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Abstract 
The available of probability or possibility measures 
for random set (Dempster-Shafer evidence themet- 
ical) structures are highly desirable. Probabilistic 
conditions involve disjointness or specificity, while 
possibilistic conditions involve consonance of the 
underlying focal elements. Consistency results in 
possibilistic distributions, but not measures, but 
then a unique approximation is available. Espe- 
cially in random interval measurement situations, 
this condition is common. In this paper we de- 
velop some of the mathematical ideas necessary to  
develop a measure of the distortion introduced by 
this consonant approximation of a consistent ran- 
dom set. 

1. Introduction 

Random set measurement (mathematically equiv- 
alent to the derivation of Dempster-Shafer bod- 
ies of evidence from empirical sources) is a well- 
justified method for the empirical determinination 
of; on the one hand, specialized point-trace forms 
like possibility distributions and other normalized 
fuzzy sets like fuzzy numbers and intervals; and, on 
the other hand, specialized evidence measures (be- 
lief and plausibility measures) like possibility mea- 
sures 15, 7). 

An issue in the use of this method is the underly- 
ing class structure of the focal set of observed sub- 
sets. This structure can be completely general, or 
have a special structure such as specific (singleton 
subsets), disjoint, rings (intersecting subsets), con- 
sistent (global intersecting subsets), or consonant 
(completely nested subsets) [4]. Depending on the 
structure present, the resulting point traces and ev- 
idence measures have different properties. When 
consonant, the plausibility measure is naturally a 
possibility measure. In the more general case of 

consistency, while the plausibility measure is not 
a natural possibility measure, the trace is a nat- 
ural possibility distribution, and a unique and well- 
justified possibilistic approximation of the plausi- 
bility measure is available. Finally, consistent ap- 
proximations of inconsistent random sets are also 
available [6]. 

Consonant random sets provide a good empirical 
basis for applications of possibility theory. And 
yet, consistent but non-consonant random sets are 
a much more common case, for example in problems 
requiring the combination of interval measurements 
[3, 81. Possibilistic approximations of these are not 
only well justified, they also bring great compu- 
tational advantages, since they are representable 
in linear, rather than exponential, computational 
space and time. But of course such advantages are 
bought at the price of approximation: the "less con- 
sonant" the underlying consistent random set, the 
more the resulting approximated possibility mea- 
sure distorts the empirical plausibility measure ac- 
tually generated by the measured evidence. 

In this paper we develop some of the mathematical 
ideas necessary to develop a measure of the distor- 
tion introduced by a consonant approximation of a 
consistent random set. 

2. Random Sets and fizzy Measures 
Given a finite universe R := {wl),l 5 i _< n and 
evidence function (basic probability assignment) 
m:2O H [O, 11, let S := { ( A l , m l )  : m, > 0 )  be 
a finite random set generated by m, where (.) is a 
vector, A, 5 R,mj := m(A,), and 1 5 3 5 N := 

IS1 5 2n - 1. Let 6 := (m,) be an N-vector. De- 
note the focal set as F ( S )  := { A ,  : mj > 0}, where 
each A3 is a focal element, and the core as 

qs) = c(T(s)) := n A,. 
A,EF(S)  
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S has belief and plausibility measures Bel, P1: 2' P- 

[O. 11, where VA 2 R 

Bel(A) = m3, Pl(A) = mj (1) 
A , E A  A , C A  

and A I B := A n B = 0. Given two random sets 
S, S' on R,  then random set inclusion is defined as 
[I]  S C S' := VA 

P1 and Bel have the following linear algebraic for- 
mulations: 

R,Pl(A) 5 Pl'(A). 

B;l= GCST,  Fl= G"ST: 

where: 

0 B;l := (Bel(A)) and F l  := (Pl(A)) are 2" - 1- 
vectors of the belief and plausibility measure 
values VA C 0; 

0 GE and G" are 2" - 1 x 2" - 1 matrices where 
f o r 1 < j , I c < 2 n - 1  

1,  Aj  $ A k  
0, otherwise ' 

Note that GC can be derived as the tensor 
Droduct 

and G" = 1 - GIG, where GIG is GC reflected 
through the columns. 

Bel and P1 are fuzzy measures v: 2" * [0,1], and 
are thereby monotonic with A B + v ( A )  5 
v (B) ,  and normal with v(n) = 1. A fuzzy measure 
is decomposable in a conorm U: [0,1]* ++ [0,1] (a 
commutative, monotonic, associative operator with 
identity 0) if 

v(A U B )  U v(A n B) = v ( A )  U v(B).  

For any fuzzy measure v, define the trace pu:R H 

(0, I] as the singleton measure value pv(wi )  := 
~ ( ( w i } ) .  For a random set S, denote its trace as 
ps := pp1, so that 

Denote the n-vector p" { p f )  := (ps(wi)) .  Decom- 
posability is equivalent to distributionality: 

Theorem 1 [4] A fuzzy measure U is decom- 
posable in U if and only if VA C_ R,v(A) = 

where we use operator notation for U in virtue of its 
associativity. Note that normalization of v results 
in normalization of the trace Uw,ER p ( w i )  = 1 .  

Any fuzzy measure determines its distribution: U + 

pv. Decomposable fuzzy measures are moreover 
uniquely determined by their distributions, so that 
v et py .  This is a great advantage computation- 
ally, since IvI grows with Z", but Jpvl grows only 
with n. Thus a distributional fuzzy measure can 
be characterized by vastly less information than its 
non-distributional cousins. 

For a random set S, define the numerical aggre- 
gator as the TI x N matrix H := [hij], where 
h%j := X A ~ ( W ~ )  and X A ~  is the characteristic func- 
tion of Aj ,  so that 

U w , E A  P v ( 4  

The j ' th  column of H is the vector representation 
of the characteristic function of A j ,  so that H is a 
boolean matrix with no column repeated. Letting 
H(i) be the i'th row of H, an N-vector, then 

pi = H(i).  6T, pT = H S T  (3) 

so that  the left and right sides of (3) are the vector 
and matrix representations of (2) and (1) respec- 
tively. 

We now introduce some example structures to be 
used below. Let R = (2, y, z }  so that  n = 3. The 
structure of 2R is shown in a three dimensional 
boolean hypercube in Fig. 1, with the subsets of 
R related by inclusion relations. The example ran- 

shown on the left of Fig. 2, with the Bel and P1 
measures on the center and right, where zero values 
are not shown. For example, we have Bel({z}) = 

dom set S = ( ( (5 ,  z } ,  .3), ({Y, z ) , . 2 ) ,  ({z}, .5)} is 

O,Pl({z,z}) = .5 = p(z) = .5. 

3. Probability and Possibility 

When VAj E F(S) ,  lAjl = 1 then S is called spe- 
cific, and P r  := Bel = P1 is a probability mea- 
sure. Pr is decomposable for U = +,, where 
z + b  y := (z + y) A 1 and A is the minimum o p  
erator. Normalization of P r  implies that  + b  = + 
here, so that 

Pr(A U B )  + Pr(A n B )  = Pr(A) + Pr(B) 

Pr(A U €3) = Pr(A) + Pr(B) - Pr(A n B )  
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Figure 2. (Left) An example random set. (Center) Bel. (Right) P1 and p.  

Figure 1 .  The structure oj2".  

and p := p becomes a probability distribution with 

When, for an arbitrary permutation of the j, and 
letting A0 = 0, VA3,Aj-l  5 Ai ,  then S is called 
consonant and II := PI is a possibility measure. 
ll is decomposable for the maximum operator V, so 
that n ( A u B ) v r I ( A n B )  = n(A)VPr(B), and from 
the monotonicity of v and the fact that A n B C_ 
A U B , n ( A u  B )  = n ( A )  V n(B). K := p is now a 
possibility distribution with n ( A )  = VwiEA npi ) .  
Further, we have 

W A )  = C , , E A P ( W * ) .  

m(Ai)  = K+ - ?~i+l ,  (4) 

where Ai is that  Aj such that A j  = { w l ,  ~ 2 , .  . . ,w,), 
and ~,,+1 := 0 by convention. 

4. Consistent Random Sets and Their 
Consonant Approximations 

Other fuzzy measures available on random sets 
are decomposable, but it is strongly suggested 14) 
that possibility and probability are the only mea- 
sures for which not only are the measure values 

P1( A )  determined by the singletion measure values 
pt = Pl({w,}), but so also is the identity of the jocal 
elements A3 from the universe elements U,. 

Therefore, the availability of probabilistic or pos- 
sibilistic representations of random sets is a very 
valuable thing to do. However, the constraints of 
specificity or consonance are severe, rarely occur- 
ring in a pure form in generalized measurement sit- 
uations. Thus we wish to identify where reasonable 
approximations which produce probability and pos- 
sibility measures might be available, and at what 
cost in terms of accuracy and computation. 

When C(S) # 0, then S is called consistent. Of 
course, all consonant random sets are consistent, 
with C ( S )  = tha t  Aj such tha t  ( A j (  is minimal. 
Consistent random sets have the following useful 
property: 

Theorem 2 (21 A random set S is consistent if and 
only if Vw,EnpS(w,) = 1. 

So given a consistent random set S, its plausibility 
measure P1 is not a possibility measure, but its trace 
ps is a possibility distribution, which we identify as 
K* := ps. Since, in turn, every possibility distribu- 
tion determines a unique possibility measure, it is 
possible to  construct a new possibility measure II* 
based on ps from VA 5 R, II*(A) := VwiEA K*(w~), 
and from (4) a new evidence function m* and conso- 
nant random set S". Dubois and Prade have shown: 

Theorem 3 [l] If S is a consistent random set, 
then S' E S. 

While we are considering general finite random sets, 
we have a special interest in random intervals de- 
fined as statistical collections of half-open intervals 
of IR (51. These structures are common in uncertain 
measurement problems. Note that while random 
intervals are defined on a continuous space, they are 
finite collections of intervals, and thus treatable as 
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finite random sets. An example is shown in Fig. 3, 
including the resulting possibilistic histogram. 

I I I * 
1 2  3 4 x  
I 3 .4 - .2 

Figure 3. (Bottom) A consistent random in- 
terval. (Top) Its possibilistic histogram. 

We now wish to  characterize finite consistent ran- 
dom sets in general. For simplicity, consider a gen- 
eral consistent random set S which is complete in 
the sense that there is a unique singleton focus, and 
that there is positive evidentiary value for all sub- 
sets containing the focus: 

3!w* E O , C ( S )  = { U * } ,  

F(S)  = { A  ~ Z ( W *  E A } .  
Then F(S)  is the n - 1-dimensional simplex dom- 
inated by w*. Thus N = 2"-', and HC := H is 
the n x 2"-' matrix shown in Fig. 4, choosing the 
permutation of the wi so that  

Tf 2 ?rf+l. ( 5 )  

(6) 

Thus from (3) we have 
ij*T = H C ~ T ,  

where now 6 is a 2"-' vector. 

Given R* characterized in this way, we now wish to 
construct S'. F'rom (3), (4), and (6) we have 

m: = 7r; - 7r;+l 

= HC(i)6= - HC(i + l)GT 
where HC(n + 1) is the zero vector (0, 0, . . . ,O). We 
can thus construct a new n x 2"-' matrix HIc such 
that 

where 6* is now an  n,  not a 2"-l, vector, and the 
subscripts indicate matrix dimensions. We do this 
by simply letting 

6 z T  = H:x2,,-l fiTaL1, (7) 

HIC(i) := Hc(i) - HC(i  + 1). 

The results are shown in Fig. 5. 

5. Towards Measures of Distortion 

We now wish to consider the distortion introduced 
to a consistent random set S by its consonant ap- 
proximation S*, and therefore the difference be- 
tween Pl(A) and II'(A). 

5.1. Towards a Measure 

First, from Thm. (3) we know that VA 
s1, II* (A) 5 Pl(A). Therefore an appropriate mea- 
sure for distortion could be something like 

D(S)  := Pl(A) - lT*(A) 
AGO 

Since Pl(A) - II'(A) E [0,1], therefore 0 <_ 
D ( S )  5 2"-l, and so it might be wise to consider 
log2 2 ( D ( S ) )  I n +  1. We 
have yet to consider the circumstances under which 
D ( S )  = 1 so that logz(D(S)) = 0 is a critical point. 

But whichever measure might eventually be used, 
we need to characterize Pl(A) - II*(A) better. We 
do so in our linear algebraic formulation as follows. 
First, since S is consistent and S' consonant, we 
need to  define structures corresponding to  the ma- 
trix G" restricted to those columns present. Thus 
define Gns as the matrix constructed by taking 
those colummns of G" corresponding to  the 2n-1 
focal elements of S, and correspondingly G"* from 
those corresponding to the n focal elements of S*. 
Then, using the subscripts on some elements to  in- 
dicate their matrix dimensions, we have from (7) 

5.2 An Example 

The general case for n = 3 combined with a nu- 
merical example is shown in Fig. 6. The top of the 
figure shows m and P1 for a consistent random set 
on R = {z, y, z } ,  where the w, have been ordered 
according to (5). Then we have 
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ml mz m3 m4  m5 m6 m7 m8 . . .  mz..-l - 2 mzz.-i - 1 m2,,-1 
1 1  1 1  1 1  1 l . . .  1 1 1 
0 1 0  1 0  1 0  l . . .  1 0 1 
0 0 1 1  0 0 1 l . . .  0 1 1 
0 0 0 0 1 1  1 l . . .  1 1 1 

. . . . .  , . . . .  . . . .  . . . .  . . . . . . . . 
0 0 0 0 0 0 0 o . . .  i 1 1 

Figure 4 .  HC for a consistent randomset. 

ml mz 
1 0  
0 1  
0 0  
0 0  
. .  . .  . .  
0 0  

m3 m4 

1 0  
-1 0 
1 1  
0 0  
. .  . .  . .  
0 0  

m5 m6 m7 mg . . .  m2,,--l - 2  mp-1 - 1 m2-1 

1 0 1 0 ... 0 1 0 
0 1 -1 0 ... 1 -1 0 
-1 -1 0 0 . . .  -1 0 0 
1 1 1 1 ... 0 0 0 

0 0 0 0 ... 1 1 1 

. . .  . . .  . .  . .  . .  . .  

Figure 5. HIc for a consistent randomset. 

m.,=. 4 

m,=. 1 

m4+m3=.6 

+ m,)=.7 

n' 

Figure 6. (Top) A consistent random set, m and P1. (Bottom left) The approximation m'. (Bottom 
rzght) The approximation IY. 
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The final result was verified computationally, and 
verifies the results determined numerically from the 
alternate formulation 

I I ’ ( A )  = v n: = v H‘(i)51~, 

and shown in the figure. 

6 Conclusion 

The work presented here is, if only for space rea- 
sons, incomplete. In particular, the properties of 
D need to be explored more completely. Moreover, 
the linear algebraic formulation used here needs to 
be placed in a more general combinatorical context, 
involving Mobius [9, 101 and/or Fourrier transfor- 
mations. 
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