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Abstract

Set-based statistics are necessary to generate possibility distributions from measured data. Methods

by which physical measurements can generate statistical data on real intervals are considered, including

trials from multiple heterogeneous measurement devices rather than a single instrument at multiple times;

classes of consistent intervals constructed from statistical data around a common point focus or interval

core; and consonant intervals constructed from statistical data.

1 Introduction

My overall interest is to expand the applications of possibility theory beyond its traditional uses in the
engineering of human-created technological systems (e.g. knowledge-based control systems, artificial intelli-
gence and approximate reasoning, etc.) to include the modeling of natural, complex systems. In order to
do this, it is necessary to extend the semantics of possibility beyond traditional interpretations based on the
uncertainty judgments of human subjects. Instead, a semantics of possibility that has meaning with respect
to natural systems is needed.

Existing empirical methods for deriving possibility distributions are frequency conversion methods, which
transform some measured probabilistic data into a possibilistic form [16]. Of course such transformations
must be used when only frequency data are available, but the resulting possibilistic representation is never
ultimately appropriate for data initially governed by a frequency distribution. When possibilistic data are
desired, it is always preferable to obtain them in a form more directly similar to their possibilistic represen-
tation.

The additivity of frequency data results from the specificity of observations of singletons, or indeed
elements of any disjoint class. Therefore, the first step towards possibilistic measurement is allowing for
the possibility of non-specific measurements, that is observations that are possibly non-disjoint. This is
essentially the concept of set statistics, originally advanced by Wang and Liu [17], and developed more by
Dubois and Prade [4, 6].

Frequency counts on subsets result in empirically derived random sets. In earlier papers, Joslyn [9, 10]
and Joslyn and Klir [11] considered methods for deriving a possibility distribution from a given empirical
random set. In this paper, methods for the collection of set statistics are developed, including direct collection
of interval data, and also generation of intervals from point-data streams.

2 Mathematical Preliminaries

We begin with the standard evidence and possibility theory [3, 14]. Given a finite universe Ω = {ωi}, 1 ≤
i ≤ n, the set function m: 2Ω 7→ [0, 1] is an evidence function (otherwise known as a basic assignment

or basic probability assignment) when m(∅) = 0 and
∑

A⊂Ω m(A) = 1. Denote a random set generated
from an evidence function as S = {〈Aj, mj 〉 : mj > 0}, where 〈 · 〉 is a vector, Aj ⊂ Ω, mj = m(Aj), and
1 ≤ j ≤ N = |S| ≤ 2n − 1. Denote the focal set as F = {Aj : mj > 0} with core C(F) =

⋂

F Aj. The
dual belief and plausibility measures on ∀A ⊂ Ω are Bel(A) =

∑

Aj⊂A mj and Pl(A) =
∑

Aj 6⊥A mj , where

A ⊥ B : = A ∩ B = ∅.
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The plausibility assignment (otherwise known as the contour function, falling shadow, or one-

point coverage function) of S is

~Pl = 〈Pl({ωi}) 〉 = 〈Pli 〉 , Pli =
∑

Aj3ωi

mj .

~Pl is a fuzzy set that can be mapped to an equivalence class of random sets [8].
When ∀Aj ∈ F , |Aj| = 1, then S is specific, and Bel(Aj) = Pl(Aj) = Pr(Aj) is an additive probability

measure with probability distribution ~Pl = ~p = 〈 pi 〉 with additive normalization
∑

i pi = 1. S is
consonant (F is a nest) when (without loss of generality for ordering, and letting A0 = ∅) Aj−1 ⊂ Aj.
Now Pl(Aj) = Π(Aj) is a possibility measure. As Pr is additive, so Π is maximal in the sense that

Π
(

⋃

j Aj

)

=
∨

j Π(Aj), where ∨ is the maximum operator. Denoting Ai = {ω1, ω2, . . . , ωi}, and assuming

that F is complete (i.e. ∀ωi ∈ Ω, ∃Ai), then ~Pl = ~π = 〈πi 〉 is a possibility distribution with maximal
normalization

∨

i πi = 1.

2.1 Consistency and Consonance

S is consistent when C(F) 6= ∅. Each consonant random set is consistent with core C(F) = A1, and F
being consistent is both necessary and sufficient for

∨

Pli = 1. Thus a consistent but non-consonant random

set has a maximal possibility distribution ~Pl = ~π, but its plausibility measure Pl is not a possibility measure
Π. While an additive probability distribution uniquely determines a measure and random set, a maximal
possibility distribution does not. However, a possibility measure Π∗ that is optimally approximate can be
constructed according to the formula ∀A ⊂ Ω, Π∗(A) =

∨

ωi∈A πi [5]. When S is already consonant, then of
course Π∗ = Pl = Π.

Dubois and Prade [3] suggest that the plausibility assignment of a consistent but non-consonant random

set ~Pl = ~π should not be taken as a possibility distribution, but rather should be used to derive a nest from
which a possibility distribution can be generated. That nest is the focal set of the constructed possibility
measure Π∗, denoted F∗ = {B∗

k}. The evidence for each focal element, denoted m∗
k = m(B∗

k), is given by
the formula

m∗
k =

∑

Aj⊂Bk

mj − m∗
k−1

where m∗
0 = 0. This method results in a greater constraint on the evidence provided by m, and thus the loss

of some information available in a consistent S (see example in Section 4).

2.2 Consistent Transformations

When F is not consistent, then
∨

Pli < 1. Here a set of focused consistent transformations Ŝi can be
constructed from S [10, 11]. ∀ωi ∈ Ω, Ŝi is a consistent approximation of S with evidence function [10]

m̂i(A) =

{

m(A) + m(A − {ωi}), ωi ∈ A
0, ωi 6∈ A

.

The effect is to create a core C(F̂i) = {ωi} with focus ωi = ω∗. Under the transformation Ŝi, the sub-

maximal plausibility assignment ~Pl = 〈Pl1, Pl2, . . . , Pli, . . . , Pln 〉 is transformed into a maximal possibility
distribution ~π = 〈Pl1, Pl2, . . . , 1, . . . , Pln 〉. Ŝi in turn generates a consonant random set Ŝπ

i , determined
from the constructed possibility measure Π∗ of ~π.

In using the transformation the task is to choose the “correct” ω∗ as a focus, and to elevate the plausibility
of that element to 1 as a possibilistic normalization. While there are many methods to choose ω∗, to date
only the Principle of Minimal Information Distortion [10] (or Information Loss [11]) has been studied. Given
a random set S, then that focused consistent transformation Ŝi is selected so that the total information
content of Ŝπ

i is as close as possible to that of the original S. Details of the measure of total information can
be found elsewhere [7, 10, 15].
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3 Empirical Random Sets

Assume that some phenomenal system can be described as a set Ω = {ωi}, 1 ≤ i ≤ n. A traditional concep-
tion of a measurement on Ω results in the observation of an element ωi ∈ Ω. For example, a thermometer
calibrated in integral degrees on the interval [0, 100] could yield a result of 72 degrees, 72 ∈ {0, 1, . . . , 100}.

Assume a counting function c: Ω 7→ I, ci = c(ωi), where ci is the number of observations of ωi. Then
for a total number of counts as N , the frequency distribution on Ω is f : Ω 7→ [0, 1], f(ωi) = fi = ci/N .
Since

∑

i fi = 1, therefore f is a natural probability distribution on Ω with an additive measure F : 2Ω 7→
[0, 1], F (A) =

∑

ωi∈A fi.

3.1 General Measuring Devices

However, most real measuring devices are not like this, due to necessary measurement uncertainty. Most
measurements produce an observation of some subset A ⊂ Ω, perhaps an interval A ⊂ <. The observation
of the interval A leaves uncertainty as to the “actual” value ω ∈ A.

It may be that not all subsets are observable. Thus a general measuring device is defined as a class
C = {Aj′} ⊂ 2Ω, 1 ≤ j′ ≤ N ′. The nature of the measuring device will depend on the elements and structure
of C.

Assume a collection of set observations Ak ∈ C, 1 ≤ k ≤ M . In general, for some k1, k2, it may be that
Ak1 = Ak2 . Therefore the Ak form a multi-set, denoted as a vector ~A =

〈

A1, A2, . . . , AM
〉

. The empirically

derived focal set FE ⊂ C is the set of subsets that are actually observed in ~A. FE is derived by eliminating
the duplicates in ~A. Let FE = {Aj}, where FE ⊂ C, 1 ≤ j ≤ N ≤ N ′, N ≤ M and ∀Aj ∈ FE , Aj ∈ ~A, and
inclusion of an element in a vector is defined as would be expected.

Now establish a set-counting function C:FE 7→ I, Cj = C(Aj), where ∀Aj ∈ FE , Cj is the number of

occurrences of Aj in ~A. Finally the set-frequency function is arrived at

mE :FE 7→ [0, 1], mE(Aj) = mE
j =

Cj
∑

Aj∈FE Cj
= Cj/M.

The intention is obvious: since
∑

j mE
j = 1 and ∅ 6∈ FE , therefore mE is a natural evidence function on Ω

generating an empirically derived random set denoted SE .

3.2 Disjoint Measuring Devices

Generally, scientists strive to construct measuring devices for which C is disjoint; that is, ∀A1, A2 ∈ C, A1 ⊥
A2. In such classical measuring devices, C is an equivalence class on Ω, yielding an observation of an Ak ∈ C
unambiguous.

Virtually all traditional measuring devices are of this type. A typical example could be a thermometer,
where Ω ⊂ < is some distance along a glass tube marked at certain points, say dj, with a certain number
of degrees. The A could then be the disjoint, equal length, half-open intervals Aj = [dj, dj+1). Observation
of a specific position of the mercury (an ω ∈ Aj) yields a specific Aj reading for the temperature. The size
of the Aj relative to the size of the tube indicates the precision of the thermometer. While any particular
interval Aj is usually identified with one degree reading (either dj or dj+1), it must always be kept in mind
that it in fact indicates the entire interval [dj, dj+1).

Because the Aj are disjoint, observation of any one particular interval admits to no uncertainty at the level

of description of C. Thus in this case C itself can be considered as a new universe of discourse Ω′ = C = {Aj}.
Because the Aj are disjoint, so will the Ak.

Now mE is the frequency of the disjoint Aj , and is thus a true probability distribution, and not an
evidence function proper. Measurements from a classical measuring device are usually parameterized in
time k, yielding the observations Ak as time-series point data. An additive distribution and measure are
derived as for frequencies above

c′: Ω′ 7→ I, f ′: Ω′ 7→ [0, 1], F ′: 2Ω′

7→ [0, 1]

c′(Aj) = c′j = C(Aj), f ′(Aj) = f ′
j = mE

j ,
∑

j

f ′
j = 1, F ′(B ⊂ Ω′) =

∑

Aj∈B

f ′
j .
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4 Instrument Ensembles

One way to generate measurements of intersecting subsets is to use an ensemble of classical instruments. That
ensemble can be considered as either multiple, heterogeneous instruments taking separate measurements at
the same time, or as a single instrument which is changing its structure over time.

Let Ck =
{

Ak
j′

k

}

, 1 ≤ j′k ≤ N ′
k = |Ck| be disjoint classes on Ω, and F = {Ck} be the family of such classes,

1 ≤ k ≤ M . The natural partial order on F is

C1 ≺ C2 : = ∀A2
j2 ∈ C2, ∃{A1

j1} ⊂ C1, A2
j2 =

⋃

A1
j1 .

When C1 ≺ C2 then C1 refines C2, and C2 coarsens C1. For example, C1 could be a thermometer reading in
tenths of degrees, while C2 could belong to a mutually calibrated thermometer reading in whole degrees. F

is consonant whenever the Ck are all comparable under ≺ (they are all mutual refinements or coarsenings).

Leting Ak be the subset observed in device Ck, then the vector of observations over F is ~A =
〈

Ak
〉

, | ~A| =

M , and ~A generates the empirical random set SE as described in Section 3.1. If any of the Ck share common
members (in particular, if any of them are equal), then some of the Ak may be equal, yielding multiple

observations in ~A of certain subsets. Otherwise, all subsets will be observed a single time, and will not
necessarily be disjoint.

Assume observations from two devices, say A1 ∈ C1 and A2 ∈ C2. It is expected that A1 6⊥ A2. In the
event that A1 ⊥ A2, then at least one of the devices C1 or C2 would be regarded as being in error, or perhaps
even the assumption of the “reality” of the quantity being measured would be questioned. Thus, while there
is nothing in the mathematics that would preclude such a result, pragmatic conditions require that FE be
consistent, so that SE has a natural possibility distribution π and at worst a constructed possibility measure
Π∗. In the event that FE is nevertheless not consistent, and there are pragmatic reasons for accepting the
results of the measurement, then the focused consistent transformation method outlined in Section 2.2 is
available to construct consistent random sets Ŝi.

When F is consonant, then without loss of generality for ordering, C1 ≺ C2 ≺ . . . ≺ CM . Here if FE is
consistent, then it must also be consonant, with A1 ⊂ A2 ⊂ . . . ⊂ AN . Of course, in this case a possibilistic
analysis is less useful than it would be otherwise, since there is an absolute gain in accuracy in the movement
towards the finest measurement A1. Nevertheless, the mathematical analysis is available.

Example 1: Let Ω = [0, 5] ⊂ < and define a family F of four measuring devices

C1 = {[0, 1), [1, 2), [2, 3), [3, 4), [4, 5]}, C2 = {[0, 1), [1, 2), [2, 3.5), [3.5, 5]},
C3 = {[0, 1.5), [1.5, 3.5), [3.5, 4), [4, 5]}, C4 = {[0, 1.5), [1.5, 4), [4, 5]},

so that M = 4. F is not consonant, but C3 ≺ C4. Measurements are made on each instrument yielding
a vector of four measurements (Figure 1)

~A = 〈 [1, 2), [1, 2), [1.5, 3.5), [1.5, 4)〉 .

After eliminating duplicates, the set of observed intervals FE is derived with N = 3 < M and random

-

0 1 2 3 4 5

C1

C2

C3

C4

Figure 1: Measurements on four instruments.

set SE

FE = {[1, 2), [1.5, 3.5), [1.5, 4)}, SE = {〈 [1, 2), .5〉 , 〈 [1.5, 3.5), .25〉 , 〈 [1.5, 4), .25〉}.
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FE is consistent with core C(FE) = [1.5, 2), the region on which π = 1. π(ω) is determined by
π(ω) =

∑

Aj3ω mE
j , so that

π(ω) =























.5, ω ∈ [1, 1.5)
1, ω ∈ [1.5, 2)
.5, ω ∈ [2, 3.5)
.25, ω ∈ [3.5, 4)
0, elsewhere

as shown in Figure 2.

0.25

0.5

0.75

1

0 1 2 3 4 5

π(ω)

ω

Figure 2: π determined from SE .

Dubois and Prade’s method described in Section 2.1 results in the consonant random set

{〈 [1.5, 2), 0〉 , 〈 [1, 3.5), .75〉 , 〈 [1, 4), .25〉}

and possibility distribution shown in Figure 3. Comparing Figures 2 and 3, it can be seen that reliance
on the consonant class and its greater constraint results in a loss of distinctions of possibility values
over portions of the possibility curve.

0.25

0.5

0.75

1

0 1 2 3 4 5

π∗(ω)

ω

Figure 3: π∗ determined from Dubois and Prade’s method.

Because FE is finite, π is piecewise continuous, consisting of a union of constant segments. Also,
because C(FE) is connected, π is unimodal at C. Therefore π in this example, and in the sections
to follow, has the form of a centrally peaked staircase. As |FE| −→ ∞, π approaches the traditional
forms for possibility distributions (e.g., fuzzy numbers [2]).

5 Consistent Intervals from Focused Point Data

Even given a single measuring device and time-series data gathered on it (as discussed in Section 3.2), which
is our normal concept of measurement, interval data can still be generated. Since classical instruments
generate observations of disjoint intervals that can be regarded as distinct points in a higher-level state
space, therefore in the following sections a single measuring device that yields observations of points in a
lower-level state space, a closed interval Ω ⊂ <, will be considered.
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Denote an observation as a data point d ∈ Ω, and the collection of data as a data stream, a multiset
denoted as the vector ~D = 〈 di 〉 , 1 ≤ i ≤ n. The set generated by eliminating duplicates in ~D is the data

set D = {d′
i}, 1 ≤ i ≤ n′ ≤ n.

A possibilistic analysis of ~D will be approached by using its order statistics [1]. For a given data stream
~D, the order statistics, denoted d(i), are a permutation of the di such that d(1) ≤ d(2) ≤ . . . ≤ d(n). d(1) and

d(n) are called the extremes, and the range interval is W =
[

d(1), d(n)

]

. The order statistics of the data set

D′ are d′
(i), 1 ≤ i ≤ n′. The d′

(i) naturally generate the disjoint intervals δi =
[

d′
(i), d

′
(i+1)

)

, 1 ≤ i ≤ n′ − 1.

For completeness, let δn′ =
[

d′
(n′), d

′
(n′)

]

=
{

d′
(n′)

}

. Let the set of disjoint intervals be ∆ = {δi}, so that
⋃

δi∈∆ δi = Ω.

5.1 Focused Data Intervals

∆ thus represents a classical measuring device with the δi partitioning W , and so the greatest problem with
deriving a possibility distribution from ∆ is the lack of a focus, or any core. Thus we posit the existence of a
focus u ∈ W . The purpose of u is to provide a value on which all the intervals (yet to be determined) agree;
a value for which π(u) = 1. u naturally divides W into left and right sub-intervals denoted Wl =

[

d(1), u
)

and Wr =
(

u, d(n)

]

so that Wl ∪ [u, u]∪ Wr = W .
Given a focus u ∈ W , then ∀d(i) 6= u, d(i) ∈ Wl or d(i) ∈ Wr. Denote the intervals Ai, 1 ≤ i ≤ n as

follows:

Ai =







[

d(i), u
]

, d(i) ∈ Wl
[

u, d(i)

]

, d(i) ∈ Wr

[u, u] , d(i) = u
.

Since

d(i1), d(i2) ∈ Wl, i1 ≤ i2 → Ai2 ⊂ Ai1 ; and d(i1), d(i2) ∈ Wr , i1 ≤ i2 → Ai1 ⊂ Ai2 ,

therefore each of the sets of intervals

Fl = {Ai : d(i) ∈ Wl}, Fr = {Ai : d(i) ∈ Wr},

are nests. Since ∀i, u ∈ Ai, the total set {Ai} is consistent, forming a focal set FE = Fl ∪ Fr with core

C(FE) = [u, u] = {u}. SE is then constructed from the counts of the d(i) ∈ ~D of the corresponding interval
Ai.

Generally, each d(i) will generate a single count for the interval Ai. However, if ∃i1, i2, A
i1 = Ai2 then

multiple counts will be generated as discussed in Section 4. If u = d(1) or u = d(n) then FE will actually be
consonant.

Example 2: As above, let Ω = [0, 5], and assume that n = 6 point observations in Ω are taken giving the

data stream ~D = 〈 2, 1, 4, 1.5, 2, 4.5〉. The order statistics are

d(1) = 1, d(2) = 1.5, d(3) = d(4) = 2, d(5) = 4, d(6) = 4.5

and W = [1, 4.5]. The corresponding data set is D′ = {1, 1.5, 2, 4, 4.5} so that n′ = 5 < n, with order
statistics and disjoint intervals

d′
(1) = 1, d′

(2) = 1.5, d′
(3) = 2, d′

(4) = 4, d′
(5) = 4.5

∆ = {[1, 1.5), [1.5, 2), [2, 4), [4, 4.5), [4.5, 4.5]}

Assuming that u ∈ [2, 4], then the focal and random sets (Figure 4, with u = 3) are

FE = Fl ∪ Fr = {[1, u], [1.5, u], [2, u]}∪ {[u, 4], [u, 4.5]},

SE = {〈 [1, u], 1/6〉 , 〈 [1.5, u], 1/6〉 , 〈 [2, u], 1/3〉 , 〈 [u, 4], 1/6〉 , 〈 [u, 4.5], 1/6〉} .

The possibility distribution is shown in Figure 5.
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-

0 1 2 3 4 5

1 2
3
4 5 d(i)

ω

u

6

A1

A2

A3

A4

A5

A6

Wl Wr

W

1 2 3 4 5 d′
(i)

Figure 4: Consistent family from focused data set.

1/3

2/3

1

0 1 2 3 4 5

π(ω)

ω

Figure 5: Derived possibility distribution.
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5.2 Choice of Focus

So far the method by which the focus u can be chosen has not been discussed. While a number of methods
suggest themselves, selection of methods will depend on user methodology and further empirical research.
However, in Example 2 the first four methods below all yield u ∈ [2, 4], which is the inner interval of ∆ (see
Section 6).

Sample Mean: Selection of

u = D̄ =
∑

di/n

is a possibility, although one that is not in keeping with possibilistic concepts. In our example, this
would yield u = 2.5.

Range Midpoint: The midpoint of W , denoted W̄ , is much more in keeping with possibilistic concepts:

u = W̄ =
d(1) + d(n)

2
.

It expresses something like the concept of a “possibilistic sample mean”. This would yield u = 2.75 in
the example.

Closest to Range Midpoint: There may be some value in having u actually be one of the data points, so
that u ∈ D′. This can be done by selecting that d′

i ∈ D′ closest to W̄ (yielding u = 2 in our example):

u = min
d′

i
∈D′

|d′
i − W̄ |.

Data-Set Midpoint: The middle point of the data set itself can be chosen, that is

u = d′
(

n′+1
2

)

if n′ is odd. If n′ is even, then either

u = d′
(n′/2) or u = d′

(n′

2 +1)
.

Alternatively, if n′ is even then the midpoint of the central interval can be selected:

u =
d′
(n′/2) + d′

(n′

2 +1)

2
.

Information Principles: Finally, the Information Principles introduced in Section 2.2 can be applied to
the problem [11, 12]. Again, details will not be given here. Selection of u can be regarded as a problem
of ampliative reasoning, of making an inductive inference beyond the given information. Then the
Principle of Maximum Uncertainty can be invoked, which states that u should be chosen so as to
maximize the total uncertainty of the resulting random set, or of the final possibility distribution.

Alternatively, selection of u can be regarded as one of transformation from the frequency distribution
of ~D to a possibility distribution. Then the Principle of Uncertainty Invariance [13] or Minimal In-
formation Distortion [10] can be used, which states that u should be chosen so as to make the total

uncertainty of SE as close as possible to the entropy ~D.

6 Interval Cores

A potential disadvantage of the methods in Section 5 is the reliance on a singleton-valued core set C(FE) =
{u}, while the other elements of the method are the intervals δi and Ai. Instead, methods that yield an
interval-valued core can be considered. A disadvantage of these methods is that they may eliminate some
data points, thus loosing some information from the resulting SE .
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Let ~D, D′ and ∆ be given as above. Now identify the core as an interval in the range with endpoints
Cl and Cr , so that C = [Cl, Cr] ⊂ W . Assume for the moment that 6∃d(i) ∈ C. Then the left and right

ranges can be redefined as Wl =
[

d(1), Cl

)

and Wr =
(

Cr, d(n)

]

, so that Wl ∪ C ∪ Wr = W . Also redefine
the intervals Ai as follows:

Ai =

{ [

d(i), Cr

]

, d(i) ∈ Wl
[

Cl, d(i)

]

, d(i) ∈ Wr
.

Again Fl and Fr are nests, so that FE = Fl ∪ Fr is consistent with core C(FE) =
⋂

Ai = C.

If ∃{d(k)} ⊂ C, then a new data set ~D− = ~D − {d(k)} is defined, where the operation − of a set from a

vector is just the elimination of ∀d(k) from ~D. Corresponding new d−
(i), D

′−, etc. can be generated without

special treatment.

6.1 Choice of C

As with the selection of point foci, there are a variety of methods by which an interval core can be selected.

Central Disjoint Interval: If n′ is even, then a central disjoint interval is naturally generated from the
data set D′:

C = δn′/2.

Since d′
(n′/2), d

′

(n′

2 +1)
∈ C, all instances of them will be eliminated from ~D in forming ~D−.

Modified Central Interval: If n′ is odd, then there are two disjoint intervals on either side of d′
(

n′+1
2

).

Thus a core would be selected
C = δn−1

2
∪ δn+1

2
,

that eliminates instances of the three data points d′
(

n′
−1
2

), d′
(

n′+1
2

), and d′
(

n′+3
2

) from ~D.

Alternatively, the midpoints of the two disjoint intervals around d′
(

n′+1
2

) can be selected as the endpoints

of C:

C =





d′
(

n′
−1
2

) + d′
(

n′+1
2

)

2
,

d′
(

n′+1
2

) + d′
(

n′+3
2

)

2



 .

Disjoint Interval Around Focus: Given a method from Section 5.2 to select a point focus u, then C can
just be selected as the data-generated disjoint interval around u:

C = δi, u ∈ δi.

As above, instances of d′
(i) and d′

(i+1) will be eliminated from ~D.

Confidence Interval Around Focus: It may be appropriate for the user to involve some traditional sta-
tistical information. Again, given some focus u, then C can be selected as the interval within a standard
deviation of u:

C =
[

u − σ(~D), u + σ(~D)
]

.

Information Principles: Methods of Uncertainty Maximization or Invariance can be applied, as discussed
in Section 5.2.

7 Consonant Intervals from Focused Point Data

It may be desirable to go as far as generating consonant, not just consistent, families from a data stream ~D.
However, as the methods progress from consistent families with point focuses, through consistent families
with interval cores, to consonant classes, the constraint on SE increases, thus loosing information available in
the original ~D. This is reflected in the loss of some data points in the interval core methods, and in roughly
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half the number of available intervals from the following consonant methods. Thus as with the case of an
ensemble of measuring devices (Section 4), use of strictly consonant cases may be less useful than simply
consistent cases.

Again, a number of methods present themselves.

Inner Nested Intervals from Interval Core: Assume that an interval core C = [Cl, Cr ] has been de-
termined according to some method discussed in Section 6.1. Denote A1 = C, and construct a set of
intervals Ak =

[

Ak
l , Ak

r

]

such that Ak
l , Ak

r ∈ D′ and Ak ⊂ Ak+1. Given an interval Ak, then Ak+1 is
the nearest interval determined by D′ containing Ak

Ak+1
l = max

d′

(i)
∈D′

d′
(i) < Ak

l , Ak+1
r = min

d′

(i)
∈D′

d′
(i) > Ak

r .

The Ak are available up to a maximal Abn′/2c = W . FE = {Ak} is then a consonant class. The count

of Ak can be determined as the maximum number of occurrences of either endpoint of Ak in ~D.

Inner Nested Intervals from Point Focus: Assume instead that a point core u ∈ W has been deter-
mined according to some method discussed in Section 5.2. Now simply let A1 = [u, u] and apply the
method above.

Outer Nested Intervals: Proceed in the opposite direction from above. Now define A1 = W , and con-
struct Ak+1 from Ak as follows:

Ak+1
l = min

d′

(i)
∈D′

d′
(i) > Ak

l , Ak+1
r = max

d′

(i)
∈D′

d′
(i) < Ak

r .
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