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The mathematical syntax of Possibilistic Information Theory can be based on Zadeh’s theory of
fuzzy sets [19], the Dempster-Shafer theory of evidence [15], or the theory of random sets [14]. But the
semantics for interpreting possibility measures and distributions is not as well developed. The traditional
semantics of possibility is based on the use of “linguistic variables” or other means of deriving possibility
measures from the opinions of people (for example, “experts” in some field). Similarly, the applications
of possibility and fuzzy set theory are overwhelmingly in areas of “informational engineering” such as
control theory, approximate reasoning, and decision support. Even in those attempts to apply fuzzy
methods to the theory or modeling of natural, physical systems, data is predominantly collected on the
basis of opinion, e.g. [8].

This situation contrasts sharply with traditional (probabilistic) information theory, which developed
in close relation to the physics of many-body problems and thermodynamic systems [1] and natural com-
munications [16]. It is a tacit assumption of most fuzzy researchers that while probabilistic randomness
can be measured and applied in the physical world, possibilistic fuzziness is purely a result of human
psychology, perception, and description. It is our interest to derive possibilisties on the basis of evidence.
We will do so through the application of the Principle of Maximum Uncertainty to set-valued statistics.

Mathematical Preliminaries

First, we have the standard evidence theory. For a finite universe U = {xi} with power set 2U =
{A ⊂ U}, m: 2U 7→ [0, 1] is a function on the subsets of U with m(∅) = 0 and

∑

A⊂U m(A) = 1.
Denote a random set as S = {〈Aj, mj 〉 : mj > 0}, where 〈 · 〉 is a vector, Aj ⊂ U, mj = m(Aj), and
1 ≤ j ≤ |S| ≤ 2|U | − 1. We also have the focal set F = {Aj : mj > 0}. Then the dual belief and
plausibility measures on an A ∈ F are:

Bel(A) =
∑

Aj⊂A

mj = 1 − Pl(Ā) (1)

Pl(A) =
∑

Aj∩A 6=∅

mj = 1 − Bel(Ā). (2)

We denote the “plausibility distribution” of a random set S as ~Pl = 〈Pl({xi}) 〉 = 〈Pli 〉.
Klir and Ramer [12] identify two complementary uncertainty measures on random sets. The first is

the discord:

D(S) = −
∑

j

mj log2





|S|
∑

k=1

mk

|Aj ∩ Ak|

|Ak|



 , (3)

which measures the ambiguity in terms of the amount of discrepancy among the evidential claims mj .
The second is the nonspecificity:

N(S) =
∑

j

mj log2(|Aj|), (4)

which measures the “spread” of the evidence.
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There are a number of special cases depending on the structure of F . First, when ∀j, |Aj| = 1, then S
is specific. We have |S| = |U |, and Bel(Aj) = Pl(Aj) = Pr(Aj) is a probability measure with distribution
~Pl = ~p = 〈 pi 〉 = 〈 Pr({xi}) 〉 = 〈mi 〉 and normalization

∑

i pi = 1. The information measures are:

D(S) = H(S) = H(~p ) = −
∑

i

pi log2(pi) (5)

N(S) = 0 (6)

where H is the stochastic entropy.
S is consonant (F is a nest) when (without loss of generality for ordering, and letting A0 = ∅)

Aj−1 ⊂ Aj . It then follows that |S| = |U |, and Pl(Aj) = Π(Aj) is a possibility measure. Denoting Ai =
{x1, x2, . . . , xi}, and assuming that S is complete (i.e. ∀xi ∈ U, ∃Ai), then the possibility distribution is

~Pl = ~π = 〈πi 〉 = 〈Π({xi}) 〉 =
〈

∑|S|
k=i mk

〉

with normalization
∨

i πi = 1. For information measures,

letting π|~π|+1 = 0, we have [7]:

D(S) < .892 (7)

N(S) =
∑

j

mj log2(j) (8)

= N(~π) =

|~π|
∑

i=2

πi log2

(

i

i − 1

)

=
∑

i

(πi − πi+1) log2(i). (9)

Set-Based Statistics

The fundamental issue for constructing an empirical semantics for possibility lies in the nature of the
evidence gathering. Traditionally, observations are made of the occurrence of one or another outcome x

out of a set of possible outcomes U . Denoting the count of the number of outcomes for xi as ci, then
for a given total count of M we can arrive at a frequency distribution f : U 7→ [0, 1], f(xi) = fi = ci

M
.

~f = 〈 fi 〉 is a probability distribution with
∑

i fi = 1 and additive measure F (A) =
∑

xi∈A fi.
There are a number of suggestions for conversion formulas ~p ⇒ ~π [11, 4]. However, there can be no

doubt that ~f and F are in fact a natural probability distribution and measure with zero nonspecificity
and generally positive entropy. Thus, while there may be a good conversion of ~f ⇒ ~π, the representation
~π is never appropriate for the given evidence ~f .

Instead, what is required is to collect statistics on outcomes not in U , but in 2U . Then an observation
of a subset A ⊂ U indicates an event somewhere in A. Thus whenever |A| > 1, the observation is
somewhat non-specific. We note that while researchers strive to achieve specific observations, and are
frequently successful, nevertheless subset observations are in fact quite normal. In particular, subset
observations result whenever the sensitivity of an instrument results in the recording of a range, or
error-bars attached to a point measurement.

Denoting the count of a subset A by cA, then we have frequencies on subsets fU : 2U 7→ [0, 1], with

fU (Aj) = fU
j =

cAj

M
. ~fU is a natural evidence measure generating an empirically derived random

set denoted as SE with focal set FE . When SE is specific, ~fU = ~f . When SE is consonant and

appropriately ordered, then | ~fU | = |U |, and ~π = 〈Pl({xi}) 〉 =
〈

∑M

k=i fU
k

〉

is a possibility distribution

with normalization
∨

i πi = 1. In general, we have Pli1 ∨ Pli2 ≤ Pl({xi1, xi2}) ≤ Pli1 + Pli2 and
∨

i Pli ≤ 1 ≤
∑

i Pli. Wang [18] has described ~Pl as the membership grade for a fuzzy set, and set-
statistics have been considered by Dubois and Prade [5, 6].

Maximum Uncertainty Methods

Mathematical theories for the derivation of probability distributions on the basis of observed evidence
have been well justified through the use of the Maximum Entropy Principle (MEP), which has been
applied fruitfully to a wide variety of problems [9, 17]. Given a stochastic problem, evidence is gathered
through observation, either particularly (a certain record of observations) or statistically (the observation
of a certain statistical value, usually a mean). Then, using this data as a constraint, calculations are
made to determine the consistent probability measure with maximum entropy, and that distribution is
hypothesized as an estimate of the underlying stochastic process.



The MEP is a special case of the more general Maximum Uncertainty Principle (MUP) [10] which
holds in any mathematical information theory. It states that when a problem solution is underde-
termined, the possible solution with the highest uncertainty should be chosen. This generalization of
Laplace’s Principle of Insufficient Reason assures that the most conservative choice will be made, utilizing
all available information, but no more.

So when a probability distribution is desired, then the MEP should be used. But when a possibility
distribution is desired, then the MUP requires that the nonspecificity N should be maximized, since
when S is consonant and |S| increases, D(S) tends to a small constant. We note that, in general,
max~πN(~π) = ~1 with S = {〈U, 1 〉}.

Therefore, our method will be the following. Given an observed random set SE with plausibility
distribution ~Pl, we want to derive a consonant random set S′ with focal set F ′, possibility distribution
~π and measure Π. S′ should be “consistent” with the data SE , in the sense that an evidential claim
〈A, m 〉 ∈ SE can only be moved to an A′ ∈ F ′ which completely accounts for that evidence, that is
A ⊂ A′, and so N(S′) ≥ N(SE). Otherwise, when there are multiple possible solutions, the S′ with
maximal nonspecificity should be chosen. We note that this is similar to the method described in [6],
where random set cardinality |S| =

∑

j mj |Aj| is used in place of N.

Examples

We note some simple ad-hoc examples below, with |U | = 3.

1. Let SE = {〈 {x1}, a 〉 , 〈 {x1, x2}, b 〉 , 〈 {x1, x3}, c 〉}. SE is “consistent” in the sense of [5], in that

∃{x} ∈ FE , ∀Ai, {x} ⊂ Ai (for us x = x1). This guarantees that ~Pl = 〈 1, b, c 〉 is already a

normalized possibility distribution. Thus, assuming b > c, then we have ~π = ~Pl = 〈 1, b, c 〉,
with S′ = {〈 {x1}, a + c 〉 , 〈 {x1, x2}, b− c 〉 , 〈 {x1, x2, x3}, c 〉}. To produce a consonant S′, either
{x1, x2} or {x1, x3} had to be eliminated. Since c < b, the effect is to eliminate the lesser claim
for {x1, x3}, by increasing the evidence in the singleton {x1} by c, and decreasing the claim of
{x1, x2} by the same amount. N(SE) = b + c increases to N(S′) = b + (log2(3) − 1)c ∼ b + 1.58c.

2. Let SE = {〈 {x1}, a 〉 , 〈 {x3}, b 〉 , 〈 {x1, x2}, c 〉}. S
E is no longer consistent, so we have a subnormal

~Pl = 〈 a + c, c, b 〉. Since {{x1}, {x1, x2}} is a nest, from which {x3} is disjoint, then in order
to construct a full nest for S′, the claim for {x3} must be displaced to U itself, resulting in
S′ = {〈{x1}, a 〉 , 〈 {x1, x2}, c 〉 , 〈U, b 〉}, with ~π = 〈 1, b + c, b 〉. The effect is to add b to both Pl1
and Pl2, the plausibilities of the nest in SE . N(SE) = c increases to N(S′) = log2(3)b + c.

3. Let SE = {〈{x1}, a 〉 , 〈 {x2}, b 〉 , 〈 {x3}, c 〉 , 〈 {x1, x2}, d 〉}, ~Pl = 〈 a + d, b + d, c 〉. As above, {x3} is
the disjoint set, so we move the evidence c to U . But there are two possible nests consistent with the
remaining sets, yielding two possible solutions: S′

1 = {〈 {x1}, a 〉 , 〈 {x1, x2}, b + d 〉 , 〈U, c 〉}, ~π1 =
〈 1, b + c + d, c 〉 , N(S′

1) = log2(3)c + b + d; and S′
2 = {〈 {x2}, b 〉 , 〈 {x1, x2}, a + d 〉 , 〈U, c 〉}, ~π2 =

〈 1, a + c + d, c 〉 , N(S′
2) = log2(3)c+a+d. According to maximum nonspecificity, we should clearly

choose S′
1 if b > a, and S′

2 if a > b.

4. Assume SE is specific, with a frequency distribution ~f = 〈 a, b, c 〉. In general, there are |U |! possible
nests in 2U , 6 in our case. Each such nest yields a different nonspecificity. For example, construct
S′

1 for the nest {{x1}, {x1, x2}, U}. a stays with {x1}, b moves to {x1, x2}, and c moves to U ,
yielding N(S′

1) = log2(3)c+ b. Assuming (without loss of generality) that a < b < c, then N(S′
1) is

maximal for all nests, so by maximum nonspecificity it is chosen with ~π = 〈 1 = a + b + c, b + c, c 〉.
We note that this recovers a known probability-possibility conversion formula [4, 13], where a fuzzy
membership grade is derived as a discrete cumulative probability distribution function:

µ(x) =
∑

xi≤x

pi (10)

except that the ordering of the pi is not determined by the structure of the space U , but rather by
the probability values.

Conclusion

We have examined the concept of an empirical measure of possibility derived from set-based statistics
and the Principle of Maximum Uncertainty. Areas for future research include:



• Movement beyond these ad-hoc examples towards a more complete formalism of the method out-
lined above to general dimensionality |U |, and including a valid measure of “consistency” between
SE and S′.

• Nonspecificity maximization relative to a possibilistic “sample mean” (analogous to the possibilistic
expected value [3]) measured on a set-based data set SE .

• Use of the MUP to derive other algebraic structures of S′ which yield plausibility distributions
with triangular co-norm operators other than + and ∨ [2].
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