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Abstract
Knowledge systems technologies are dominated by
graphical structures such as ontologies, semantic
graph databases, and concept lattices. A critical
but typically overlooked aspect of all of these struc-
tures is their admission to analyses in terms of for-
mal hierarchical relations. Transitivities of net-
work links necessarily result in hierarchical levels,
whether explicitly within directed acyclic graphs
(DAGs) or implicitly through the identification of
cycles. And whether from transitive link types in
semantic graphs, or the explicit lattice structures of
Formal Concept Analysis, the partial order repre-
sentations of whatever hierarchy is present within
a knowledge structure afford opportunities to ex-
ploit these hierarchical constraints to facilitate a
variety of tasks, including ontology analysis and
alignment, visual layout, and anomaly detection.
In this short survey paper we introduce the basic
concepts involved and address the impact of a hi-
erarchical (order-theoretical) analysis on directed
acyclic graphs in knowledge systems tasks.

1 Introduction
Knowledge systems technologies are dominated by graphical
structures, including:

• Semantic graph databases[19] take the form of la-
beled directed graphs implemented in RDF1. Their
OWL2 ontological typing systems are also labeled di-
rected graphs, frequently dominated by directed acyclic
graph (DAG) and other hierarchical structures. Fig. 1
shows a toy example, where the ontology of classes on
the left forms the typing system for the semantic graph
of node and link instances on the right.

• Concept lattices [10; 11; 17] are hierarchical lattice
structures derived from identifying the maximal connec-
tions among groups of objects and properties (rows and
columns) of an attribute matrix, called a formal context.
Fig. 2 shows a simple example from[11], indicating se-
mantic generality of the attributes in terms of the number
of their shared objects, andvice versa.

1http://www.w3.org/RDF
2http://www.w3.org/TR/owl-features

While other examples of graph-based knowledge struc-
tures abound, what characterizes these structures in partic-
ular is their hierarchical nature. There is an increasing
emphasis on hierarchical structure in network science[4;
5], but these methods partition the set of nodes of an un-
derlying simple (undirected) graph to produce a hierarchical
decomposition. We are interested rather in theintrinsic hier-
archical (level-based) nature of an underlyingdirectedgraph.

A good example is our concept lattice in Fig. 2, which is an
explicit hierarchy in its entirety, as are semantic taxonomies
such as the Gene Ontology[2] (GO3). But where OWL on-
tologies include hierarchical class structures, other portions
can be non-hierarchical. And more general knowledge struc-
tures like semantic graphs are not explicitly or necessarily
hierarchical, but may contain large hierarchical components.

In practice, ontologies are dominated by their “hierarchical
cores”, specifically their class hierarchies connected byis-a
subsumptive andhas-part compositional links. And many
of the most common links in RDF graphs are transitive, in-
cludingcauses, implies, andprecedes. We will show
in Sec. 3 below that any transitive link yields a hierarchical
structure in terms of the connectivity of its strongly connected
components, and is thus amenable to a hierarchical analysis.

Whether from transitive link types in semantic graphs, or
the explicit lattice structures of concept lattices, the partial
order representation of whatever hierarchy is present within
a knowledge structure affords opportunities to exploit these
hierarchical constraints for a variety of tasks, including

Clustering and Classification: Including characterizing a
portion of a hierarchy (e.g. groups of ontology nodes)
to identify common characteristics[15; 23],

Alignment: Casting ontology matching[8]4 as mappings be-
tween hierarchical structures[13; 14].

Induction from Source Data: For example using concept
lattices to induce ontologies from textual relations[17].

Visualization: Including exploiting the level structure of hi-
erarchies to achieve a satisfactory layout[16].

In general, such a hierarchical analysis, when available,
promises complexity reduction, improved user interaction

3http://www.geneontology.org
4http://www.ontologymatching.org
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Figure 1: Toy model of a semantic graph database. (Left) Ontological typing system as a labeled, directed graph of classes
(sample instances shown below dashed links). (Right) Conforming instance sub-graph.

with the knowledge base, and improved layout and visual an-
alytics. In the remainder of this short survey paper we expli-
cate the basic concepts referred to here and draw connections
among these application areas.

2 DAGs and Partial Orders
Mathematically, hierarchies are represented as partially or-
dered sets (posets), which are reflexive, anti-symmetric, and
transitive binary relationsP = 〈P,≤〉 on an underlying finite
set of nodesP [7]. While we typically think of hierarchies as
tree structures, more general kinds of hierarchies have “mul-
tiple inheritance”, where nodes can have more than one par-
ent. These include lattice structures like the concept lattice in
Fig. 2, where pairs of nodes have unique least common sub-
sumers (and unique greatest lower bounds as well); partial
orders where pairs of nodes can have an indefinite number of
least common subsumers and greatest lower bounds; and fi-
nally general DAGs can also include “transitive links” which
form shortcuts across paths.

Consider simple DAG in the top of Fig. 3. The two transi-
tive links1 → H, 1 → E connect the two paths1 → K → H
and1 → C → I → E respectively. Given a DAGD, the
DAG P(D) produced by including all possible transitive links
consistent with its paths is itstransitive closure, and deter-
mines an ordered setP(D) = 〈P,≤〉 wherea ≤ b ⊆ P if
there is a directed path froma to b in D. The graphV(D)
produced from a DAGD by removing all its transitive links
(its transitive reduction[1]) determines acover relation or
Hasse diagram. Thus each cover relationV determines a
unique posetP(V), andvice versaa posetP determines a
unique coverV(P); each DAGD determines a unique poset
P(D) and coverV(D); and each unique poset-cover pair de-
termines a class of DAGs equivalent by transitive links.

For a DAGD we can measure itsdegree of transitivity as

TR(D) :=
|D \ V(D)|

|P(D) \ V(D)|
,

where\ is set subtraction, we interpret each structure as the
binary relation onP 2 of its incidence matrix, and| · | is cardi-
nality, so that| · | is the number of links in·, seen as a graph.
TR(D) measures the number|D \ V(D)| of transitive links
in D relative to the total possible number|P(D) \ V(D)| in

Figure 3: (Top) A DAGD. (Left) Transitive reductionV(D).
(Right) Transitive closureP(D).

its transitive closureP(D). In Fig. 3 we haveTR(D) = 2
11 ,

indicating a relatively low degree of transitivity.
In knowledge systems such as ontologies, our interpreta-

tion of the presence or absence of transitive links in DAGs
is significant. If the link-type in question is anti-transitive,
so that transitive links are disallowed, then clearly the pres-
ence of transitive links is in error. If, on the other hand, the
link-type in question is atransitive, so that transitive links are
allowed, but not required, then theTR(D) measures this ex-
tent. But finally, if, as is the case with our subsumption and
composition types, the link type represents a fully transitive
property, then the presence of transitive links are irrelevant or
erroneous. Effectively, such link types live in the trasitively
equivalent class of DAGs, that is, in the partial orderP(D),
andTR(D) can be used as an aid to the user or engineer to
identify issues with the underlying ontology.

3 The Hierarchical Cores of Directed Graphs
So central to the consideration of hierarchy in a knowledge
network is the question of the presence and prevalence of
DAGs in general directed graphs which can possibly have
cycles. Consider the network shown in Fig. 4 using a stan-
dard network layout with a primarily radial link distribution
around centralized nodes. We can analyze this network as:
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Figure 2: (Left) A formal context of objects and their properties. (Right) Its concept lattice. From[11].
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Figure 4: A network.

• Identify the leaves as those nodes
{A, D, G, H, K, M, O, Q}with no children.

• Identify the roots as those nodes{1} with no parents.

• Identify the strongly connected components (SCCs[21])
as those sets of nodes which are directed cliques, where
a directed path exists between all pairs on nodes. Each
SCC is either a single directed cycle or a union of di-
rected cycles, and are necessarily disjoint from each
other: if two SCCs intersect, they’d form a single SCC
together. In the example, there are two SCCs,X =
{C, F, T} (a single 3-cycle) andY = {P, R, S, N} (the
union of the two 3-cycles{N, R, P} and{N, S, P}).

• Identify the transitive links, these are the two links1 →
M shortcutting the 3-paths1 → B → M and 1 →
L → M , and the linkC → D shortcutting the 4-path
C → I → E → D.

Fig. 5 shows our network with these components identified.
We proceed by contracting each SCC to a new node in

a higher-order space, combining any multiple links between
SCCs into one. The resulting structure is necessarily a DAG
D. Finally, we derive the transitive reduction of the cyclic
decomposition to eliminate the transitive links, measuring

Figure 5: Components of the network’s cyclic decomposi-
tion: roots are squares, leaves are oblongs, transitive links
are dashed arrows, and strongly connected components are
shown in dashed circles.

TR(D). The resulting hierarchy is shown in Fig. 6, where the
two SCCs are replaced with new nodesX andY respectively.
While this structure is substantially similar, of course these
two new nodes will be identified as being new meta-nodes,
and available for “double-clicking” to open up the SCCs re-
vealing the original structure below.

While such an approach to a “cyclic decomposition” is a
known standard for directed graphs[6], it is not usually ap-
plied for hierarchical anlaysis. Note that the layout is adjusted
to bring the root to the top and the leaves to the bottom, and to
emphasize the stratified nature of the hierarchy. This concept
of “level” or rank is central to our approach, and will be dealt
with in Sec. 4.1 below.

In addition to deriving the base cyclic decomposition, we
are also interested in some numerical quantities such as the
number of roots, leaves, and SCCs, along with the spectrum
of sizes of the SCCs. Depending on the results of these mea-
surements, it may or may not be appropriate to proceed with
a hierarchical analysis of the network.

In particular, for a DAGD produced from an underlying
directed graphG, we can measure the degree of cyclicity as
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Figure 6: The network’s cyclic decomposition displayed as a
hierarchy.

C(G) := |D|/|G|. As two extremes,C(G) = 1/|G|, so that
the network consists of a single, large SCC; or, ifC(G) = 1,
then the network was already a DAG at the outset, and no
SCCs are observed. In either event, continuing with a hierar-
chical analysis would not be fruitful. But if there are a num-
ber of moderately sized SCCs, then the resulting hierarchical
structure will provide greater simplification and a stratified
view of the underlying complex structure.

4 Measures on Hierarchical Graphs
Given a hierarchical structure as a DAG represented by its
transitive closure posetP, perhaps derived as the cyclic de-
composition of a network, or provided natively as in a tax-
onomic ontology, we now have a number of tools available
to measure this hierarchical structure. Here we discusses
interval-valued rank measuring the vertical level of nodes,
andorder metrics measuring the distances between nodes.
See[12; 16; 18] for more details.

4.1 Interval-Valued Rank
Given a hierarchy e.g. in Fig. 6, we are concerned with the
proper representation of the vertical level of each node, as
represented by its positioning in a layout. We note that all
children of the root are the same “distance” from the root, but
if these arealso leaves then they should be positioned further
down. In other words, we need to exploit the vertical distance
from both the topanda global bottom, in this case a virtual
node0 ∈ P we can insert and place below all the leaves.

For a, b ∈ P , let h∗(a, b) be the length of the maximum
path froma to b. Then the distance of a nodea ∈ P from
the root1 ∈ P is the top rank rt(a) := h∗(a, 1). Dually
we define thebottom rank rb(a) := h∗(0, 1) − h∗(0, b),
whereh∗(0, 1) is the overallheight of the structure. Then the
interval rank R̄(a) := [rt(a), rb(a)] becomes available as
an interval-valued measure of the vertical levels over whicha
can range, while therank width W (a) := rb(a) − rt(a) is a
measure of that range[16; 18].

We can exploit this vertical rank in terms of hierarchical
layout and visualization, as shown for our example now in

Fig. 7. Each node which sits on a complete chain (a path from
1 down to 0) of maximal size is placed horizontally at the
center of the page. Nodes are laid out horizontally according
to the size of their largest chains maximal chains. The result
it to place maximal complete chains along a central axis, and
short complete chains towards the outer edges. Nodes are
placed vertically according to the mathematical quantity of
the midpoint of their interval rank, but can be free to move
between top rankrt(a) and bottom rankrb(a).

The result is that while nodes on maximal complete chains
(all those intersecting the chain0 → D → E → I → X →
1 in the example) exist at a single level, some (for example
K) do not. While Fig. 7 shows a 2D layout, we have also
deployed this concept in a 3D layout[16].

4.2 Order Metrics
Given the need to perform operations like clustering or align-
ment on ontologies represented as ordered setsP = 〈P,≤〉, it
is essential to have a general sense of distanced(a, b) between
two nodesa, b ∈ P . The knowledge systems literature has fo-
cused onsemantic similaritiesto perform a similar function,
which are available whenP is equipped with a probability
distribution, derived, for example, from the frequency with
which terms appear in documents (for the Wordnet5 [9] the-
saurus), or genes are annotated to GO nodes.

So assume a poset〈P,≤〉 with a base probability distribu-
tionp: P → [0, 1],

∑
a∈P p(a) = 1, and a “cumulative” func-

tion β(a) :=
∑

b≤a p(a). We then generalize the join (least
upper bound) and meet (greatest lower bound) operations in
lattices as follows. Let↑ a := {b ≥ a} and↓ a := {b ≤ a}
are the up-set (filter) and down-set (ideal) respectively of a
nodea ∈ P . Then for two nodesa, b ∈ P , leta∇b := ↑ a∩↑ b
anda∆b := ↓ a ∩ ↓ b be the set of nodes above or below re-
spectively both of them. Then the generalized joina ∨ b is
the set of minimal (lowest) nodes ofa∇b, and the general-
ized meeta∧ b is the set of maximal (highest) nodes ofa∆b.
WhenP is a lattice, then|a ∨ b| = |a ∧ b| = 1, recovering
traditional join and meet.

Traditional choices for the semantic similarityS(a, b) be-
tween two nodes then include the measures of Resnik, Lin,
and Jiang and Conrath[3]:

S(a, b) = max
c∈a∨b

[− log2(β(c))]

S(a, b) =
2 maxc∈a∨b[log2(β(c))]
log2(β(a)) + log2(β(b))

S(a, b) = 2 max
c∈a∨b

[log2(β(c))] − log2(β(a)) − log2(β(b))

respectively. But most of these are not metrics (not satisfying
the triangle inequality), and all of these lack a general mathe-
matical grounding and require a probabilistic weighting.

Our approach uses ordered set metrics[20; 22] which can
use, but do not require, a quantitative weighting such as
β, and always yield a metric. They are based on valua-
tion functionsv: P → IR+ which are, first, either isotone
(a ≤ b → v(a) ≤ v(b)) or antitone (a ≤ b → v(a) ≥ v(b));
and then semimodular, in that

v(a) + v(b) ∼ v∇(a, b) + v∆(a, b),
5http://wordnet.princeton.edu

lir
m

m
-0

04
10

65
1,

 v
er

si
on

 1
 - 

21
 A

ug
 2

00
9



B

M G

I

H

X

E

J

D

1

Y

0

K

L

A

O Q

Lower Top Rank

Lower Bottom Rank


More Children

Fewer Parents


Higher Top Rank

Higher Bottom Rank


Fewer Children

More Parents


Top rank = 2

Bottom rank = 5 - 1 = 4


Rank = [2,4]


Max chain

Length 5 = Height


Min chain

Length 2


Virtual bottom


Top rank = 1

Bottom rank = 5 - 1 = 4


Rank = [1,4]


Top rank = 2

Min length from bottom: 2

Max length from bottom: 3


Bottom rank = 5 - 3 = 2

Rank = [2,2]


Other chain

Length 4


Shorter chains
 Longer chains
 Shorter chains


Figure 7: Chain layout of the cyclic decomposition of the network in Fig. 4.

where∼∈ {≤,≥, =}, yielding super-modular, sub-modular,
and modular valuations respectively; and

v∇(a, b) := min
c∈a∇b

v(c), v∆(a, b) := max
c∈a∆b

v(c).

Whether a valuationv is antitone or isotone, and then sub-
or super-modular, determines which of four distance func-
tions is generated, e.g. the antitone, supermodular case yields
d(a, b) = v(a) + v(b) − 2v∇(a, b). WhenP is a lattice, then
this simplifies tod(a, b) = v(a) + v(b) − 2v(a ∨ b).

Typical valuationsv include the cardinality of up-sets and
down-sets:v(a) = | ↑a|, v(a) = | ↓a|, and the cumulative
probabilities used in semantic similaritiesv(a) = β(a). In
this way, poset metrics generalize semantic similarities and
provide a strong basis for various analytical tasks.

5 Order Metrics in Ontology Alignment
A good example of the utility of this order theoretical technol-
ogy in knowledge systems tasks is in ontology alignment[13;
14]. An ontologyalignment is a mappingf :P → P′ taking
anchorsa ∈ P in one semantic hierarchyP = 〈P,≤〉 into
anchorsa′ ∈ P ′ in anotherP′ = 〈P ′,≤′〉. In seeking a mea-
sure of the structural properties of the mappingf , our pri-
mary criterion is thatf should not distort the metric relations
of concepts, taking nodes that are close together and making
them farther apart, orvice versa.

It should be noted that a “smooth” mapingf is neither nec-
essary nor sufficient to be a good alignment: one the one
hand, a good structural mapping may be available between
structures from different domains; and on the other, differ-
ences in semantic intent between the two structures may be

irreconcilable. Nonetheless, other things being equal, it is
preferable to have a more smooth mapping than not.

So, for two ontology nodesa, b ∈ P, consider thelower
cardinality distance dl(a, b) := | ↓a|+ | ↓ b| − 2 max

c∈a∧b
| ↓ c|.

We can measure the change in distance betweena, b ∈ P
induced byf as thedistance discrepancy

δ(a, b) := |d̄l(a, b) − d̄l(f(a), f(b))|,
where d̄l(a, b) := dl(a,b)

diamd(P)
∈ [0, 1] is the normalized

lower distance betweena and b in P given the diameter
diamd(P) := max

a,b∈P
d(a, b). We can measure the entire

amount of distance discrepancy at a nodea ∈ P compared
to all the other anchorsb ∈ P by summing

δf (a) :=
∑

b∈P

δ(a, b) =
∑

b∈P

|d̄l(a, b) − d̄l(f(a), f(b))|,

yielding the discrepancyδ(f) :=
∑

a∈P δf (a) of the align-
ment.

Consider the example in Fig. 8, with the partial alignment
functionf as shown, mapping only certain nodes{B, E, G}
from P to P′. Then we have e.g. the lower normalized dis-
tance between nodesE andG as d̄l(E, G) = 1/3; the dis-
tance discrepancy between the two nodesE, G in virtue of f
asδ(E, G) = |1/3−3/5| = .267; the entire distance discrep-
ancy at the nodeE asδf (E) = 2/5; and finally the distance
discrepancy for the entire alignment asδ(f) = .47.

6 Future Work
Our work continues across the range of tasks outlined here,
and includes a number of future targets:
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Figure 8: An example alignment.

• A characterization of semantic similaritiesS in terms of
order metrics.

• Induction of new alignment links based on searching
for low-discrepancy mappings within the space of order
morphisms.

• Characterization of ontology link types in terms of hier-
archical structure, factoring transitive and non-transitive
link types.

• Identification of measures of centroid and dispersion in
ontology clustering tasks.

• Anomaly detection in concept lattice based on correla-
tion of interval rank and extent/intent size.
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