now an n, not a 2"~1, vector, and the
subscripts indicate matrix dimensions. We do this
by simply letting

H°(:) := H°(3) — H°(4 + 1).

The results are shown in Fig. 5.
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5. Towards Measures of Distortion

We now wish to consider the distortion introduced
to a consistent random set S by its consonant ap-
proximation S*, and therefore the difference be-
tween P1(A) and I1*(A).

5.1. Towards a Measure

First, from Thm. (3) we know that VA C
Q,11*(A) < PI{(A). Therefore an appropriate mea-
sure for distortion could be something like

D(S) = ) PI(A) - TI"(4)

ACQ

Since PI(A) — II*(A) € |[0,1], therefore 0 <
D(8) < 2™71, and so it might be wise to consider
log, 2(D(S)) £ n+1. We
have yet to consider the circumstances under which
D(S) = 1 so that log,(D(S)) = 0 is a critical point.

But whichever measure might eventually be used,
we need to characterize P1(A) — IT*(A) better. We
do so in our linear algebraic formulation as follows.
First, since S is consistent and S* consonant, we
need to define structures corresponding to the ma-
trix G restricted to those columns present. Thus
define G as the matrix constructed by taking
those colummns of G" corresponding to the 2"~!
focal elements of S, and correspondingly G™* from
those corresponding to the n focal elements of S*.
Then, using the subscripts on some elements to in-
dicate their matrix dimensions, we have from (7)

=T
— ns T
Pl2n_1 - GQ"—»]X‘Z"“ mgn— 1

*T — Nx —«T
M, = 2n—1xn Mp
N C =
= Ggr:_lx,lHI"xgn—l mg‘u-l

(P"l _ ﬁ‘)g‘"—l - (GOS _ Gn‘H'C)TﬁT.

5.2 An Example

The general case for n = 3 combined with a nu-
merical example is shown in Fig. 6. The top of the
figure shows m and Pl for a consistent random set
on Q = {z,y,2}, where the w; have been ordered
according to (5). Then we have

-7:(8) = {{z},{m,y},{z,z},{z,y,z}}
F($Y) = {{z} {9} {z,v.2}}
mo= (1,3,.2.4)
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m; mg m3 Mg Mms Mg Mz Mg ... Mon-1 —2 Mou-1—1 Mgu

w1 1 1 1 1 1 1 1 1 1 1 1

w2 0 1 0 1 0 1 0 1 1 Q 1

e w3l O 0 1 1 0 0 1 1 0 1 1
H=_,10 o0 o o 1 1 1 1 1 1 1
Wn 0 0 0 0 0 0 0 0 1 1 1

Figure 4. HE for a consistent randomset.
m; My m3 My Mms Mg M7 Mg ... Mon-1 — 2 Mgn-1 — 1 Mon-1

w1 1 0 1 0 1 0 1 o ... 0 1 0

way 0 1 -1 0 0 1 -1 0 ... 1 -1 0

c w3 0 1] 1 1 -1 -1 0 0 ... -1 0 0
H"= 1 0o o o 1 1 1 1 0 0 0
Wy 0 0 0 0 0 0 0 0o ... 1 1 1

Figure 6. (Top) A consistent random set, m and Pl. (Bottom left) The approzimation m*. (Bottom
right) The approximation IT*.
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mp Mz M3 My

w [ 1 1 1 1
H® = w,{ 0 1 0 1
w3 0 0 1 1
my Mz M3 My
wy 1 0 1 4]
H¢ = w| 0 1 -1 0
{z} {z.y} {z.2} {=z.9,2}
{z} 1 1 1
{y} 0 1 0
{z} 0 0 1
G™ = {z,y} 1 1 1
{z,z} 1 1 1
{y, 2} 0 1 1
{z,y.2} \ 1 1 1
{z} {z,y} {z,4,2}
{z} 1 1 1
{v} 0 1 1
{z} 0 0 1
G™ = {z,y} 1 1 1
{z,z} 1 1 1
{y, =} 0 1 1
{z.y,z} \ 1 1 1
}5‘1 _ r‘i* _ (GOS _ GH*HIC)ﬁLT

= (0,0,0,0,0, .2,0)

The final result was verified computationally, and
verifies the results determined numerically from the
alternate formulation

A= \/ = =\ HGAT,

w;€A wi €A

and shown in the figure.
6 Conclusion

The work presented here is, if only for space rea-
sons, incomplete. In particular, the properties of
D need to be explored more completely. Moreover,
the linear algebraic formulation used here needs to
be placed in a more general combinatorical context,
involving Mébius [9, 10} and/or Fourrier transfor-
mations.
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