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Abstract

Random intervals are increasingly useful in engineering
modeling, but are difficult to measure and elicit from
experts. We present a method for constructing random
intervals by eliciting simple “multi-interval” and trace
information from investigators. By eliciting in addi-
tion to “how high” and “how low”, simply also “how
high and low might the min and max themselves be”,
we generate an equivalence class of possibility distribu-
tions, and in turn a canonical member of an equivalence
class of random intervals.

1. Introduction

A random interval is a interval-valued random vari-
able, or a Dempster-Shafer evidence structure on the
Borel field. Random interval approaches are an emerg-
ing technology for engineering reliability analysis [2, 6,
7, 8]. Their great advantage is their ability to repre-
sent not only randomness via probability theory, but
also imprecision and nonspecificity via intervals, in a
overall mathematical structure which is close to op-
timally simple. As such, they are superb ways for
engineering modelers to approach the world of Gen-
eralized Information Theory (GIT), whose goal is to
complement probability theory with a range of other
techniques such as possibility measures, fuzzy sets and
logic, belief and plausibility measure, etc.

Random intervals can be difficult, be combinatorially
complex, and presenting challenges to modelers and
investigators in their elicitation and interpretation. In
particular, interpreting the fundamental structures of
a random interval (focal elements, basic probability
weights, cumulative plausibility and belief as bounds
on a CDF, etc.) can be a daunting task for the content

expert. It is desirable to interact with investigators
over more familiar mathematical objects.

In this paper we present a method for constructing
complex random interval representations by eliciting
simple “multi-interval” information from investigators.
Central to our method is the fact that random inter-
vals generate simpler structures, including possibility
distributions and fuzzy sets. Most simple is the single
interval, easily interpreted as “how high and low can a
certain quantity be?”. By eliciting in addition to “how
high” and “how low”, simply also “how high and low
might the min and max themselves be”, we derive a
multi-interval, which generates an equivalence class of
possibility distributions (effectively, a rough set on IR),
and in turn a canonical member of an equivalence class
of random intervals.

2 Mathematical Preliminaries

2.1 Random Set Notation

Throughout the paper assume a universe of discourse
Ω = {ω}, with cardinality to be specified. Given a
finite class C = {A} ⊆ 2Ω, define the support as
U(C) :=

⋃
A∈C A.

A function m: 2Ω �→ [0, 1] is an evidence function
(basic probability assignment) when m(∅) = 0 and∑

A⊆Ω m(A) = 1. Given an evidence function m, then

S := {〈Aj , mj〉 : mj > 0, 1 ≤ j ≤ N},
is a finite random set where Aj ⊆ Ω, mj := m(Aj),
and N := |S| ≤ 2n − 1. Denote the focal set of S as
the class F(S) := {Aj : mj > 0} ⊆ 2Ω.

The plausibility and belief measures on ∀A ⊆ Ω are

Pl(A) :=
∑

Aj∩A �=∅
mj , Bel(A) :=

∑

Aj⊆A

mj ,
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Pl and Bel are generally normal, non-additive, dual
fuzzy measures [10], with ∀A ⊆ Ω, Bel(A) = 1−Pl(A ).

Let C = {A} ⊆ 2Ω be a partition of Ω, and assume a
special subset A0 ⊆ Ω (not necessarily a member of the
partition). Then R(A0) := {A0, A0} is a rough set on
Ω, where

A0 := {A ∈ C : A ⊆ A0},
A0 := {A ∈ C : A ∩ A0 �= ∅}.

2.2 Random Intervals, PBoxes, and Traces

Denote the class D := {[a, b) ⊆ IR : a, b ∈ IR, a < b}
of half-open interval subsets of IR. In general, let I :=
[a, b) ∈ D, and let l(I) = a, u(I) = b. Then a random
interval, denoted A, is a random set on Ω = IR for
which F(A) = {Ij , 1 ≤ j ≤ N} ⊆ D. Thus a random
interval is a random left-closed interval subset of IR.
An example is shown on the bottom of Fig. 1, with
N = 4, F(A) = {[3.5, 4), [1, 2), [3, 4), [2, 3.5)}, support
U(F(A)) = [1, 4), and m is as shown.

x
A1

A2

A3

A4

1 2 3 4

m(Aj )

.2

.4

.1

1

.5

.3

r(x)

PL = B BEL = B r = B - B

Figure 1. Example of a random interval.

Please note that while technically random intervals are
best defined on half-open intervals, below we occasion-
ally lapse into closed interval notation. The difference
is not significant for the development in this paper.

A PBox [1] is a structure B :=
〈
B, B

〉
, where

B, B: IR �→ [0, 1],

lim
x−→−∞B(x) −→ 0, lim

x−→∞B(x) −→ 1, B ∈ B,

and B, B are monotonic with B ≤ B. B and B are
interpreted as bounds on cumulative distribution func-
tions (CDFs). In other words, given B =

〈
B, B

〉
, we

can identify the set of all functions {F : B ≤ F ≤ B}
such that F is the CDF of some probability measures
Pr on IR. Thus each PBox defines such a class of prob-
ability measures.

Given a random interval A, then

B(A) := 〈BEL, PL〉 (1)

is a PBox, where BEL and PL are the “cumulative be-
lief and plausibility distributions” PL, BEL: IR �→ [0, 1]
originally defined by Yager [11]

BEL(x) := Bel((−∞, x)), PL(x) := Pl((−∞, x)).

Given a random interval A, define the function
rA: IR �→ [0, 1] as the plausibilistic trace, or just trace,
of A, where rA(x) := Pl({x}). Given a random interval
A, then we also have that rA = PL−BEL, so that for
a PBox derived from (1), we have

rA = B − B. (2)

All the traces used in this paper have the form of a
kind of possibility distribution called a fuzzy interval,
specifically, a normal, convex, fuzzy subset of IR. See
details elsewhere [3, 4, 5].

The PBox generated from the example random interval
is shown in the top of Fig. 1. Since B and B partially
overlap, the diagram is somewhat ambiguous on its far
left and right portions, but note that

B((−∞, 1)) = 0, B((−∞, 2, )) = 0,

B([3,∞)) = 1, B([3.5,∞)) = 1.

The trace rA = B − B is also shown.

So each random interval determines a PBox by (1),
which in turn determines a trace by (2). But con-
versely, each trace determines an equivalence class of
PBoxes, and each PBox an equivalence class of ran-
dom intervals. In turn, each such equivalence class has
a canonical member constructed by a standard mech-
anism. See elsewhere for details [5].

3 Stepwise Traces from Multi-Interval
Elicitation

Our simulations are based on random intervals, and so
we need methods for elicitation of these quantities from
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experts. But even explaining the mathematics from
Sec. 2.2 is more work than most investigators want to
invest in. Moreover, how to make such quantities as
degrees of belief in overlapping intervals, or the BEL
and PL curves, meaningful, is not at all clear. Indeed,
investigators are much more willing to work with quan-
tities from their application domain, or very simple
mathematical structures such as the one-dimensional
traces, which have similar appearance to familiar ob-
jects such as probability distributions.

Instead, we wish to elicit a simple structure such as
an interval or a simple trace, and then derive the
most well-justified random interval consistent with that
structure. Elicitation of single intervals is relatively
simple. Effectively, we ask of them about a particular
quantity, “how high and low can it be?”. Fig. 2 shows
the situation for the answer “a and b”. Denote this as

MIN0 = a, MAX0 = b,

BOUNDS0 = [MIN0, MAX0] = [a, b).

We can then derive a random interval, which in this
case is degenerate:

A(BOUNDS0) = {〈[a, b), 1〉}.

This is shown in Fig. 2, along with the PBox and trace.

a b

1

.50

x

r(x)

A1

.25

.75

m(Aj )  1

Figure 2. Random interval and PBox representation
of “How high and low can it be?”

Our method for deriving a random interval begins with
the elicitation of a structure we call a multi-interval.
In addition to “how high” and “how low”, we simply
also elicit “how high and low might the min and max
themselves be”? Let’s say that the answer is “a and c,
and d and b respectively”, where we assume c < d for

simplicity. We can then denote this as:

MIN1 = [a, c], MAX1 = [b, d],

BOUNDS1 = [MIN1, MAX1] = [[a, c], [b, d]],

where BOUNDS1 is called a multi-interval. This is
shown at the top of Fig. 3.

We then wish to derive a random interval representa-
tion of BOUNDS1. Our method proceeds as follows.

a b xc d
A
B
C
D
E
F

Figure 3. “How high and low can the high and low
themselves go?”

• The bottom of Fig. 3 shows all possible inter-
vals {A, B, . . . , F} derived from the four points
{a, b, c, d} of BOUNDS1. We wish to construct a
random interval from these intervals, in particular
a collection of intervals which cover [a, b].

• But, we’re interested in considering all intervals
derived from combining points from both MIN1

and MAX1 of BOUNDS1. Thus intervals A and
F are rejected, since they derive only from either
MIN1 or MAX1 alone:

A = [a, c] = [l(MIN1), u(MIN1)],
B = [d, b] = [l(MAX1), u(MAX1)].

This leaves the collection of viable intervals V =
{B, C, D, E}.

• We are then interested in all collections of viable
intervals which cover [a, b]:

C := {V ⊆ V : U(V) = [a, b]}.
We have:

C = {{C}, {B, C}, {B, E}, {C, D}, {C, E},
{B, C, D}, {B, C, E}, {B, D, E}, {C, D, E},
{B, C, D, E}}

= {Vi : 1 ≤ i ≤ 10}
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• For each such collection Vi ∈ C, we construct the
random interval A(Vi) by assigning equal proba-
bilities 1/|Vi| to each I ∈ Vi. For example, for
V3 = {B, E}, we have A(V3) = {〈B, .5〉 , 〈E, .5〉},
which is shown in Fig. 4, along with its PBox
B(A(V3)) and trace rA(V3). In fact, we have that

B(A(V3)) = B(A(V4)) = B(A(V10)),

rA(V3)) = rA(V4)) = rA(V10),

and so also V4 and V10 are also shown in Fig. 4.

Fig. 4 shows all the distinct traces for the various
A(Vi). We observe the following:

{B,E} = {C,D} = {B,C,D,E}

a b

1

.50

x

r(x)

c d

E m(E) = .5

D m(D) = .5
C m(C) = .5

m(B) = .5B

E m(E) = .25
D m(D) = .25
C m(C) = .25

m(B) = .25B

V3

V4

V10

Figure 4. V2,V3,V10, and their common random in-
terval and trace.

• {C} by itself is clearly degenerate, equivalent to
elicitation again of a single interval.

• Traces for {B, C}, and {C, E} are marked by the
fact that for either their left or right sides, the
upper and lower values are not distinguished. For
{C}, this is true for both.

• Of the remaining collections which have a real
structure for both the left and right sides, three
are symmetric with landmark values of 2/3, 1/3,

and 1/2 for {B, C, E}, {B, D, E}, and the common
structures from Fig. 4 respectively.

• Two others are asymmetric, with the values for
the left side lower than the right for {C, D, E},
and vice versa for {B, C, D}.

4 Trace Elicitation of Random Inter-
vals

So we now have a collection of random intervals
A(Vi), 1 ≤ i ≤ 10, each of which is potentially con-
sistent with an elicited multi-interval BOUNDS1, and
each of which yields a stepwise-constant PBox and
trace. Each of these is blessed by the facts that they
are directly supported by the observed data, the elici-
tation required is simple and natural, easy to commu-
nicate and interpret, and the resulting focal classes are
very small, with |F| as low as 2, which greatly eases
sampling effort in the simulation.

Given that a multi-interval by itself doesn’t determine
a unique random interval, and that more information
can be taken from the investigator and integrated rel-
atively easily, we can move on to consider eliciting a
continuous, or at least piecewise continuous, trace. We
have discussed [3] methods for constructing piecewise-
continuous traces (in this case, possibility distribu-
tions) from stepwise-constant traces of finite random
intervals. Denoting R(A) for the set of all such traces
consistent with a random interval A, then Fig. 6 shows
a number of members of R(A(V3)). Note that R(A) is
equivalent to a rough set on IR, where

C = {(−∞, a), [a, c), [c, d), [d, b), [b,∞)},
and A0 is any interval [x, y) where x ∈ [a, c), y ∈ [d, b),
yielding

R(A0) =
〈
A0, A0

〉
= 〈 {[c, d)}, {[a, c), [c, d), [d, b)} 〉 .

Proceeding is motivated by the following observations:

• If either a = c, b = d, or both, then the corre-
sponding degenerate or partially degenerate case
should be returned.

• For either endpoint, if no further information other
than the difference between a and c (b and d) is
available, then only a linear interpolation is jus-
tified, which is the “middle” trace for either end
shown in Fig. 6.

• Consider then the [a, c) endpoint, with analogous
reasoning for [b, d). What is of interest is whether
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x

a b

1

.50

x

r(x)

c d{C}
V1

a b

1

.33

x

r(x)

c d{B,C,E}
V7

.67

a b

1

.33

x

r(x)

c d{B,D,E}
V8

.67

a b

1

x

r(x)

c d{B,E} = {C,D}  =
{B,C,D,E}

V3 = V4 = V10

.5

a b

1

.50

r(x)

c d{B,C}
V2

a b

1

.33

x

r(x)

c d{B,C,D}
V6

.67

a b

1

x

r(x)

c d{C,E}
V5

.5

{C,D,E}
V9

a b

1

.33

x

r(x)

c d

.67

Figure 5. Random intervals, PBoxes, and traces consistent with the multi-interval BOUNDS1.
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a b

1

.50

x

r(x)

c d

Figure 6. Possibility distributions consistent with
two observed intervals.

[b, d)
Convex Concave Unknown

Convex V7 V6 V7

[a, c) Concave V9 V8 V8

Unknown V7 V8 V3 = V4 = V10

Table 1. Random interval assignment when both
ends have structure.

the investigator has more information about how
the uncertainty is distributed over the interval. In
particular, is she more confident in the a than the
c value? If so, then we draw and favor the convex
trace shown, if not, then the concave trace.

The elicitation method then proceeds along the follow-
ing algorithm to produce a random interval A.

1. Elicit the upper and lower bound a, b.

2. Elicit the upper and lower bound of a: a, c.

3. If a = c, then

• Elicit the upper and lower bound of b: b, d.

• If b = d, then return A(V1)

• Otherwise return A(V2)

4. If b = d, then return A(V5).

5. Elicit the convexity of [a, c) and [b, d).

6. Return A(Vi) from Table 1.
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