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Abstract 

Possibility theory is  a new mathematical theory for 
the representation of uncertainty.  It is related to ,  but 
distinct from, probability theory,  Dempster-Shafer evi- 
dence theory, and fuzzy set  theory.  It has been applied 
almost exclusively t o  knowledge-based engineering sys- 
tems,  with measurements taken f r o m  subjective evalu- 
ations.  Toward the end of developing a strictly possi- 
bilistic semantics of natural systems,  the following will 
be considered: the semantics of possibility s tatements  
in relation t o  modal logic, natural language, and math- 
ematical possibility theory; a strong consistency rela- 
t ion for probabality and possibility; the basis for the 
application of possibility theory t o  complex systems; 
and physical measurement procedures for possibility. 

1 Introduction 

Possibility theory, as a new method for the rep- 
resentation of uncertainty, is similar to, and yet dis- 
tinct from, probability theory. Together with other 
new mathematical theories of uncertainty (fuzzy sets, 
fuzzy measures, Dempster-Shafer evidence theory, and 
random sets), they comprise the field of Generalized 
Information Theory (GIT) [12]. 

Although possibility and probability are formally 
independent, they are related within evidence theory 
in that both are fuzzy measures, and within fuzzy the- 
ory in that their distributions are fuzzy sets. But while 
possibility theory has almost always been related di- 
rectly to fuzzy set theory, probability theory has been 
regarded as independent from it. This confusion may 
have resulted from the fact that possibility theory is a 
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very weak representation of uncertainty, whereas prob- 
ability makes very strong requirements. 

Furthermore, the wedding of possibility theory to 
fuzzy sets has relegated possibility to interpretation 
in strict accordance with fuzzy semantics. Since the 
founding of fuzzy theory by Lotfi Zadeh in the 1960’~~ 
fuzziness has been interpreted almost exclusively as a 
psychological form of uncertainty, expressed in natural 
language (or “linguistic variables”), and measured by 
the subjective evaluations of human subjects. 

It is now necessary to develop a possibilistic se- 
mantics of natural systems that is independent of both 
fuzzy sets and probability. This will be done within 
the context of the mathematics of possibility theory 
(in relation to fuzzy sets and probability) and the 
meaning of possibility statements (in natural language 
and probability theory). A strong consistency princi- 
ple of probability and possibility leads to the consid- 
eration of the conceptual basis for the interpretation 
of possibility in processes and in complex systems. 

2 Review of possibility theory 

First, the mathematical confluence of evidence the- 
ory, probability, fuzzy sets, and possibility theory is re- 
viewed [2,6,  141. Given a finite universe R = {Wi } ,  1 5 
i 5 n, the set function rn: 2“ H [0,1] is an evidence 
function (otherwise known as a basic probability 
assignment) when m(0) = 0 and CAcnm(A) = 1. 
The random set generated by an evidence function 
is S = {(Aj ,mj )  : mj > O}, where ( . )  is a vector, 
Aj c R,mj = m(Aj), and 1 5 J’ 5 (SI 5 2” - 1 .  De- 
note the focal set as T = {Aj : mj > 0) with core 

The dual belief and plausibility measures VA C R 

and are both fuzzy measures. The plausikility as- 
signment (otherwise known as the contour func- 

C ( T )  = r ) A J E F  4 .  

are Bel(A) = CA,CA mj and Pl(A) = CA .nA#e mj, 
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tion, falling shadow, or one-point coverage func- 
tion) of S is 

pi = (~ l ({wi ) ) )  = (PI; ) , ~ l i  = mj. 
A j 3 w .  

When VAj E 3 ,  lAjl = 1, then S is specific, and 
VA c Q,Bel(A) = Pl(A) = Pr(A) is a probability 
measure with probability distribution Fl = p’ = 
( p; ), additive normalization xi p;  = 1, and operator 

~ 

Pr(A) = C w , E A  P i -  
S is consonant (F is a nest) when (without loss 

of generality for ordering, and letting Ao = 0) Aj-1 C 
Aj. Now Pl(A) = II(A) is a possibility measure 
with dual necessity measure Bel(A) = q(A). These 
are related in that VA c R 

D(A) = 1 - q( X), q(A) = 1 - D( X) (1) 

q(A) > 0 + II(A) = 1, II(A) < 1 --f q(A) = 0. 
(2) 

As Pr is additive, so Il is maximal in the sense 
that VA1,Aa E 3, I l (Al  U Az) = II(A1) V D(A2), 
where V is the maximum operator. Denoting Ai = 
{wl,w2, . . .,U,}, and assuming that F is complete 
(Vw; E R,3Ai E F), then Fl = R‘ = ( x i )  is a possi- 
bility distribution with maximal normalization and 
operator 

The core of S is then 

C(S) = A i  # 8. (4) 

A fuzzy subset F of R is defined by its mem- 
bership function p ~ :  s1 c, [0,1], which is a general- 
ization to the unit interval from the set ( 0 , l )  of the 
characteristic function for crisp sets. Let the cardi- 
nality of a fuzzy set be IF1 = xi p ~ ( w ; ) .  Kampk de 
Fkriet has shown [ll] that for countable R,  and for 
some random set S and fuzzy set F taken as a vector, 
that: 

2 1 iff can be taken as a plausibility assign- 
ment 61; 
similarly, IF1 5 1 iff F can be taken as a “belief 
assignment” BGl = (Bel({w;}) ); and finally 

= 1 iff F can be taken as a probability distri- 
bution p‘. 

In the first two cases, only a mapping back to an equiv- 
alence class of random sets is guaranteed, whereas 
in the last case each additive fuzzy set maps to a 
unique specific (probabilistic) random set. Finally, if 
Vipp(w;) = 1 then the first case holds, but Fl = j? 

is also a possibility distribution mapping back to an 
equivalence class of consonant (possibilistic) random 
sets [SI. 

A number of researchers are developing possibility 
theory into a complete, alternative information the- 
ory. Unique measures of information - analogs of 
stochastic entropy - have been developed [13], and 
pmibilistic automata have recently been defined [9]. 

Probability and possibility are formally comple- 
mentary and independent, rarely even defined on the 
same random sets. They refer to distinct forms of 
uncertainty, each with its own internal logic. Proba- 
bility represents a highly constrained, indeed a maxi- 
mally strong, form of uncertainty, whereas possibility 
is very weak. The specificity, additive normalization, 
identity of P1 and Bel, and functional mapping of dis- 
tributions to measures of stochastic random sets all 
represent maximal constraint. In contrast, the non- 
specificity, maximal normalization, and maximal di- 
vergence of the fuzzy measures of possibilistic random 
sets all indicate the weak constraints represented by 
possibilistic uncertainty. The semantic consequences 
of this will be explored in Section 5 below. 

3 Classical semantics of possibility 

Historically, the concept of possibility has been 
based on the view that events can (and should) be 
classified as either strictly possible or impossible. This 
is the case in modal logic, natural language, and prob- 
ability theory. In extending these concepts to include 
graded possibility, there is no need to avoid, and in- 
deed every need to embrace, compatibility with this 
“crisp” case. This is exactly the spirit of the crucial 
extension principle of fuzzy theory, which states 
that everything that holds for crisp sets must hold 
for fuzzy sets in the limit of crisp membership grades. 

3.1 Modal possibility 

Possibility and the closely related concepts of neces- 
sity, impossibility, and contingency have a long history 
in philosophy. In modern philosophy these ideas are 
represented in modal logics [?‘I. For a proposition p, 
the possibility statement M ( p )  and necessity state- 
ment L(p)  are related in all axiomatizations according 
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to the formula 

where 7 is logical negation. It is comforting to note the 
equivalence of the dualities of Equation 5 and Equa- 
tion l under the appropriate translation. 

Since Aristotle, modal logic has been a crisp the- 
ory, with propositions being explicitly possible, nec- 
essary, impossible, or contingent. “Quantified” modal 
operators have been introduced to unite predicate and 
modal logic, allowing expressions such as Vz, L ( p ( z ) ) .  
But no multi-valued modal logic has been introduced 
to allow expressions of the form L ( p )  = .5, meaning 
“ p  is half-necessary” . 

Modal logic remains a highly mathematical form 
of philosophy, with little or no application in science, 
and no physical measurement or interpretation proce- 
dures. It provides a robust mathematical theory of 
crisp possibility, but little more. 

3.2 Natural language possibility 

The criteria for possibilistic semantics should also 
be constrained by the natural language senses of pas- 
sibility. For example, we might observe a die with six 
faces, and so let R = {1 ,2 ,3 ,4 ,5 ,6} .  Each face is a 
possible outcome for which there is neither qualifica- 
tion nor quantification: all faces are just possible. We 
may then question whether the die is fair or not, and 
consider the distribution of the various faces’ occur- 
rences. But this is then embarking on a probabilistic 
analysis; there is never any question that each face 
is completely possible, no matter how unevenly likely 
they may be. 

Another factor in the common language usage of 
crisp possibility is the relation of possibility to occur- 
rence. One definition of “possibility” offered by Web- 
ster is “being something that may or may not occur’’ 
[21]. Nather [18] observes: “The popular meaning of 
possibility [is]: events which take place at least one 
time are possible (but not necessarily probable)”. The 
conclusion is obvious: something that actually hap- 
pens must be possible. This property will be crucial in 
the following development: if an event A c R is ob- 
served to occur, then (since this is yet the crisp case) 
II(A) = 1. 

But just because an event has not occurred does 
not mean that it cannot occur, that it is not possible, 
perhaps even completely possible. Some event may be 
possible, but has simply not occurred yet .  The die may 
be hidden to us before it is rolled, and each roll may 
produce a new face not previously seen. Just because 

a five has not yet appeared does not mean that a five is 
not possible, only that it may or may not be possible. 
But once all six faces have been observed at least once, 
then they must be given unitary possibility. Therefore 
0 < II(A) 5 1 means that A is possible, in the sense 
of “not prohibited”, but also not necessarily seen. 

3.3 Stochastic possibility 

Possibility theory exists as part of GIT, and stands 
in close relation to probability, both being fuzzy mea- 
sures with distributions. In moving away from crisp 
possibility to consider the semantics of graded possi- 
bility, it is reasonable to take the semantics of proba- 
bility into account. 

Kosko reminds us that “After the fact ‘randomness’ 
looks like fiction [16],” referring to the well-known 
“paradox” of probability statements: if after flipping 
the coin a heads is observed, what sense does it make 
to say that the probability of heads is one half? Some 
suggest that once an event A has occurred, then it 
should be realistically said that Pr(A) = 1. Surely 
then it must also be said that II(A) = 1. This is in 
keeping with the idea that occurrence implies com- 
plete possibility. 

In their seminal article on possibility theory [5],  
Gaines and Kohout go further in considering the sta- 
tus of possibility and probability statements over time. 
They observe that a “likely” event A, here interpreted 
as Pr(A) > 0, actually has the property of eventual- 
ity: with increasing time the aggregate probability of 
A occurring approaches arbitrarily close to one. Their 
discussion deserves quotation at length. 

We have been very concerned to embody 
in our formulation the distinction between 
possible events that may not occur and possi- 
ble events that are guaranteed t o  occursooner 
or later . . . Note that probability theory does 
not provide an explicatum of the first type 
of possible event. If for the purposes of ana- 
lyzing an uncertain system we assign an un- 
certain event a non-zero probability then we 
imply that not only may it occur but also, 
in a sequence of occurrences each of which 
may be that event, it eventually will occur 
with a probability arbitrarily near one. The 
notional assignment of a definite probabil- 
ity to an event also fails to provide an ad- 
equate explicatum of the second type of pos- 
sible event because it has the stronger im- 
plication that the relative frequency of such 
events in a sequence will tend to converge to 
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the given probability with increasing length 
of sequence. 

Either or both of these connotations 
which probability has over possibility may be 
too strong in practical situations where the 
concepts of probability theory are being used 
to express the effects of uncertain behavior. 
For example, we are often faced with situa- 
tions where an event E may  occur, but there 
is no guarantee that E actually willoccur, no 
matter how long we wait. If we ascribe some 
arbitrary probability to E then we certainly 
express that it is a possible event. However 
we are in a position to derive totally unjus- 
tified results based on the certainty of some 
eventual occurrence of E ,  or meaningless nu- 
meric results based on the actual "probabil- 
ity" of occurrence of E.  

The possibilistic idea of occurrence should be ex- 
tended to include the idea that if an event A must 
occur sometime,  that is if A is eventual, then similarly 
II(A) = 1. 

This states that something having non-zero probabil- 
ity is, following Gaines and Kohout, likely, and there- 
fore eventual, and therefore equivalent to its being 
completely possible. Conversely, a properly possible 
event @(A)  < 1) must be of probability measure zero, 
and probability zero may or may not indicate proper 
possibility. 

This is also completely in keeping with the standard 
probabilistic sense of the term "possible", in which 
a possible state is one with a non-zero probability. 
Starke expresses this view in his book on automata. 

We can apply non-deterministic automata 
to describe the "possibilities" of a given 
stochastic automaton in that we call "possi- 
ble" those things which have a positive prob- 
ability of being turned out. [19, p. I451 

Starke's view of possibility is crisp, and thus the in- 
terpretation is that Pr(A) > 0 .-.+ II(A) = 1. 

By Principle 1 an event may have zero probability 
and still have some degree of necessity, or a positive 
probability and no degree of necessity. 

Corollary 2 If Pr as GK-consistent with II on 2", 
then q(A) > 0 -. Pr(A) > 0, and q(A) = 0 + 

4 Probability and possibility consis- p r ( ~ )  = 0. 
tency 

Proof: If q(A) > 0, then by Equation 2, II(A) = 1, 
and so 1, Pr(A) > 0. I f d A )  = 0, then by 
Equation 2, nI(A) < 1, and so by Principle 1, Pr(A) = 

If a probability and possibility measure are GK- 

The observations of Section 3 lead directly to the 
following strong consistency requirement for possibil- 
ity and probability statements. 0. 

4.1 A strong consistency criterion consistent, then so are their (discrete) distributions. 

Definition 1 (GK-consistency) A function f is  
Gaines-Kohout-consistent, or just  GK-consistent,  
with a functaon g on a set X = {z} 28 f , g : X  ++ [0,1] 
and Vz E X ,  f(z) > 0 H g(z) = 1. 

Corollary 1 Iff is GK-consistent with g on X then 

Proof: Follows trivially from the restrictions 

Vz E x, f(z) = 0 * g(z) < 1. 

f(z),s(z) E [O, 11. 

Principle 1 (Probability-Possibility Consistency) 
Given a probability measure Pr and possibility mea- 
sure 11 then Pr should be GK-consistent with 11 on 
2". 

Simply stated, 

VA C R Pr(A) > 0 * II(A) = 1 
Pr(A) = 0 - II(A) < 1. 

Theorem 1 If Pr is GK-consistent with ll on 2", 
then p' is  GK-consistent with if on Q. 

Proof: p :  R c-) [0,1] and x :  R H [0,1], so the first 
condition of Definition 1 is satisfied. Case 1: Assume 
3w E R, 3a = p ( w )  E (0,1], 36 = .(U) E [0,1). Then 
Pr({w}) = a > O, I I ( {w } )  = b < 1, which violates 
the GK-consistency of Pr with II on 2". Therefore 
Vw E R,p(w) > 0 +- x ( w )  = 1. Case 2: Assume 3w E 
R,x(w) = l,p(w) = 0. Then I I ( { w } )  = l,Pr({w}) = 
0, which violates the GK-consistency of Pr with II on 
2". Therefore Vw E R, .(U) = 1 --+ p ( w )  > 0. 

4.2 General consistency requirements 

Aside from the subjective evaluation methods for 
determining possibility values mentioned in Section 1, 
it is also common to derive a possibility distribution 
by applying a conversion method to some given prob- 
ability distribution [15]. These methods have been 
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guided by a general principle of probability-possibility 
consistency, briefly stated by Delgado and Moral as 
“the intuitive idea according to which as an event is 
more probable, then it is more possible [l],” and sum- 
marized most generally by the formula 

VA C R, Pr(A) 5 II(A). (6) 

Zadeh proposed a quantitative measure of this consis- 
tency 

C(.’,P’) = *;pi E [O, 11 
i 

in his initial introduction of possibility theory [22]. 
C(?,F) = 0 indicates complete inconsistency and 
C(i?,@) = 1 complete consistency. If C(i?,p’) = 1, 
then Equation 6 ho1ds.l 

Principle 1 is a stronger case of Zadeh’s consistency: 
GK-consistency implies that C = 1, but not vice versa. 

Theorem 2 If p i s  GK-consistent with ?r on R, then 
C(?,p’) = 1. 

Proof: If p;  > 0, then ? ~ j  = 1 and p ; q  = p i .  If p;  = 0 
then p , r j  = 0. Therefore C p j n ;  = C p i  = 1. m 

4.3 Consequences of strong consistency 

It should not be overlooked that Principle 1 is a 
deliberately strong requirement. But it should also 
be observed that it is not a definition: probability 
and possibility have been well defined in Section 2. 
Nor is it a theorem: probability and possibility are 
almost never even defined on the same random sets 
for comparison according to Principle 1. 

Instead it is a principle which we assert as a se- 
mantic criterion, intended to relate different aspects 
of GIT in accordance with this extra-theoretical con- 
sideration. Zadeh also emphasized this point when he 
advanced his consistency measure C. 

It should be understood, of course, that the 
possibility-probability principle is not a pre- 
cise law of a relationship that is intrinsic in 
the concepts of possibility and probability. 
Rather it is an approximate formalization of 
the heuristic observation that a lessening of 
the possibility of an event tends to lessen its 
probability, but not vice-versa. [22] 

Principle 1 effects an interpretation of possibility 
(resp. probability) statements in the context of a given 

PI. 
The measure C has been generalized by Delgado and Moral 

speczfic (resp. consonant) random set, which is, of 
course, formally inappropriate. 

For example, given the following “trapezoidal” pos- 
sibility distribution on % (a typical “fuzzy number”) 

E [1,2j 
~ € ( 2 , 3 ]  ’ n ( 2 )  = { 3 - 2 ,  l, 

0, elsewhere 

what is the status of the expression p ( x ) ?  Principle 1 
allows p to be any member of the claas of probability 
distributions on 3 

effectively restricting the range of p to C ( n )  = [1,2]. 
It provides no further information to determine p, and 
so by Insufficient Reason we should choose p to be 
uniform on [ 1,2]. 

Similarly, in our example, there are six possible 
faces, so that V1 5 w 5 6, II({w}) = 1, Pr({w}) > 0, 
yielding distributions 5 = (pi) with p; > 0 and 
i? = ( 1 , 1 , 1 , 1 , 1 ,  l}. The pi have yet to be fixed, and 
will depend on the weightings of the faces. But as long 
as all six remain possible, with some positive probabil- 
ity of occurrence, the possibility values ni must remain 
at 1. 

Conversely, given some Gaussian probability distri- 
bution p ( z ) ,  z E R, what is the status of the expression 
n(z)? Since V t  E % , p ( x )  > 0 ,  therefore, by Principle 

In fact, by GK-consistency, any probability distri- 
bution with a positive value on Vu E Q yields the 
possibility distribution Vw E R, .(U) = 1. This is the 
completely uninformed possibility distribution, 
which has maximal uncertainty [13]. As Insufficient 
Reason leads to equiprobability in the stochastic case, 
this possibility distribution represents complete possi- 
bilistic ignorance, with VA C R, n(A) = 1. 

For an w with p(w) = 0, GK-consistency is not more 
helpful, saying only that ~ ( w )  < 1. 

The conclusion is that, by Principle 1, a standard 
probabilistic analysis yields essentially no informa- 
t ion of a possibilistic nature. This is in keeping with 
the logical independence of probability and possibility, 
and the simultaneous weakness of possibilistic repre- 
sentations of uncertainty. Not all possibilistic analy- 
ses must yield maximally uninformative distributions, 
only those with a probabilistic source, and thus with 
a very strong informational structure. 

1, v x  E R, 7r(x) = 1. 
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5 The conceptual basis of possibilistic 
semantics 

The nature of possibilistic categories, processes, 
and concepts can now be characterized (in a decidedly 
semi-formal manner). Our thinking about uncertainty 
and indeterminism has been deeply molded by over 
three centuries of concepts and methods which have 
arisen from probability theory and statistics. This 
is natural since probability is the strongest, simplest, 
and historically prior representation of uncertainty. In 
approaching possibility theory, these existing mental 
models must be modified, if not abandoned. 

5.1 Possibilistic mathematics 

Possibilistic mathematics provides some indications 
of how to interpret possibilistic statements. 

Nonspeciftcity: The key feature that distinguishes 
probability from all other classes of fuzzy mea- 
sures on random sets is its specificity, that is 
VAj E F, lAjl = 1 .  Since in probability theory 
evidence values mj are attached to singleton sets, 
and thus essentially to elements w,, therefore, as- 
suming no underlying structure in R ,  they can be 
compared only in value. 
In general, however, two evidence values m l  , m2 
can also be compared in terms of their relative 
cardinalities IAll, IAzJ, and the amount of “over- 
lap” between A1 and A2, measured by /A1 U 
A z ) ,  J A I ~ A ~ J ,  JA1-Az1, and JAlAAa)  (where A is 
the symmetric difference operator). This hybrid 
form is captured by the various new uncertainty 
measures available in possibility theory [13]. 

Normalization: From Equation 4, in a possibilistic 
random set 3oi E C(S) for which ni = 1, and 
is thus shared by all evidential claims Ai. It has 
an invariant core around which the data set or 
process varies and which is common to all of its 
components. It should be noted that large cores, 
and thus large areas which adhere to crisp stan- 
dards, are not necessarily undesirable. 

Consonance: The final essential property that char- 
acterizes a fully possibilistic random set is conso- 
nance, the nesting of focal elements within each 
other. The core then becomes the smallest focal 
element with the smallest cardinality, the inner- 
most box of a nest which spreads out from it. 

set, including the ordering of the focal elements 
by inclusion Ai-1 C Ai; the ordering of the possi- 
bility values 1 = RI 2 7r2 2 . . . ?  n;, > 0; and the 
ordering established on the elements wi 80 that 

Thus a discrete possibility distribution consists 
of two components: the selection of one of the 
n! permutations of the universe, and the assign- 
ment of maximum normalized weights to the wi  
such that n(w1) = rl = 1. The ordering specifies 
a particular path through the universe, whereas 
the weights represent the “distance” in certainty 
values between them. 
This ordinal property of possibilistic information 
is crucial: knowledge is not just divided among 
a set of otherwise indistinguishable entities, as in 
probability, but rather over a linear structure. 

Ai = ( ~ 1 ~ ~ 2 , .  . . , ~ i }  and I I ( { w i } )  = T ( w ~ )  = Ti .  

5.2 Possibilistic processes 

Because of nonspecificity, traditional ideas of ran- 
domness are altered in possibility theory. In proba- 
bility theory, a given universe is a partition, and the 
uncertainty is only as to which unit is selected. 

Probability measures apply to precise but 
differentiated items of information, while 
possibility measures reflect imprecise but CO- 

herent items (i.e., which mutually confirm 
each other) . . . A probabilistic model is suit- 
able for the expression of precise but dis- 
persed information. Once the precision is 
lacking, one tends to quit the domain of va- 
lidity of the model. [2, pp. 6, 131 

The size and relative overlap of events in a porssi- 
bilistic process are constantly changing as it moves not 
through states w E 0, but rather through meta-states 
A c R, in a non-deterministic manner. Thus while 
probability represents ambiguity (an uncertain choice 
among distinct alternatives) , possibility represents a 
lack of specificity (an uncertain, but monotonically in- 
creasing, distance from a central core). 

5.3 Statistical interpretations 

In a possibilistic process there is a variation not 
just of state, but of the size of the state: the core 
remains fixed, and the observed meta-state varies in 
extent around it. The visual image is not of a point 
traversing a state space, but of a shifting granularity, - 

Linearity: The nested structure of F imparts a 
strong linear ordering to a possibilistic random 

tolerance, or precision. In statistical terms, there is no 
shifting sample mean, but rather a shifting van’once 
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around a f ixed  mean, which is the core. Since the 
sample variance of a stationary process converges to 
a fixed value as the sample size increases, possibility 
theory may therefore be appropriate modeling non- 
stationary processes. 

By the law of large numbers, large samples pro- 
vide sufficient information to construct additive prob- 
ability distributions. Thus possibility theory may be 
appropriate to modeling problems with small sample 
sizes. Here the weakness of a small sample is matched 
by the weakness of possibilistic information, while the 
strength of a large sample is matched by the strength 
of stochastic information. In fact, it might be hoped 
that with increased sample size, a possibilistic analysis 
would become less useful, just as a stochastic treat- 
ment of the same problem would become more accu- 
rate. 

5.4 Locality, extensibility, and mutability 

Possibilistic information is highly local to specific 
elements wi . Whereas stochastic normalization is nec- 
essarily a property of the whole distribution cy=, pi = 
1, possibilistic normalization can be satisfied by a sin- 
gle (perhaps not unique) element of the distribution. 

Possibility is also mutable and extensible: all 
non-unitary and some unitary elements of the distri- 
bution may be modified, added, or removed without 
other elements being changed, and without any global 
rescaling, renormalization, or recalculation (although 
sometimes some global reordering will be required). 

Together, these properties may provide important 
computational efficiencies for possibilistic models. 

5.5 Possibility and complexity 

The observation about small sample sizes leads to 
a discussion of complex systems. It can be diffi- 
cult, if not impossible, to re-establish such systems in 
initial conditions for multiple time trials; once a mea- 
surement is made, the system can become perturbed, 
never to return to its previous state. 

Thus complex systems can be relatively impervious 
to traditional experimental methods, since they gen- 
erally do not yield the kind of strong time-series data 
required for stochastic models. But at the same time, 
their behavior is full of uncertainty. Instead, it seems 
completely appropriate to attempt possibilistic analy- 
ses, which require appropriately weak information, of 
such systems. 

Weaver describes how stochastic methods are es- 
pecially appropriate for dealing with repeated exper- 
iments on simple systems [20]. The simplest systems 

are indistinguishable, and statistical techniques for 
handling their uncertainty are very successful, as in 
statistical physics and thermodynamics. 

“Aggregate” systems can become “historically 
bound”, evolving to their future states through a long 
series of very specific actions. Thus they gain in dis- 
tinguishability, in the limit of truly complex systems 
(such as organisms, species, and ecosystems) to actual 
uniqueness [4]. In these cases, repeated experiments 
are truly impossible. 

Indeed, a hallmark property of complex systems is 
exactly the possibility, rather than the eventuality, of 
their states. Such systems are highly “non-ergodic” : 
given a very large state space, only a very small por- 
tion of that space could ever be visited. Thus there 
will be a large number of properly possible states, but 
a small number of “eventual” states, perhaps even 
none. Kampis has suggested [lo] that this is an ap- 
propriate definition of emergence, since making a 
prediction in the state space requires (at least!) an 
intractable computation. It may be that the proper- 
ties of possibilistic mutability and extensibility make 
possibility theory more appropriate to model the “sur- 
prises” such systems provide. 

Thus there is a link from simplicity to high proba- 
bility and then to crisp possibility. Conversely, there is 
a link from conaplezity and increased difficulty to low 
probability, proper possibility, and finally impossibility. 

Models of complex systems risk intractability by 
“combinatorial explosion”. The computational effi- 
ciencies of possibility theory may make it attractive 
for complex systems modeling. 

5.6 Capacity vs. frequency concepts 

Since possibilistic data are not frequency data, pos- 
sibility cannot be regarded in the context of concepts 
such as likelihood, chance, tendency, propensity, 
or proportion. 

Instead, possibility suggests interpretations in the 
context of capacity. Given a set of “buckets”, they 
can all be completely full, many can be empty, or 
they may be in some intermediate state, as long as 
at least one is full (for normalization). The concepts 
related to possibility include intensity, degree of 
fulfillment or satisfaction, ease of fulfillment, 
distance from optimality, similarity, elasticity, 
and preference. 

These concepts are all ordinal, with states mea- 
sured by their distance from some reference state of 
maximal capacity (intensity, preference, etc.). Kosko 
echoes this view, but in the context of general fuzzi- 
ness, not possibility theory proper. 
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Fuzzy theory [is] the theory that all things 
admit degrees, but admit them deterministi- 
cally. Fuzziness . . . measures the degree to 
which an event occurs, not whether it oc- 
curs. Randomness describes the uncertainty 
of event occurrence. An event occurs or not, 
and you can bet on it. [16] 

6 Possibilistic measurement 

Central to any question of possibilistic semantics is 
the issue of measurement: how is it that possibil- 
ity values are determined? This has been one of the 
most vexing questions facing fuzzy set theory over the 
years, and the lack of objective measurement methods 
is widely seen as one of its largest weaknesses. 

Unfortunately, space does not permit a full dis- 
cussion of non-subjective possibilistic measurement. 
These concepts and results are introduced elsewhere 
[8], and are still under development. They are based 
on statistics gathered not on elements wi E R, but 
rather set-statistics on subsets A, c R [3]. Any result- 
ing consonant class yields a possibilistic random set; 
any globally non-disjoint class yields a non-stochastic, 
non-possibilistic empirical random set which is pos- 
sibilistically normal; and possibilistic normalization 
methods exist for the remaining empirical random 
sets. 

This method is essentially equivalent to the mea- 
surement of non-disjoint intervals, which make a 
probabilistic treatment impossible. Positive overlap 
amongst all such intervals results in a “possibilistic 
histogram” similar in form to a fuzzy number. Sources 
of interval measurements include synchronous mea- 
surements from multiple] heterogeneous instruments 
(similar to Lemmer’s “hidden labels” approach [17]); 
distance of order statistics from a central “possibilistic 
mean”; and local extrema of time-series data. 
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