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Abstract

We provide an analysis of the uncertainty quantification of the “Crushable Foam” experiment
and simulation from the perspective of random intervals. We represent the measured data as
fuzzy numbers, random intervals, and minmaxmean p-boxes. We compare with simulated data
from two sources.

We’ve been working with the “crushable foam” model setup for a while now. See [4] for full technical
details, including the data sets used here. We will assume from this point forward that the reader
is familiar with these sources, as well as the fundamentals of the mathematics of Generalized
Information Theory (GIT) from Joslyn’s perspective [6, 7, 8].

1 Data

In this analysis, we concern ourselves only with the PAC feature for configuration one with drop
height DI = 13 in and foam thickness h = 0.25 in. Table 1 shows measured sensors readings from
the drop table for all three sensors [4]. Table 2 shows the results at the three sensors simulated
by the finite element (FE) model under three different preload settings [4]. Finally, table 3 shows
three single-point values calculated by the single degree-of-freedom (SDOF) analytical model for
three different material models [4].
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Replicate Sensor 1 Sensor 2 Sensor 3
1 1.457 1.262 1.039
2 1.525 1.218 1.064
3 1.536 1.339 1.237
4 1.604 1.332 1.208
5 1.467 1.221 1.124
6 1.594 1.347 1.217
7 1.574 1.338 1.164
8 1.598 1.284 1.081
9 1.525 1.348 0.972

10 1.407 1.394 0.900

Table 1: Measured PAC results (units 10−3 g) for configuration 1 [4].

Preload Setting Sensor 1 Sensor 2 Sensor 3
Nominal, 187.5 psi 1.6009 1.7590 1.5707
Minimum, 62.5 psi 1.1625 1.2828 1.1376
Maximum, 437.5 psi 2.4101 2.6606 2.3607

Table 2: PAC features (units 10−3 g) for finite element simulation [4].

It’s evident from inspection that there isn’t a lot of similarity between, well, much of anything:
while the measured data appear to be within a region, there a lot of variability between replicates
and among sensors; the FE data show a wider variation, sometimes intersecting the measured data;
and finally the SDOF data are significantly different again.

The questions become: how do we analyze these data according to the principles of Generalized
Information Theory (GIT), in particular that portion of GIT rooted in random interval theory [7]?

2 Reminder on Random Intervals and P-Boxes

A finite random interval (all random intervals considered here will be finite) A := {〈Ij ,m(Ij)〉}, 1 ≤
j ≤ M is a finite Dempster-Shafer structure on the Borel field of IR, so that each focal element
Ij ⊆ IR is a half-open interval, m(Ij) is its evidence function (basic probability assignment), and∑M

j=1 m(Ij) = 1.

Material Model PAC
Cubic stiffness whose coefficients are best fitted to the measured PAC and TOA data 0.248
Cubic stiffness best fitted to material data 0.285
Bi-linear stiffness whose coefficients are best fitted to the measured PAC and TOA data 0.857

Table 3: Values of PAC (units 10−3 g) calculated by SDOF model for parameters DI = 13 in,
h = 0.25 in [4].
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Given a random interval A, denote its trace as ρA: IR → [0, 1] with ρA(x) := Pl({x}) =
∑

Ij�x m(Ij),
and its core and support respectively as

C(A) :=
M⋂
i=1

Ij , U(A) :=
N⋃

i=1

Ij .

When A is consistent with C(A) �= ∅, then ρA(x) is a possibility distribution π(x) called a possi-
bilistic histogram [5].

Definition 1 (P-Box) [2, 3, 8]

A p-box is a structure B :=
〈
B,B

〉
, where B,B: IR → [0, 1] with:

1. limx−→−∞ B(x) −→ 0, limx−→∞ B(x) −→ 1

2. limx−→−∞ B(x) −→ 0, limx−→∞ B(x) −→ 1

3. B(x), B(x) are non-decreasing in x, and

4. B ≤ B.

Given a p-box B, define its trace ρB: IR → [0, 1] as ρB := B − B.

B and B are interpreted as bounds on cumulative distribution functions (CDFs). In other words,
B =

〈
B,B

〉
can be identified with the set of all functions {F : B ≤ F ≤ B} such that F is the CDF

of some probability measures Pr on IR. In this way, each p-box defines such a class of probability
measures.

Each random interval A determines a unique p-box B(A) := 〈BEL,PL〉 [8], where

BEL(x) := Bel([−∞, x)), PL(x) := Pl([−∞, x)),

are the cumulative belief and plausibility defined by Yager [9]. Conversely, any given p-box B
determines only an equivalence class of corresponding random intervals [8]. Joslyn and Ferson have
shown [8] that ρA = ρB(A), that is, the random interval-trace of a random interval is the same as
the p-box-trace of its p-box.

P-boxes are frequently determined based on information available about a quantity which partially
constrain a distribution F . For example, Fig. 1 shows six p-boxes with increasing constraint. For
x.1, shown in black, we know that U(F ) = [.5, 1.5], where U is the support of F , and thus B is
effectively just that interval. Denote this as B([.5, 1.5]). Any CDF F which falls inside B([.5, 1.5])
is consistent with this information, which we denote as F ∈ B([.5, 1.5]).

For x.2, shown in cyan, we additionally know that the first moment of F = 1.0, which then cuts
off the “corners” from that box. For x.3, shown in teal, we instead know that the mode = 1.0,
which provides a stronger constraint. For x.4, shown in blue, in addition to min, max, and mean,
we also have a variance of .1. x.5, shown in red, is a single distribution F , the uniform on [.5, 1.5],
which as the single maximum entropy distribution member of B, denoted U([.5, 1.5]) ∈ B([.5, 1.5]),
satisfies the demmands of a Bayesian analysis. Finally, x.6, shown in green, is the single number
1, which can be interpreted in multiple ways, for example the Dirac distribution with infinite mass
at x = 1, or the degnerate interval [1, 1]. Note that also, in this sense, 1 ∈ B.
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Figure 1: P-boxes for x.1 = minmax( .5, 1.5 ), x.2 = minmaxmean( .5, 1.5, 1.0 ),
x.3 = minmaxmode( .5, 1.5, 1.0 ), x.4 = minmaxmeanvar( .5, 1.5, 1.0, .1 ), x.5 =
uniform( .5, 1.5 ), and x.6 = 1.

3 Fuzzy Number Representation

Our first observation is that each replicate ri :=
〈
ri
1, r

i
2, r

i
3

〉
, 1 ≤ i ≤ N , where for us N = 10, of the

measured data is specified by three points, which represent the PAC readings for the three sensors
for a single drop. Since each triple has a minium, maximum, and some kind of “intermediate” value
(not necessarily a mean or mode), it is natural to create a permutation ri

j1 ≤ ri
j2 ≤ ri

j3 by sorting,

and then let r′i :=
〈
ri
j1

, ri
j2

, ri
j3

〉
, which are shown in Table 41. It will also be useful to construct

the mean of the sorted replicates

r′avg =
〈
r′1, r

′
2, r

′
3

〉
:=

∑N
i=1 r′i

N
=

〈∑N
i=1 ri

j1,
∑N

i=1 ri
j2 ,

∑N
i=1 ri

j3

〉
N

= 〈1.1006, 1.3083, 1.5287〉 .

The most parsiminious representation of a sorted replicate r′i is to consider it as a triangular fuzzy
number. To be precise, using a common notation [1], let r̃i :=

[
ri
j1, r

i
j2 , r

i
j3

]
⊆̃ IR by linearly inter-

polating up from membership zero at the min ri
j1 and max ri

j3 to membership 1 at the intermediate

value ri
j2. We thereby create the sorted matrix of fuzzy numbers R̃ =

[
r̃i

]
:=

[
ri
j1 , r

i
j2, r

i
j3

]
, which

is effectively equivalent to Table 4.

The triangles for each replicate are show in Fig. 2. Note that we while we’re using the same display
mode as for the p-boxes in Fig. 1, these structures are not p-boxes of the form in Def. 1, but are
rather the membership functions of fuzzy quantities µ: IR → [0, 1].

Note the fairly wide range of variation, including replicate r̃10, which is quite skewed. It’s natural
1We are somewhat chagrined to note that Table 4 is actually just a reordering of the whole columns of Table 1. In

other words, there is a systematic bias in the PAC data such that Sensor 1 always reads higher than Sensor 2 which
itself always reads higher than Sensor 3. While this does not show our method to its best advantage, there is nothing
significant in this for the demonstration here.
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Replicate Sensor 1 Sensor 2 Sensor 3
1 1.039 1.262 1.457
2 1.064 1.218 1.525
3 1.237 1.339 1.536
4 1.208 1.332 1.604
5 1.124 1.221 1.467
6 1.217 1.347 1.594
7 1.164 1.338 1.574
8 1.081 1.284 1.598
9 0.972 1.348 1.525

10 0.900 1.394 1.407

Table 4: Measured PAC results (units 10−3 g) for configuration 1, sorted for construction of trian-
gular fuzzy numbers.

Figure 2: Fuzzy triangular representation of measured data.
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to compute the literal mean of these fuzzy numbers, which in this case is equivalent to constructing

r̃avg :=
∑N

i=1 r̃i

N
= [r′1, r

′
2, r

′
3] = [1.1006, 1.3083, 1.5287],

which is shown in black in Fig. 2 as amean. Naturally, r̃avg is highly symmetrical, since between
replicates i each point is iid, thus we can expect the quantity

∣∣∣(ri
j2 − ri

j1

)
−

(
ri
j3 − ri

j2

)∣∣∣ ,
expressing the differences between the sizes of the left and rights sides of the triangles, to be iid
around zero. Also shown is r′2, the central value of r̃avg, as amid.

Finally, shown in Fig. 2 in dark gray as envel is what RiskCalc calls the “envelope” of the r̃i, but
is rather the fuzzy union

r̃∪ :=
N⋃

i=1

r̃i,

using the standard maximum t-conorm 
 = ∨. In this case, r̃∪ is actually a fuzzy interval [1]
identified by the “convex hull” of all the r̃i.

4 Interval and Random Interval Representation

A fuzzy number interpretation of the replicates ri treats them as expressing a vague outcome.
However, it thus doesn’t consider the stochastic variation present between the replicates. We can
include this factor by moving to a random set and random interval approach.

For each replicate ri, construct its enveloping interval r̄i := [ri
j1

, ri
j3

]. Then the structure

A :=
{〈

r̄i,m
(
r̄i

)〉}
, 1 ≤ i ≤ N,

is the random interval constructed by weighting each interval uniformly, so that ∀1 ≤ i ≤ N,m
(
r̄i

)
=

1/N = 1/10.

Fig. 3 shows the details of these intervals and the constructed random interval and p-box, in
particular:

• For each interval, r̄i is shown as a pair of vertical bars.

• The mean interval

r̄avg :=
∑N

i=1 r̄i

N
= [r̃avg

1 , r̃avg
3 ] = [1.1006, 1.5287],

which is exactly the support of the mean fuzzy interval U(r̃avg), and is shown as bmean in
black.

• Note that A is consistent in that C(A) �= ∅. Therefore the trace ρ(x) =
∑

r̄i�x m(r̄i) is a
possibility distribution π(x) = ρ(x), which is shown as cons in purple.

• The full p-box B(A) is shown as m in olive. We can point it out especially as the pair of
stepwise-constant traces trending from zero on the left to one on the right.
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Figure 3: Intervals r̄i, their possibility distribution and p-box.

Note that
∀x ≤ max

y∈C(A)
y, BEL(x) = 0 and PL(x) = π(x),

and ∀x ≥ C(A), π(x) and BEL(x) are inverses reflected around .5.

Fig. 4 shows some summary information about the p-box structure, including:

Figure 4: Summary information about p-box representation.

• The mean interval r̄avg, the envelope r̃∪, the possibility distribution π(x), and p-box B(A)
are shown again.

• The core and support respectively C(A),U(A) are shown as un in red and int in cyan.

• We have selected two single cumulative distributions which are in some sense optimal for our
situation. In particular, we can construct the uniform distributions U(C(A)) = U(1.217, 1.407)
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and U(U(A)) = U(0.900, 1.604) respectively, which are shown as maxent and minent respec-
tively. Despite the choice of names (read nothing of significance into these), neither of these
is the distribution F ∈ B(A) with maximal entropy, which would itself be a justified repre-
sentative distribution from B(A).

5 MinMaxMean P-Box Representation

The random interval analysis above ignores the intermediate value ri
j2 for each replicate, whereas

this could be interpreted as a mean value for each replicate, and thus we can represent each as the
p-box minmaxmean

(
ri
j1

, ri
j3

, ri
j2

)
. These are shown in Fig. 5, along with the mean such p-box

minmaxmean
(
ravg
j1

, ravg
j3

, ravg
j2

)
= minmaxmean (1.1006, 1.5287, 1.3083)

shown as mmean.

Figure 5: minmaxmean(r′i).

6 Summary and Comparison with Simulated Data

Fig. 6 shows summary information on all the representations provided, including:

Mean Fuzzy Number: r̃avg as amean in black.

Intermediate Value: f ′
2 as amid in dark green.

Fuzzy Union: r̃∪ as envel in teal.

Mean Interval: r̄avg as bmean in blue.

Core: The core of the random interval C(A) as int in cyan.
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Figure 6: Summary of measured data.

Support: The support of the random interval U(A) as un in red.

Possibility Distribution: The possibility distribution π(x) as cons in purple.

Random Interval P-Box: The full p-box B(A) as m in olive.

Mean MinMaxMean P-Box: The mean MinMaxMean p-box minmaxmean
(
ravg
j1

, ravg
j3

, ravg
j2

)
as

mmean in magenta.

Note the following:

• The average fuzzy number is completely contained by the possibility distribution trace: r̃avg ≤
π, although it is not clear whether this is necessary or not.

• The intermediate point of the average fuzzy number r′2 = 1.3083 ∈ C(A).

• C(A) ⊆ r̄avg ⊆ U(A), which is always true.

• I believe that it is guaranteed that if C(A) exists, then U(C(A)) ∈ B(A), but this seems
unlikely for U(U(A)), and indeed, from inspection it appears that it might just nick the
corner of B(A) precariously.

• Finally, the intervals r̄i, r̄avg,C(A),U(A) and the possibility distribution π(x) are fuzzy quan-
tities of the form µ: IR → [0, 1], while the random interval A and the distributions U(C(A))
and U(U(A)) are effectively p-boxes B of the form defined in (1).

This is all very nice, but what we’re missing are the simulated data to compare the measured data
to. These are shown together with all the summary measured data in Fig. 7.

Represent the FE data from Table 2 as replicates f j, 1 ≤ j ≤ 3. So by similar reasoning to the
above, we know that by first principles, it’s appropriate to represent these as triangular fuzzy
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numbers denoted f̃ j ⊆̃ IR, shown in Fig. 7 as fe.j. Similarly, the SDOF data from Table 3 are
appropriately represented as single numbers sk ∈ IR, 1 ≤ k ≤ 3, shown as sd.k.

What we’re ultimately interested in are measures of the similarity between the FE, SDOF, and the
measured data, both pairwise among these data sets, and among all three simultaneously. This
is an analytical question, which to my knowledge doesn’t have a specific methodology yet. Issues
include:

Figure 7: Summary of measured and simulated data.

Apples to Apples: Given the replicates f j represented as fuzzy numbers f̃ j, presumably they
should be compared to the average fuzzy number r̃avg. On the other hand, would it be wise
to instead represent the f j as a random interval, albeit almost degenerate, in order to be able
to compare it properly to A?

Measures of Difference: The ultimate goal is measures of distance or overlap among the quan-
tities. This, in turn, involves at least two components:

Overlap as Commonality of Support: We can calculate the amounts of literal overlap
between the various structures, for example their cores and supports. We note, for
example, that

U
(
f̃1

)
∩ U (B(A)) �= ∅, U

(
f̃2

)
⊆ U (B(A)) , U

(
f̃3

)
∩ U (B(A)) = ∅,

∀1 ≤ k ≤ 3, sk �∈ U (B(A)) ,

and thus measures like

∣∣∣U(
f̃ j

)
∩ U (B(A))

∣∣∣ ,
∣∣∣U(

f̃ j
)
∩ U (B(A))

∣∣∣∣∣∣U(
f̃ j

)
∪ U (B(A))

∣∣∣
are available to indicate this.
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Measures of Distance: In general, points, intervals, fuzzy intervals, p-boxes, and random
intervals all have convolutions available for operators ⊕ ∈ {+,−,×,÷, ∧} [8], and in
particular for ⊕ = −, so that, for example, we can calculate

∀1 ≤ j ≤ 3,
∣∣∣f̃ j − r̃avg

∣∣∣
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