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ON THE SEMANTICS OF ENTROPY MEASURES 
OF EMERGENT PHENOMENA 

CLIFF JOSLYN 

Systems Science, SUNY, Binghamton, New York 13901, 
USA 

This paper is an attempt to perform some semantic analysis of the concept of 
"entropy" as it is used in both thermodynamic and nonthermodynamic contexts. 
We first consider the relation between thermodynamic entropy as a semantic 
concept, a measured quantity of real systems; and statistical entropy as a syntac- 
tic concept, a calculated quantity in formal systems. We then consider the use of 
entropy as a measure of different types of systems, the origin and identification 
of emergent levels in physical systems, and the ontological status of nonthermo- 
dynamic entropies. 

SYNTACTIC vs. SEMANTIC DEFINITIONS OF ENTROPY 

The literature on the relation between thermodynamics and information the- 
ory is vast (Brillouin 1964, Carnap 1977, Haken 1988, Jaynes 1957, Shan- 
non and Weaver 1964, Wicken 1987). While this debate is not the central 
concern of this paper, in any discussion of entropy it is wise to clearly 
express how it will be understood. We do so on the basis of the relation and 
difference between quantities that result from measurements of real systems 
and quantities that result from calculations in formal, mathematical systems. 
Science is (at least) the interaction between theory and observation. When 
theory is seen as a model of reality, its function is to predict (retrodict) future 
(past) observations. In the present context, we are dealing with two different 
models of pans of reality. The thermodynamic definition of entropy 
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serves to measure the thermodynamic state of a thermodynamic system, 
where Q is heat and T is temperature. On the other hand, the statistical 
mechanical definition of entropy is the Boltzman entropy: 

where the vector 5 - (pi), I I i 5 n ,  is a probability distribution with pi 
being the probability of the mechanical (quantum-mechanical) system having 
a certain energy level; k, - 1.38 x JIT is the Boltzman constant; and 
( .  ) denotes a mean over the distribution p. H,,, serves as a model of the 
mechanical system that predicts values for the measured quantity S in equa- 
tion l under equilibrium conditions (Rosser 1982). H,,, is a specific form of 
a general statistical entropy: 

where is any probability distribution and k and a are free parameters. 
Thus, the selection of k and a establishes a scaling on H. k - 1 and a -. 2 
is another common scaling, used in information theory to give the Shannon 
entropy: 

Now the ontological status of the two quantities S and H i s  very differ- 
ent. Thermodynamic entropy is a property of certain kinds of real systems: 
thermodynamic systems. Thermodynamic entropy is a measured property of 
such systems, and is understood in a differential relation to other quantities, 
such as heat, work, and temperature, which are also measured on thermody- 
namic systems. 

Thermodynamic entropy is thus a "content-full" concept specific to 
thermodynamic systems. The semantics of thermodynamic entropy is neces- 
sarily deeply embedded within the body of thermal physics, and it must be 
interpreted in the context of all of thermodynamics. In particular, it must be 
interpreted within the results of thermodynamics and other thermodynamic 
quantities such as energy, pressure, and temperature. In this context, the 
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laws of thermodynamics, in particular, the second law, are powerful and 
significant results. 

But unlike thermodynamic entropy, statistical entropy is a property of a 
probability distribution, not a real system. Statistical entropy is calculated 
from the numerical properties of that distribution. It is understood as the 
establishment of a many-to-one relation between two sets, so that the entropy 
is not distinguished among members of equivalence classes of the domain. 
So the measurement of an entropy quantity is the converse relation, a one-.to- 
many relation which identifies that equivalence class of states from the do- 
main consistent with the measured entropy. In the case of the H,,, statistical 
mechanical entropy, the many-to-one relation is established from the set of 
mechanical states to the set of thermodynamic states; and in the general 
statistical entropy H from the set of probability distributions to the nonnega- 
tive real numbers. 

Statistical entropy is thus essentially a "content-free" concept. What- 
ever interpretation of the pi we make need only adhere to the axioms of 
probability theory. The measure itself is chosen based on the well-known 
axioms of its definition (Aczel and Daroczy 1975, Klir and Folger 1987, p. 
156).' 

Unlike the definition of thermodynamic entropy, in the definition of 
statistical entropy the basic quantities in question (the p;) are not inter- 
preted with respect to a specific semantic domain. Thus, statistical entropy 
lacks any inherent semantics and, in isolation, is a purely syntactic con- 
cept. Furthermore, since statistical entropy, in particular, does not involve 
the context of thermal physics, the simple usage of an entropy function 
does not entail any second law of thermodynamics or any "second law 
correlate." 

We can construct a model of some part of nature when we choose to 

'11 should be noted that there is current interest in the use of alternative formalisms where 
some of those axioms are relaxed. For example, relaxing the additivity requirement in the 
definition of statistical entropy results in the class of Renyi entropies of the form 

for a + 1 (lim,-, Ha - HSh). This formula has been applied with some success to measure 
complexity (Lindgren and Nordahl 1988) and in dynamical systems in relation to the "subjectiv- 
ity" of an ohsewer (lumarie 1990). Also, relaxation of the additivity requirement in the basic 
probability formalism results in whole new classes of uncertainty measures (lUir and Folger 
1987. Shafer 1976). And similar axioms used in the context of possibiliiy distributions lead to 
an alternative information theory (Dubois and Prade 1988). 
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interpret the p, in some specific context and assign values to k and a. So in 
statistical mechanics we regard the pi as probabilities for a (quantum) me- 
chanical system having a certain energy level. Under these conditions, 
H,,,,, calculates the measured value of S in equation 1 because statistical 
mechanics is a good theory for thermodynamics. But there is nothing nec- 
essary about this relation; indeed, the scientific significance of the theory 
arises just because it might nor have been the case. 

In another situation, however, we can interpret the pi in some other 
way, for example, the chance that a certain symbol will be received at the 
end of a communications channel (communications entropy); the "den- 
sity" of distribution of orbit traversal of a dynamical phase space (metric 
entropy, topological entropy) (Schuster 1984); the chances for mating 
within a certain population (cladistic entropy) (Brooks and Wiley 1988); or 
the variety in the distribution of cell wall lengths and intersection angles in 
cellular structures like plant tissues and soap foams (River 1986, Weaire 
and Rivier 1984). 

The purpose of the work pioneered by Shannon and Weaver (1964), 
Jaynes (1957) and Rosenkrantz (1989) is to apply the entropy measure in as 
many different contexts as possible.* Now in these cases, equation 2 can 
generally no longer be used to predict thermodynamic measurements, and 
a second law correlate does not necessarily exist. Thus, we can understand 
the effect of the Shannon-Jaynes program in information theory as a gener- 
alization of the concept of entropy away from a semantic basis of a content- 
full specific interpretation to a syntactic basis of a content-free formalism. 
For them, the meaning of the entropy quantity is not significant, only its 
form. They use and understand entropy without regard to the domain of 
application or the real system, if any, on which the quantity might be 
measured. They have a weaker criteria for establishing an entropy mea- 
sure: Only the axioms of the formalism, and not the results of some domain 
of interpretation, need apply. 

This distinction is of great importance, but is easy to overlook. It is not 
my interest to claim one usage or the other as being either "correct" or 
6 '  superior." Perhaps such decisions must rest on convenience, taste, or his- 
torical prejudice. But the second law of thermodynamics is not the second 
law of entropy, and ignorance of these different criteria can lead to serious 
error and confusion. 

 his work is being continued and generalized (Christensen 1980, Jumarie 1990, Kapur 
1989, Skilling 1989). 
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ENTROPY AS A TYPE-SPECIFIC MEASURE 

A primary goal for interdisciplinary scientists and systems scientists is find- 
ing good theories that hold for different kinds of phenomena (objects and 
processes) and explain the origin of new kinds. As we extend this search to 
consider the origin of human mental phenomena and human culture, science 
recursively comes to study itself, promising a kind of unification (or at least 
closure) of the sciences. This advancement rests on a number of assump- 
tions, such as the existence of different kinds of phenomena and our ability 
to construct good theories involving multiple kinds of phenomena. 

Different kinds of phenomena are believed to exist, and are described by 
biological, psychological, social, physical, and mechanical systems (to name 
a few). But satisfaction of the second assumption is perhaps less obvious. 
One of the necessary conditions for having a theory is the existence of 
obsewables, usually measured quantities, in terms of which predictions of 
the theory can be made and tested. It then follows that progress in transdisci- 
plinary science requires obsewables that can be taken on more than one kind 
of phenomenon. Clearly some,measurements can be taken on more than one 
kind of thing, but not all kinds of things. For example, both houses and cats 
can be massed, but songs cannot; both societies and ecologies have growth 
rates, but isotopes do not. Other quantities are unique to objects of specific 
kinds: Only national economies have balances of trade. 

The Disparate Uses of Entropy 

But for the latter half of this century, entropy has been ubiquitously offered 
as being applicable to systems of all kinds. Many researchers have defined 
nonthermodynamic entropies or "entropy analogs" to be used in theoretical 
descriptions of systems other than purely physical or informational. Entropic 
terms are used in the analysis of physical structures (Rivier 1986, Weaire and 
Rivier 1984), biological systems (Brooks and Wiley 1988, Conrad 1983, 
Gatlin 1972, Schneider 1988), social and economic systems (Bailey 1990, 
Batten 1983, Georgescu-Roegen 1971, Hershey and Lee 1987, Klapp 1975, 
McFarland 1969, Theil 1967), formal systems (Adler and Konheim 1965, 
Schuster 1984), and even moral theory (Galtung 1975, Peacocke 1984). 

The use of entropy terms and a host of related terms (e.g., order, com- 
plexity, organization, information, uncertainty, randomness, and variety) 
have penetrated virtually every area of scientific inquiry, to the point where 
some see them as having universal explanatory power (Georgescu-Roegen 
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1971, Rifkin 1980). Many natural philosophers, when writing about univer- 
sal evolution, seem compelled to at least discuss the concept (Davies 1988, 
de Chardin 1959, Laszlo 1987). Other transdisciplinary scientists seem to be 
approaching a consistent theory of global evolution using entropic terms 
(Georgescu-Roegen 1971, Rifkin 1980). While the more universalist claims 
are not generally held in high regard (Pagels 1985, Sibatani 1982), neverthe- 
less this "entropy phenomena" deserves serious attention. 

In considering these disparate uses of entropy and nonthermodynamic 
entropies, two questions come to mind. The first is whether it is "legiti- 
mate" to use nonthermodynamic entropies in these biological, ecological, 
economic, and social theories. The other is, assuming this legitimacy is 
established, what is the significance for the kind of scientific unification 
described above? Where one stands on the first question will depend on 
one's understanding of the issues discussed above, and, in particular, on how 
one defines entropy, either the statistical (syntactic) sense or as a measured 
quantity in some specific domain (semantic). 

The Risks of Narrow Interpretation 

In the recent debate on the significance of thermodynamics for biology 
(Bookstein 1983, Brooks and Wiley 1988, Lovtrup 1983, Morowitz 1986, 
Wicken 1983, Wiley and Brooks 1982), there are those who take the latter 
position. They argue, from historical grounds, that the original thermody- 
namicists were working on a purely empirical basis. Since, for a time, en- 
tropy was defined only as a measured quantity on thermodynamic systems, 
extensions of this concept are meaningless. Or, since the essential property 
of thermodynamic entropy is its monotonic increase in isolated systems, and 
since it is not clear that nonthermodynamic entropies have such a property, 
they therefore lack an essential property of any entropy. On this view, 
clearly only thermodynamic entropies are "legitimate." However, if we ac- 
cept the challenge of the Shannon-Jaynes program to extend the entropy 
concept, then any system that is describable in stochastic, probabilistic terms 
is necessarily also describable in terms of a (presumably nonthermodynamic) 
entropy. Then, as we consider our second question, we have to see that this 
quantity might not display a monotonic increase in a closed system according 
to some analog of the second law, thus threatening the promised scientific 
unification. But on the Shannon-Jaynes view, this result seems inevitable. 

In fact, we must admit that such measures of nonthermodynamic entro- 
pies might not be theoretically useful at all: a quantity simply being definable 
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or measurable on a system does not entail that it is significant for some 
purpose. Of course, this quantity may, in fact, be used in a second law 
correlate, or in some other nature law. But if this comes about, it will be an 
interesting a posteriori, theoretical development, not a simple truth following 
from the "invocation" of an entropy. 

However, if we do not take the Shannon-Jaynes view, then entropy can 
never be used in the kind of transdisciplinary theorizing that systems re- 
search intends. To do so, it is necessary to create theories that involve multi- 
ple kinds of phenomena and observations that are qualitatively distinct from 
the purely physical. If we restrict ourselves to thermodynamic entropies, 
then we are always working at the thermodynamic (physical) level of de- 
scription, never in, for example, biological, psychological, sociological, or 
symbolic terms. It would remain for some other measure to serve that crucial 
role. 

The Extension of the  Thermodynamic Program 

Now it is true that there is a renewed interest in the use of thermodynamic 
principles, the second law, and thermodynamic entropy in the explanation of 
the development of complex systems and emergent phenomena. It is cer- 
tainly interesting and important to measure the thermodynamic properties of 
different kinds of systems (e.g., in global ecology (Sibatani 1982, Ulanoaricz 
and Hannon 1987) or in ecological succession (Schneider 1988)). 

But these programs are not necessarily in a transdisciplinary spirit. 
Thermodynamic theory deals solely with physical quantities, and does not 
involve measurements or observations made on other kinds of phenomena in 
systems. Like the "biomass" concept, they are simply extensions of a physi- 
cal quantity (in this case entropy) to systems that happen to involve other 
kinds of processes as well. Nor does the success of efforts to extend the 
usefulness of thermodynamic entropy entail the failure of the use of nonther- 
modynamic entropies in other contexts. These are distinct research pro- 
grams, which must be judged on their own merits. It remains to be seen 
whether nonthermodynamic entropies are useful in these other contexts or 
not. 

AN EXAMPLE: B ~ N A R D  CONVECTION 

As an illustration of what is at stake in this argument, consider a simple 
dissipative structure: convection in BBnard cells. This system has been 
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deeply analyzed. In terms of thermodynamics, it arises as the first 
symmetry-breaking event in the move off the "thermodynamic branch" and 
away from equilibrium (Nicolis and Prigogine 1977). In dynamical systems 
theory, it is the most studied and celebrated of the "strange attractors," and 
is characterized by the Lorenz equations and the Lorenz attractor (Curry and 
Herring 1984, Lorenz 1963). It arises in a simple three-dimensional nonlin- 
ear differential system due to a Hopf bifurcation (Beltrami 1987, pp. 217- 
218). 

Swenson (1989) has offered Benard convection as an exemplar of the 
simplest self-organizing system, and has proposed a law of maximum en- 
tropy production. This law should hold far from equilibrium, and stands in 
sharp contrast to Prigogine's theorem of minimum entropy production, 
which holds close to equilibrium (Nicolis and Prigogine 1977). Swenson 
suggests that the proposed law has significant implications for general evolu- 
tionary theory. 

We will not discuss the experiment in depth, except to note that an 
"order parameter" is established as a thermal energy gradient across a fluid 
in an experimental apparatus. As the parameter is moved past a bifurcation 
point, the flow changes from conductive, linear flow to convective, nonlin- 
ear flow, and convection cells appear. It can be shown that beyond the 
bifurcation and for a constant gradient, the number, size, and shape of the 
convection cells will approach a steady state that is characterized by cells of 
uniform size and shape packed in a hexagonal lattice, and that maximizes the 
dissipation of the overall thermodynamic system. 

Characterization of Emergent Entities 

We wish to regard these convection cells as examples of emergent phenom- 
ena, and say that beyond the critical point entities at two levels of analysis, 
the convection cells and the liquid itself, exist simultaneously. Further, we 
wish to be able to apply an entropy measure to each kind of thing separately. 
We agree with the spirit of Swenson's work, which holds that until and 
unless these simple laboratory examples are clearly addressed, more ambi- 
tious attempts at the level of biological and social objects will not be well 
founded. 

In our example, then, let us be very careful to define exactly what these 
levels of analysis are. In particular, define level zero entities as E,, the 
molecules of the liquid; and define level two entities as E,, the whole volume 
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of liquid in the experimental apparatus (we will not define level one for ihe 
moment). 

It is clear that before the bifurcation, both the measured and statistical 
entropy of the liquid E, is well defined by equations 1 and 2 as the relation 
from the set of mechanical states of the molecules Eo to the set of thermody- 
namic states of the liquid E,. After the bifurcation, we recognize the exis- 
tence of convection cells because they manifest phenomena outside of the 
spatial and temporal scales of both levels zero and two. We recognize rela- 
tively discontinuous natural boundaries between these entities, and thus des- 
ignate them as level one entities E , . ~  

Type Specificity and the Emergence of Levels of Analysis 

A statistical entropy measure is defined by a many-to-one relation. Since .we 
have three kinds of things, we now have three choices for a possible entropy 
measure: from level zero to level one, the entropy of the convection cells 
"themselves"; from level one to level two, the entropy of the whole liquid 
defined at  the level of the convection cells; and finally from level zero to 
level two, the entropy of the whole liquid defined at  the level of (he mole- 
cules. Denote these quantities as So,,, s,,, ,  and So.,, respectively. 

Now, how do we understand these possible measures and the relation 
between them? 

The phase space for So,, does not change through the bifurcation. The 
individual molecules can move over the same volume and can have the 
same velocities as before. Since the molecular velocities are now con- 
strained by being taken up by convection cycles, we can see that the 
number of mechanical states accessible by them is also reduced. There- 
fore, the entropy So,, is reduced while entropy production to the environ- 
ment is increased. This process is in keeping with the second law of 
thermodynamics and the traditional analysis of self-organization (Niccrlis 
and Prigogine 1977, von Foerster 1960). 

'we usually think about emergent phenomena as entering at the "pinnacle" of some 
evolutionary hierarchy. In contrast. we regard this kind of emergence not as adding a layer on 
top of a hierarchy, but rather as a "deepening" or "infolding" of an existing hierarchy. The 
new level is added between what was previously (and still is) the bottom and top levels. This 
explains our choices for labeling levels. The temporal ordering of level one following levels 
zero and two is not equivalent to the structural and scale ordering from levels zero to one to two 
(Salthe 1985). 
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After the bifurcation, the quantity So,, can be measured in exactly the same 
way as before, in accordance with equation 1, through measurements of 
the temperature and heat flow. 
The quantity So,, (the entropy of the convection cells "themselves") is 
defined as if each cell was a separate thermodynamic system in and of 
itself. Inside the boundaries of the cell walls, the temperature and heat 
flow is well defined. 

What is the quantity S,,,, the entropy of the whole liquid defined in 
terms of the cells? Should it, perhaps, be defined as the sum, or some other 
function, of the cell thermodynamic entropies So,,? I would suggest not. We 
wish to regard the convection cells as objects with some autonomy and 
identity, and define the S,,, quantity over a new phase space at a qualitatively 
different level of analysis from the thermodynamic level. What is required is 
the recognition of properties inherent to the convection cells themselves, 
such as their number, their energies, positions, sizes, shapes, relative veloci- 
ties, etc. 

The process of recognizing emergent levels is necessarily scale- 
dependent. Denote the number of elements Ei in existence at a level i as ni, 
i E (0, 1, 2 ) .  What is then crucial about the convection experiment is that 
log(n,) log@,) B log@,), where n,, the number of experimental 
aparati, is one. For example, in our case, log(no) = 28, as the system 
approaches steady state log@,) = 2, and log(n,) - 0. 

This property alone allows the recognition of new levels. When this 
property does not hold, we cannot recognize new levels. For example, when 
n, - 1 there is exactly one convection cell, and the liquid rotates as a whole. 
In this case, we describe the convection only as a property of the liquid E,, 
and not as an entity El. Similarly, it would not be possible to define an 
entropy S,., of the liquid in terms of the cells, because with only one cell 
there is a "degenerate" distribution of cell properties, with only one ele- 
ment. Whenever n ,  is small, say n ,  - 2, there is not a sufficient sample size 
to define a valid probability distribution of properties of the cells, and there- 
fore it is not possible to go on to derive S,,,. 

But given the existence of new entities wi@ some properties, and assum- 
ing that a valid probability distribution can be derived for these properties, 
then a nonthermodynamic entropy for S,,, will be available. It should be 
clear that the basis for making such an identification will be the statistical 
(syntactic) one, where satisfaction of the axioms necessary for statistical 
entropy is maintained. In fact, our terminology is incorrect, because the use 
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of S,., indicates a thermodynamic quantity. Instead, we should use H,,Z to 
indicate that the entropy defined on the cells is a purely statistical, nonther- 
modynamic entropy. Thus, we need not look for correlates to temperahlre, 
pressure, and energy at the level of the convection cells, and no formulation 
like the second law need necessarily hold at the level of the cells. 

Emergence and Dynamic Equilibrium 

We noted above that, over a relatively long time scale, the cells approach a 
steady state of hexagonal packing, which can be shown to maximize their 
energy flow and thermodynamic entropy production. Since we recognize 
these entities at their own level of analysis, it is possible to consider that this 
is truly a state of equilibrium at rhe level of rhe convection cells. In fact, it is 
a dynamic equilibrium, dependent on the constant ongoing activity and flow 
at the level below. 

Indeed, we can go so far as to say that the critical difference between 
static and dynamic equilibria is the emergence of qualitatively distinct levels 
of analysis. Steady states in flow systems and stable cyclic or chaotic attrac- 
tors of dynamical systems are exactly such kinds of dynamic equilibria. 
They are dynamic in that they are dependent on the long-run statistical stabil- 
ity of an underlying process, which is ongoing at a faster time scale and 
exactly out of equilibrium. Thus, the experimental apparatus defined in 
terms of molecules is out of thermodynamic equilibrium, but after sufficient 
time is in a nonthermodynamic equilibrium at the level of the convection 
cells. 

FUTURE DIRECTIONS IN MULTILEVEL STUDIES 

Issues of processes at multiple temporal and spatial scaling are being exam- 
ined (Auger 1990, Minch 1988, Ruelle 1987), and underlie the extensions of 
dynamic systems theory into catastrophe theory (Thom 1983, Zeeman 
1977). But it should be noted that such phenomena are quite common. In- 
deed, as we have seen, the simple "emergence" of macroscopic properties 
of substances from the quantum-mechanical actions of their constituent mol- 
ecules is a perfect example. Thus, we have to recognize emergent phenom- 
ena as being quite ordinary. Rather than some "creative" aspect of evolution 
that involves seemingly esoteric states of nature as far-from-equilibrium 
thermodynamics, biological evolution, or the human mind, emergence is a 
fundamental physical process at all levels of analysis. 
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We get some indication of the direction that might be taken from some 
recent work on the distinctions between different types of entropies. For 
example, we now understand (Frautschi 1988, Hawking 1976) that a mon- 
atomic gas at thermal equilibrium does not in fact have maximal entropy, 
because of gravitational forces between the molecules. In a gas of sufficient 
size, these forces become significant, resulting in gravitational collapse, 
eventually leading to a singularity. The entropies of black holes can be calcu- 
lated and measured, and in fact this is a more stable state for the gas than its 
noncollapsed form. 

Thus we see that the overall entropy of this system has contributions 
from multiple components: in this case, thermal and gravitational entropy. In 
a similar way, physicists define a great array of types of entropies: nuclear, 
chemical, thermal, gravitational, positional, and entropies of mixing. Gibbs' 
paradox (Denbigh and Denbigh 1985, Chapter 4), when described in terms 
of nuclear isotopes, can be seen as a problem of sorting out nuclear from 
chemical entropy. Denbigh and Denbigh note that traditional solutions to 
Gibbs' paradox address the issue not as originally posed by Gibbs, as a 
problem of macroscopic thermodynamics, but rather as a problem of macro- 
scopic statistical physics. 

CONCLUSION 

By extension, we should be able to define entropies at other levels: for 
example, genetic, ecological, economic, or social. What are the restrictions 
on this process? It seems that we are in a clear position to say. In particular, 
all that is necessary is the identification of type-specific states of nature that 
conform to the axioms necessary for entropy measures. Of course, the 
results from the developments in thermodynamics will not necessarily follow 
to these new usages, but they may do so contingently. But to the extent that 
the concepts of order, organization, complexity, information, uncertainty, 
randomness, and variety are related to entropy measures, they then might 
apply to nonthermodynamic entropies as well. And perhaps new type- 
specific laws of nature at these new levels, or relations between these types 
and those at the thermodynamic levels, will also be forthcoming. 
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