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A POSSIBILISTIC APPROACH TO
OUALITATIVE i'ODEL.BASED DIAGNOSIS

Cltff Joslyn

Absarlct - Thc potcntial for thc use of possibility thcory in th€ qualitsl
modclbas€d diagnosis of spscccraft systems is dcscribcd. Thc {irs! scctionr
lhc papcr bricfly introduc€ thc Modcl-Bascd DiaStrostic approach to sps
creft fsult diagnosis, Q,ue.lit tivc Modcung mcthodologi€s, and the concr
of possibilistic modcling in thc conExt of Gcncntizcd hformadon The(
Then thc qcccssary cooditioos for thc applicability ol posribilistic mahod
qualitativc fiodcl-bascd diagnosis, end e numbcr of potentisl dircctions
such an applicltion, are dcscribcd.

INTRODUCTION

Possibility thcory is bcing dcvclopcd as an altcmative to traditio
theories of uncertainty. While possibility is logically indcpcndent of probability theo
thcy are rclated: both arisc in Dcmpster-Shsfcr cvidcncc theory as fuzzy mcasu
defin€d on random sets; and thcir distributions arc fu?q sets. Together thcs€ fle
compos€ th€ new field of Gencralized Information Thcory (GIT ).

Possibility distributions are built from a scr of partially overlapping intervals, rcsl
ing in non-additive, possibilistic weights on a set of alternatives. Possibilistic proccs
gcncralize both interval arithmetic mcthods and nondcterministic processes. Possibi
tic modcls provide a Qualitative Modcling (QM) mcthod which is a hybrid of inrcr
and uncertainty distribution methods.

Qualihrive mcthods are approp atc for modcling complcx systcms, such as spa
craft, where the interaction among thc largc numbcr of pans undcr varying envir
mcntal conditions rcsults in the possibility of unprcdictablc bchavior and long-r
dcpanure from cstablished steady-statc domains. Thcac methods inhcrcntly rcqr
loosc rcprcscntations of uncertainty, and typicslly involve inrerval analysis. Thcrefc
it is hypothesizcd that possibilistic mcthods may bc useful for qualitativc modcl-bal
diagnosis and trcnd analysis of spacccraft systcms.

MOOEL-BASED DIAGNOSIS

The modcl-bascd approach to systems diagnosis (MBD) (Hamscher, Console, &
Klccr, 192) is bascd on thc prcmisc that knowlcdge about the intcrnal stntcture o
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system can be uscful in diagnosing its failurc. In MBD, a software model of the sysr
gcneratcs and tests various failure hypothescs when giv€n inputs frcm the real syste

A typical MBD approach (derivcd from some of the standard literature [Davi
Hamschcr, 1992; Dvorak & Kuipers, 1992; Hall, Schuctdc, & La Vallcc, 1991,
diagnosing a spacccraft (here dcscribed as an internal system whosc sensor measr
ments output to s telemctry stream ) is shown in Figure l. An alarm is a report t
some observed systcm attributes have departed from nominal conditions and ente
error, conditions, usually by exccedirg some theshold values. A prediction is a rel
that some systsm attributes should tr in ccrtain stat€s. A fault hypothesis is e lisl
system componcnts that may have failed. Au error is a report of a discrepancy bctw
predictcd and mcasurcd system attdbute states.

Thc overall MBD system thcn involvcs two distinct spacecraft models. Thc Fr
Gen€ration Modcl (FGM) tEkes inputs from telemetry, alarms, and errors, atrd eil
produces ncw, or modifies cxisting, fault hypotheses, The behavior model takes inl
from telcmctry and fault hypotheses, and outputs predictions. These are then corro
rated ageinst tclcmetry to produce errors. The fault hypotheses act to modify
bchavior modcl so tlat it predicts system behavior as if the hlpotlrAical sl,stem com
nents had actually failed.

Both models can b€ difficult to construct, typicaly requfuing delicate engineer
tradeoffs among accuracy, prccision, and lracrability. But the FGM, as the hean
lhe MBD approach, is particularly complex and involved. The FGM could be,
€xample, an inversion of the behavior model (as for Dvorak and Kuipers [ 19921) (

decision tr€e (as for Shen and Leitch [1991]). Through backward reasoning, a var
of subsets of components, failure of any of which is consistent with the given tetemr
and alarms, can be identified.

Filtering is the process by which error output is used to prune rhe set of f:
hypotheEes. If thc pr€diction of the b€havior model as modified by a pafticular fl
hypothesis produc€s errors, then that fault hypothesis is not retain€d. As the syster
monitor€d over time, further observations narow the class of viabte fault hypothe
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Achieving the null sct indicatcs model insufficiency. But if the overall MBD systr
stabilizes to a non-cmpty set of faullhypotheses, then these are advanced as possi!
causes of the failure.

OUALITATIVE TIOOELING

Qualitative modeling, a branch of Systems Science usually considered to be a part
the field of Anincisl Intelligence, can be broadly described as the ettempt to mor
systems at deliberately high levels of abstraction. Of course, this approach produr
models that are less precise than they might be, but with the tradeoff of potentis
greater tractability and accuracy (the less you say, the better your chance of bei
rig)rt ). QM methods can be useful when there is only a poor model of the origir
system, or when [here are missing or incomplete data. This ean happen when syste
are incompletely specified, when they have parameters or states that arent rlwr
known with certainty, or when complexity makes detailed prediction difficult. I Thl
are a variety of broad approaches within QM, which csn be known as naive physi
qualitative physics, qualitative simulstion, qualitative reasoning, qualitative dynami
etc. There are also a number of specific methods, including bond graphs, cau
loop modeling, natural language modeling, "lumped" state sp&c€ models and induct
approaches.

In this paper, the QM methods of most interest are those that use uncertait
dist butions on state variables, or mixcd interval- and point-valued dynamical s

tems. In models using uncertainty distribution methods, the uncertainty about sor

attribute is representcd mathematically by weights on all possible values. Th€ set
weights, as a distribution, acts as a meta-state in the space of all such distributiol
and functional equations relating these meta-states produce predictions about 1

meta-state distribution at future times. Models using probability distributions are
miliar as Markov processes and other kinds of stochastic models, and these h.
correlates in possibility theory (see 'Possibilistic Models" below). These methods r

actually semi-qualitative, becaus€ the numerical representation of the distdbution a(
a quantitative component.

ln an interval-valucd dynamical modeling system tike QSIM ( Kuipers, l9E9)
precise point-valued dynamical system of differential or difference equations is
placcd by a homomorphic interval-valued process. Typically, qualitative variables i

identified within ccnain intervals, some relatively unconstraind (for example j

[0,@)), and some constrained by 'landmark" values (for example x e [.r,u,,x-
whcre .r.n and .r* may or may not be known).

Qualitative variables are thcn geneially related in three ways:

. Functional: For example, if y = 1,1- 1y1 then / is a monotonically decreasi
function of .r, so that if .x e [0,.x,!- ) then/ € ( - @,01 or/ € (M-(x..,),0].

o Arithm€tic: Standard mathematical operations can also be repres€ntd quali
tively, for example if .r e [0*"",1 and/€(-co,0l,thenxye(-@,0],butx
y is unknown. These interval arithmetic methods (Moore, 1979) are closely rela'
to possibility theory ( see 

qPossibility Theory and Interval Analysis" below ) .

o Dynamic: Change of state is represented by qualitative magnitude rnd directi(

rFo. morc infonn.liotr about QM in grncrcl, s!. thc aDtholosid cdi!.d by Dobrow ( t9E5 ), ald Fishv
erd Luke. ( 1990), and survcy srticles by Fisht{ick ( 1989) and Cualiso, Rizzoli 8nd wenhter ( 1992).
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and qualitative differential relations link directions with magdtudes. For cxam
given Y : dx/dt, then

x increasing '+ 7 e (0,e ), x dccreasint -yE (-o,0).

Of course, determinativc results may not be available ia such qualitative models.
cxample, we saw abovo that x + / could be any value ia ( - o,o ). Similarly,
cxistcncc of potcntially unknown landmark values leads to unccrtainty as to whch,
landmark has bcen crosscd. To account for both pocsibilitics, two altemativca !
bc considered ttdapcndcntly, resulting in a branching nondqtarminism. Thcrcforc
gcncral, QM syotcms havc a trce of possible system behaviors, and external facl
(heuristics or othcr constrainto) may be requircd to prune that trcc.

QM has bccn applicd to MBD to producc qualitativc model-bascd diagnostic r

tcms. For cxamplc, in the approach of Dvorak and Kuipcrs ( 1992), modcl prcdicti
arc intcrvals of possibl€ system state values. Stochastic methods, foi cxample Baycr
nctworks (Gertlcr & Anderson, 1992) and Markov proccsses (Grossman & Werthr
1993), have been uscd extcnsivcly in MBD applications, And recently, Shcn and Lcj
(191, 193) have advanccd the FuSru method for qualitative MBD which uscs fu
arithmctic (sec "Possibility Theory and Interval Analysis" below).

POSSIBILITY THEORY

Possibility theory was origiually devcloped in the context of fuzzy systems thc
(Zadeh, 198), and was tJrus related to the kinds of cognitive modeling that fuzzy
are usually uscd for. Morc recently, possibility theory is bciag devcloped as a new fr
of mathcmatical information theory complemcnting probability theory in thc co
of GIT. The author is developing mathsmatical pocsibility theory on the basis
consistcnt random scts, and is also developing an empirical semantics for possibil
including possibilistic D€isurement procedurcs and applications to the modeling
phy"sical systems.

Posslb istb matlrimatbs in c/f
Table I summariz€s thc primary formulae of probability and possibility theory in
context of GIT and rsndom set theory. The mathematical basis of possibility theor:
the context of GIT can only be brielly introduced here.2

Given a linite universe 0:: {qri},1 < i < n, the function rrr:2o -+ [0,1] is
evidence function when zr(0) = 0 and D,=cm(A) = l. rz effoctively acts as a pro
bility distribution on the suDsers of O, and so a random set generated from an evide
function is denoted

g t= lllr,mj)nj > O|,

ArgQ, m!:= rn(Aj), l<l<N:= lSl <2'-1,

where (. ) is a vector and each,4, is a focal element. Denote the focal set as g : = {,
mt > O\ with core a.nd support

hc! Duboir end P.!dr ( l98t), Joslyr ( 1994c), (li, (193), .rd rur rrd Fol8cr ( 198?) for morc infor
tion.
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c(c) := fl ,{r, U(c) := U a
Ai6 Ai6

respcctively .

Random sets wcrc first dcvclopcd in the contcxt of stochastic gcomctry, dcalj
gcnerally with random cortrpact subscts of R'(Kcndall, t94; Mathcron, 1975). It
only morc rcccndy that random ssts are bcing integated into thc formalisms of C
(Mahlcr, 1993; Nguycn, l97E).

In Dcmpstcr-Shafcr cvidcnce theory (Shafcr, 19?6) rn is callcd a'basic probabil
assignmcnt" and E a "body of cvidcnce". Oiv€n a random set or body of evidcnce, tt
thc pleusibility and bclicf mcasurcs arc dcfincd on all,4 S O as

A X nj, Bel(,{):= X n,

They establish resp€ctivcly6 upper and lower bound on Pr(,4 ). Since they are du
inthatBe(,{)=l-P(,{),ingenetalonlyplausibilitywillbeconsideredbelow.

The plausibility assignment (otherwis€ known as the tra€e or one-point cover!

function) of EisPl = (Pl,):= (Pl({o1 })),where

Pl,:= ! n,

and th€ summation is over all the l,i containing oi.
Since each Pl, € [0,] L thcrefore Pl can be takcn as a fuzzy subset of O, where

indicatcs the dcgrcc or oftent to which <.r, is includcd in the set, In turn, a given fu;
set can be mappcd to a class of one-point equivalent randorn sets on 0 (Joslyn, 199.4

This providcs a kcy link within GIT between fuzzy thcory and both random sct a

possilility theory ( sce "Possibility Thcory and Fuzzy Theory" below ) .

Under ccrtain conditions thc qvidence values mi and the plausibility assiSnm,

values Pl, arc mutually dctermining. Then N = r, and Pl is called a dirtribution of
Whcn N = z (therc are cxactly as many focal clements as there arc elemcnts of
univcrse), then thc indices J on thc focal elcments lj, and thc indiccs i on the univc
elemants !ri, are cquivalcnt, and it may be useful to usc one or the othcr intcrchan
ably. This is thc casc in thc two righmost columns of Tablc l.

Whcn Y.A, eS, lA)l = l, then E is specific, and Pr(l ) : = Pl(4) =- Bel(.'l) is

additive probability measure with probability distribution I = @,) : = Pl and addit
normalization Eip, = I and operator Pr(Al = E"dp .

S is consonant (S is 8 nest) wheo (without loss of generality for ordering, and lett
Ao:= O) Ar-t I At. Now [(/):= P(1) is a possibility measure, and ,(.4)
Bcl(, ) is a necessity measure. Since results for necessity are dual to ahose of possil

ity, only possibility will bc discussed in the sequcl.
As Pr is additive, so II is'maximal":

YA,B = {t, II(,4 UA) = U(,4 ) v II( A),

where v is thc maximum opcrator. As long as C($) * 0 (this is required if tr i
nest), then i = (r,) : =Pl is a possibility distribution with maximal normalizat

PI

(
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Viq = t and opcrator fI(,4 ) = Y.r.q.rr, Also definc the cor€ and support of thc p(
bility distribution

C(r):= { co1 :r(<,r,) = l} = C(S), U(r):= lot,:r(<o1l >0} = U(8

Nonsp€cilicity 8nd strife are defined as two unc€rt&inty measures defined on rand
sets

N(8):= | m, log.lA,l

S )3 ! n, log, , fnl A f1 Ar
lArl

m€asuring respectively the possibilistic and probabilistic aspects of the uncertainty
information, represented in the random set. Thcy achieve tbe forms shown in Tab
for the possibilistic and probabilistic special cascs. Nore rhar in the probabilistic ci
the uncenainty collapses to stochastic cnlropy, while in the possibilistic case, the st
is bounded abovc by a small number.

Srochesdc and possibilistic processes project a probebility or possibility distribul
forwa.rd in time according rc a givcn set of conditional reladonships. They are dcfi
on thcir respective distributions when two operators e and E are available such t
(0,E) form I semiring ( E distributes over (E ), and O is the opcralor of the distri
don. For probability, e - +, and (+,x)is rhe unique semiring.

For possibility, e = V, and there are many semirings of the form (v,n), wher(
is a riangular norm: a monotonic, associativc, commuBtive operator with identit
(Dubois & Pradc, l98E). n (fte minimum operator) and x arc two of the m
popular norms, as is 0 v (.r + y - l). Conditional possibility is not always uniq
depending on the norm uscd. The formulae for marginal, joint, and conditional pro
bility and possibility (which is dependent on [-l ) are thea shown in the tablc, as are
next state fundions for stochastic and possibilistic processes (see next scction).

Possl llstb models

Probability and possibility almost nevcr coincidc. It is only whcn l!<01,5 = { {r.r
that

Fr = 10,0,..., 1,. ..,0,0),

so thlt Pl is both a probability and a possibility distribution. Semantically, probabi
aad possibility theory are also related to very differetrt concepts (Joslnr, 199:
Probability is inherently additive, and is thus concerned with the disperxat or divis
of knowledge over a set of distinct hypotheses, and so with concepts relarcd to
quency.

But possibility is inherently non-additive. It is concerned with the cohercnc.
knowledge around a set of certain hmothcs€s (the core C(r)), and thus with o/d,
concepts relatd to capacity. Where probability makes very strong constraints on
representation of uncerainty (additivity), possibility makes only very y'eok c
straints. The maximum relation is a very weak operator, and there is a choice of m
norms to use, some of wh.ich are strong, and others of which, like V, are also weak.
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So possibilistic models are appropriat€ where stochastic concepts and methods
inappropriate, including situations wherc long-run frequencies are difficult if not
possiblc to obtain, or wherc small samplc sizcs prevail, This is true in reliability an
sis, for example, wherc failures and systcm entry iDto non-nominal bchavior domr
arc very rare; and trend-analysis, whcrc even though observations are madc ovet a I
time, the statc vsriables of concern changc only very slowly, and new domainl
behavior are only vcry rarcly seen. In thcse cases, the weakness of the possibili
reprcscntation is matched by the weak evidence available.

A gencral modcling relation is shown in Figure 2, where: , and ,, are former
subsequent times; 17 = {lr,} is the ser of states of the world; M = {rz} isthese
states of thc model; o: W --+ M is the measurement function; r: W -t W is
movemcnt of "reality''; and l: M - M is the modeling prediclion function. I
stochastic model, M = {l }, where p is a probability distdbution of thc state of
world, while in a possibitistic model, M = {i}, where 7 is a possibility distribur
of the state of the world.

Reality is presumably given, or at least operates on it$ own without our hclp. Sr
make a valid model wc are requted to provide the measurement and prediction ft
tions so that the diagram commutes. Measurement is used both to set the ini
conditions of the model and to corroborate later m€asuremcnts against the m(
state, while prediction is used to produce the future model state. So a possibili
modcl naturally requires possrbilistic measurement and prediction procedurcs.

Possibilistic mcasurcment methods have been developed by the author (JosJ
1992, 1993c), Thc esscntial rcquirement is the collection of the frcquency of occurrc
of subsets or intervals that are partially overlapping. If the core of the obser
intervals (their global intersection) is nonempty, then Equation I yields an empir
possibility distribution.

An example is shown in Figure 3. On the left, four observed intervals are sho
The bottom two occur with frequency l/2, while each of the upper two have freque
l/4. Togcther they determine en empirical random set. The st€p function on the rj
is the possibilistic histogram derived from Equation l.

There are a va ety of well-justified continuous approximations to a possibiti
histogram. Two examples are shown in the figure. The rising diagonal on the lel
common !o both. The two falling continuous curves on thc riglt are distinct to e,
The trapezoidal form marked ,.r is one of the most commonly used continuous
proximations, but it must be noted thar this is only one possibility among ma
including smooth curves. This approach ro possibilistic measuremenr generalizes I
intervals and to the condnuous case.

Meeaureoent
Initid Con&tiou6

"Rea,lity" r

f

L

T

q = 4or)

oy = o(ro1,\

-l

_.1

-l
/ Predicrion

L_-----J
Corroboratioa
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un = r(url) o,, = l(m1\1

Figure 2. A geneaalmodgling reletion.
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Figur€ 3. Four sxende obe€rved intorvels (l€lt). Ths possbilistc histogrEm and two cootnuous ep
mauom (riCtrt).

The core, here C(i) = u.5,21, being nonempty, is included inthesupponU(;l
[,41. If the cor€ were empty, then viPl, < l, so that fl would not be a possibi
distribution. In this case, possibilistic normalization procedures, which have also b
devcloped by thc author (Joslyn, 1993a), would be required.

Possibilistic prcdiction procdures calr be based on the possibilistic processes in,
duecd in the previous section. For examplc, the author has defined possibilistic ar
mata as possibilistic Markov processes (Joslyn, l994a) which generalize non-detem
istic automata.

As ar €xample ofa possibilistic process, lert O = lx*y,z|.ln Figure 4, each nod
a state or. The arcs indicatc state tr&nsitions, each of wh.ich is non-additively weigt
with the conditional possibility of the transition. So, for example, r(nll) = .9,
the entir€ transition matrix is

II=

Possibilistic transition normalization rcquircs that cach nodc havc an out-arc labr
I, so that cach colurnn ofII contains a l. Nodcs may havc multiple out-arcs, howc,
so that a unitary weight docs not indicate a necersarl, but rathcr 8 co mpletely poss
transition. Fot examplc, from state.r, traosition to z is .2 possiblc, but transition I

is also (completcly) posiblc, ? is an absorbing statc, with sclf-transition thc c
possibility.

Now for I > 0, let i' = (rj) r be the stste possibiliry distdbution vcctor, let f
A, and assumc that at timc / = 0 thc systcm begins definitely in statc r. Thcn i'
(1,0,0) r, and ir is detcrmined by

2

0.0 I
?:3 

_]

0.8
0.0
t.0

0.0
r.0
0.2

1

v
1

c

L-_l 1

Flgure 4. Weaght€d stat€ tran8ltion dlag/sm lor a pos8ibtlt8tic proca8s.

-F-..............1

F-------i-..----*--+_i----------
l-__--+-
r-r::= j:{__-__{_-F_r
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Teblo 2. Ststsr ol tho Exrmple Possiblli8tic Proce$.

N(i')

7r: iocfl =

whcre o is (v,n) composition, which is vcrificd by

rl = 1t 
^0) 

v (0^.8) v (0^0) =0,
rl = (l ^ 

l) v (0^0) v (0,r 0) - l,
rl = (l^.2)v (0^r) v (0^l) =.2.

The systcm is now zo, uncquivocally in onc statc: Although it is complctcly poss
that, is thc systcm state, z is also .2 possible of being thc system stat€, while .

impossible. Transition normalization guarantes that i' is always a maxi.mally non
possibility distribution. Other future sratc vecrors (and thcir nonspccificity values)
showu in Table 2.

When

Yi j,t, ttl,t(ot,la,) e {0,1),

then "crisp" possibilistic processcs, which are equ.ivalent to nond€terministic proccs
are recovered. ln fact, it has bc€n shown by the author (Joslyn, l94a) that possib
tic processes are thc valid gencralizrtions of nondetcrministic proccsacs, whcrces r

chastic proccses are not. Thc author has also devclopcd possibili6tic Mo tc Cr
methods (Joslyn, l99ilc), which arc required to select a final outcome bcscd on
distribution i'for a fixed r.

POSSIBILITY THEORY AS A OUALITATIVE MODELING UETHOD

Methematical possibility, in both theory rnd applications, is still in the basic reseg
phase, just out of its infancy. For exemple, the ardomatic basis for possibility the
and the properties of possibility distributions on continuous spaces are still bc

defined. The semantics of possibility in physical systems hss been considered onll
very few. But there are many r,casons why it can b€ hoped, and even expected, I

possibility theory can come to play an important role in QM in general, and in
application of QM to MBD in particular.

Hamscher, Console, and de Kleer (1992) havc notic,ed some of thc weakncsser
stochastic mahods for MBD, 'it is usually assumed that reliable failurc statistics
be available, but this is in fact rare in practice. what is needed . . . is a way of worl
with likelihoods that could be specified ordinally rathcr than quantitatively" (p. 4:
This is exacrrl what possibility theory provides, a non-additivc, ordinal approacl
QM that hybridizes inteNal-valued dynamics and unccnainty distribution methods
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I,o=xsb
0, x < aorx > r'

rn = C(r) r (z)

1f t a b

Filure 5. A po€slblllty dHrlbutlon ss a coloctbo ot w.ightod inte rL (tott]. The spedat care o, ecr
lnto al(ngm).

Posslbillty theory encl fuvy theory

As mentioned above, possibility thcory was originally developcd by Zadeh (lI8)
thc contcxt of fuzzy scts and fuzzy logic. For Zadch, a possibility distribution siml
rvas a fuzzy sct by anothcr namc, and thus possibilistic information theory was sln.
related to fuzzy information.

The view presentcd hcre, bascd in GIT, rcgards possibility theory ss analogous
probability theory in thc context of random scts. Herc, possibilistic normaliz:ti
(Viri = l) becomes crucial, and both probability and possibility distributions r

rccogniz.d as specid cases of fuzzy scts with appropriatc spccial normalization.
other words, whilc it is certainly true that a possibility distribution is a fuzzy sct,
GIT there arc fion! structurcs that are lcgitimetcty fuzzy sets, inclrrrding probobir
distributions. Thc author provides a full discusion clscwhfic (Joslyn, 1994c).

Posslblilty theory and ln,€,'vel analysls

Ncvcrthclcss, fuzzy thcory and possibility thcory do share a number of points
common. In particular, (v,a) matrix composition is a common opcration in fu:
systcms in gcneral,

A fuzzy intcrval is a fuzzy set on R that is also a convcx possibility distribution,
that

Yx,/ e R, vz e lxJl, r(e) > r(,r) A r(y).

Whcn !!x e R,r(x) = l, thcn l is a fuzzy number. Fuzzy intcrvals and numbcrs e
in fact maximally normalizcd possibility distributions, and all possibilistic histogra
and thcir continuous approximations arc fuzzy intcrvals (Joslyr, 1993c). As illustrsr
in Figurc 5, undcr thesc conditions, r can bc rcprescntcd as I sct of ncstcd intcrv
weightcd by thcir possibility values, where 0r 

: - U (r) as a spccial case, and

Yrr e (0,11, "" ;= {r e R; r(x) > c}, or } q2 - ",T g "r..
A standard intcrval [a,bl S R is a spccial casc of a fuzzy intcrval, wherc

r(r) = va € [0,11, "r = la,bl.

I

r(r)
1

AL

A2
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r(z)
I

Lerge Neg. Small Neg. Zero Small Poe. Luge Poe. '
Figuro 8, Trrdtllonal ula ol furzy lntrrvlk u lingulrtic vrrlablGr.

Fuzzy arithmetic ( Kaufmann & Gupta, 1985), wherc mathematical operations sr
as addition and multiplicstion are defincd on fuzzy intervals and numbers, is a dir
gencralization of interval arithmetic (Moore, t99). In this way, possibility theory <

be uscd as a gcncralization of interv&l analysis, and QM mcthods that usc fu:
arithmetic are ess€ntialy possibilistic.

Fuzzy arithmetic is also vcry popular and common in applicaliom, and has b.
uscd as a QM method both gcnerally (Sugcno & Yasukawa, f93) and for Ml
(Fishwick, l99l; Shen & tritch, 1993). Hcre the standard mcthods of fuzzy cont
systems er€ used, whcre a set of overlepping fuzzy intcrvals dividc a quantity spr
into e few linguistic, qualitative values likc "large positivc" atrd "smdl ncgativc, (
Figure 6). These fuzzy scts ar€ almost ncver measarcd propcrtics of thc systcm bej
mod€led, and are i$tcad heuristicdly specilicd by thc systcm modelcr. Thus they r

essentially modcling thc cognitivc statc of somc human cxpcrt, rathcr than dirc(
modeling the syetem in question.

This conrasts shsply with possibilistic proccsscs ard modcls. First, pcsibililtic rnod
are cast Sricdy within the €ontod of mathcmatical possibility thcory spccifically, rat]
than fuzzy theory gcnerally. Thcy, thus, always imply strict possibilistic normalizatir
Also, they are based on me&rurement, in the fonn of possibilistic histograms and tt
continuous approximations, of the attribute of thc systcm bcing modeled.

A POSSIBILISTIC APPROACH TO MBD

At both the general level and in some s;rcific ways, there are arcas of MBD for wh
it is appropriate to consider a possibilistic approach-

PossiDi/istb symptom and erot &,llsct/f,n

Symptom and error detcctors in a typicel MBD system simply comparc the meaaul
value against a crisp interval of nominal or predicted valucs (Dvorsk & Kuipcrs, 199
This is inadequate bccause the resulting cutoff from nominal to crror condition
essentially arbitrery. It is natural to use a fuzzy interval to gcneralize this, mcasurj
either prediction crrors or fault symptoms as thc possibilistic distenc. of the telcme
from the predicted or nominal system state respcctively.

Consider a measured value x compared against an enor fuzzy intcrval of the fo
shown in Figure 5. Such a possibility distribution could be the output of thc behav
model, for instance, and would then serve as input lo the error detector. Then f,(r'
the strength of the error or alarm raised. When x e C (r), then d.r) = I end ther(
no alarm. When x F U(r), then r(r; = g *6 the alarm is complete. In between,
intermediate &larm is raised.
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Flgurr 7, Dca6ca ot ahrms r! ! fuzzy ht6rvrl.

A simplc hypolhctic8l cxampla is illusoatcd in Figure 7. Here two crisp error thrr
olds [D,cl c ladl arc provided, where [D,cl represents a conservative snd [a,(
liberal judgment as to the nominal systcm srate r. It is natural ro lct.r € [D,cl indi'
the full'8recn" ran8c, vhilc xela,b) U (c,dl indicatcs "yellow" status, grou
"reddcr" as x "+ a or,r "r d, Finally, .re (-a,a) U (46) indicates a full "r
status.

This is fully in kccpinS with thc possibilistic approach, as indicated by the trape
dal continuous approximation (shown in thc figure) to thc possibilistic histogi
generated by thc two crlsp intervals. Hcre r(.x) is the degree of'?reenne6s" of
system statc, and f,(x) € (0,1 ) indic8tcs an int€rmediate degrec of'yellow".

Even in situations whcre crisp thresholds arc acceptable, they may be dynar
varyrng as a rcsult of changing system and environmental conditions. Doyle, Scll
8nd Atklnson considcr thc situation of an earth-orbiting spacecraft as it proc(
through sunlight and shadow.

Imphgement solsr ndiation changes the thermal profile of the spacccraft, as do€s
the confiSuration of curr€ntly aclive aDd consequcntly, hcat-Senerating subsystems
on board. Thrcsholds on tcmperaturc s€nsors should b€ adjustcd accordingly. A
particuler tcmpcraturc valua may bc indicative of a problem whcn thc spacccraft is
in shadow or mostly inactiv., but may bc withi! accrptablc li.Erits whca the spEce-
craft is in 3unlight or many on-board systems are op€rating, ( Doylc, Selers &
Atkinson, 1989: l23l )
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This situation is shown in Figurc 8. Assumc a variable, say the tcmpcraturc I o
given componcnt, must b? kept in a critical range a6 thc apacccraft movcs in and r

of dayliglrt, As it does so, the range shifts as shown in the uppcr lcft of thc figu
where the transition periods bcgin at I chatrgc in sunlight, aud coltinuc to thcrr
cquilibrium. For simplicity, assume that that intcrval is samplcd uniformly six tir
during the orbital day, twicc cach for daylight Q, night Nr, and transition pcriod
for i e {1,2}. Thc possibilistic histogran for the possibility r(r) of, holding 8 va
at any giv€n time and a trapczoidal apptoximation arc shown on thc right of the figu

A combination of thcsc two approachcs is also possible, wherc instcad of a cr
intcrval changing over time, a wholc possibility distribution as a gcneraliz€d intcr
changcs with time.

Senso/ rnodering

Although thc MBD systcm contains rwo modcls, thc bchavior modcl and thc FGM,
a wholc, it is itsclf also a modcl of thc spEcccraft. As such, it is dcpendcnt on its inp
from mcasuremcnt, and thus on thc scnsor output of thc spacccraft. Thus, thcrc
modcling issucs i! MBD conceruiug the scruors th€msclvcs.

When modelhg complcx systcms, scnsor data may be sparscly distributcd, *
missing obscrvations, and sometimcs very small samplcs sizcs. As argucd clscwhcre
the author (Joslyn, l93b), thcsc are imporrant conditions for thc inapplicability
stochastic methods, and whcu thcy hold, possibilistic mcthods should be considercd

In this resp€ct, thcre is strong support in the litcraturc for thc idea that possibiU
as distinct from probability, has a role to play in QM. For examplc, Luo and I
observe

Whcn additional information from & s€nsor bccomcs availsblc and thc number of
unklown propositions is largc rcletivc to thc numbcr of knonn propositions, u
intuitively usatisflng result of thc Baycsian approach is that thc probabilitics of
knowr propositions become unsrsble. (Luo & Ksy, l9t9)

While Durrant-Whyte's (1987) approach is stetisticd, he also notcs, .e robor sylr
uses notably diversc s€nsors, which often supply only sparsc obscrvetions that csnr
be modcled acrurately." Dvorak and Kuipcrs ( 1992) makc a similar obsovation in
context of model-bss€d monitoring, "all mcasurements comc from scnsors, which r

be expensive and,/or unreliable and/or invesive. Monitoring is typically baeed or
small subset ofthe system parameters, with limited opportunity to probe other parar
lers."

Dete lusion

Possibilistic measurement, as outlined above, is predicated on the obscrvation of s
sets or int€rvals that are partislly ovcrlapping. It is, thercforc, imperative to consi
the source of these intervals. But traditional mcasurement methods do not in gen(
yield overlapping intervals. Rather, the purpose of designing a good sensor is to p
duce distinct outcomes, perhaps intervals with some uncertainty, but still disjoi
forming equivalence classes.

Random set thmry in gcneral and possibility theory in particular is significant wl
considering the problem of data fusion in MBD (Hackett & Shah, 1990; Luo & K
1989). This is because overlapping interyals may rcsvlt from thc combinetion of d
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from ddferent instrumcnts that mcasurc thc samc systcm attributc, cithcr dircctly
indircctly. This can be sccn in Figurc 3, whcrc cach €t is a diffcrcnt mcasuring devi
Whilc cach €r produccs disjoint intervals, any tl,o intervals takcn from two diffcr
€' may or may not overlap.

Hsckctt and Shah ( 1990) discuss data fusion in Scneral, including indirect mcasu
ments, as wcll as thc Dempstcr-Shafcr (that is, random sct) approach, 'cvcry scnso
scnsitive to a diffcrcnt propcrty of thc cnvironmcnt; in ordcr to rcnse multiplc prop
tics, it is nccessary to use multiplc sensors. A system using multiple scnsors that sar
singlc property can bc used,' Dubois, Lang, and Pradc (1992) havc considcrcd
data fusion problcm using possibilistic logic, as has Mahlcr ( 1993) using random sa

lndlr*t neasurenerrs. First, considcr thc situation wherc meajurcmcnb of a mml
ncnt arc not made dircctly, but rather knowlcdgc of the state of thc componcnt is o
gained indircctly by infercncc from thc outputs of sensors attachcd to othcr comt
ncnts. Doylc, Scllcrs, end Atki$on (1989) offcr an cxamplc from jet aircrafr: L
cnginc thnBt csn bc indicatcd by cithcr low exhaust tcmperaturc, Iow turbinc rolat:
spccd, or both.

This situation fu illustratcd in Figurc 9. Hcrc componcnt A is not monitorcd.
statc can only bc infcrrcd from thc scnsoB D and E, which monitor componcnts B €

C, and which, in tum, arc causally connectcd to A. All of the intcrvals that can
rcponed by either D and E individually arc distino from cach othcr and disioitrt. I
sincr thc knowlcdgc of A providcd by D and E is mcdiatcd by B atrd C, rcgaher tl
may iudicatc that A cxists in two diftcrcnt, possibly overlapping, intervals. So as
amount of sensor 'bcnctration" ( sensor/componcnl ratio ) &ops, standard measu
mcnt mcthods yiclding frcqucncy distributions may b€comc less tcnablc, leaving o
obscrvations at the random sct lcvcl.

Redundant maasurc/,,,ents. Alternatively, a system componcnt may bc monitored
dundantly by multiple instruments, as shown in Figure 10, If thes€ sensors arc idel
cal, and identically calibrsted, then the result will simply be es if therc was a dme-ser
of observations from a single instrument. But if they are mutually discalibrated, eit
out of phase, or scale, or both, then the intervals rcported from each instrumcnt n
overlap.

If the s€nsors measure distinct modalities of a single component, for examplc pr
sure and tcmperature, then a process of rcgistration (Hackct & Shah, 1990) is rcquil
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Figure 10. R€dundad meaauremenb of the atrate ot a spacoc.aft compon€nt

to derive a rcport from one in the modality of the other, or two nerp reports from e:
in a third modality. In any event, the ajgument here is very similar to thc one above
the cas€ of indirect measurements, and possibly overlapping intcrvals may result.

Sen.sot lallun mMdlng

As mentioned above, in MBD data are not only combined from disprarate sensors, tl
are also sometimes incomplete, degraded, or missing &ltogether. Even whcn standr
(disjoint) observations are made, undcr thcse conditions there is the potential for r

application of GIT and possibility theory.
First, in GIT standard measuremcnts a.re represented as singleton sets {ro, }, wh

each o, e O may indicate a disjoint interval. In a Baycsian or stochastic approa
sensor failure is represented by a uniform distribution over each of the {r,1}, agr
dividing our ignoranc€ among a set of disjoint choices.

But in GIT, a missing observation is rcprescnted, more accurately, as an observati
of the errrire universe O. While this does not result in a specifically possibilistic sitr
tion, ncither does it result in a frequency or probability distribution. This is discusr
more fully by the author elsewherc (Joslyn, 1994c).

For a simple example, assume that a system with thr€€ stat€s g = {a,D,c} is r
served at ten uniformly distributcd times, with a and c each s€en twice, , se€n th
timcs, and three cases where the sensor made no rcport. These finat threc cases m
be recordcd as observations of 0, and the spccific obscrvstions replaced with obser
tions of the singleton sets {a}, {D}, and {c} respectively. The overall empiri
random set is then

s = { ({a }, I /5),({ b),3 / to\,(lc \,t / s),(0,3/10) }

The plausibility assignment is then FI = $/2,3/S,l/Z), which is neither an &ddit
probability disribution nor a meximal possibility dist bution.

When sensor data are not missing, but rathcr degraded, compromised, or suspecl
some way, a confidence weighting on cach sensor's output is naturally not additi
our confidence about the sensors is not divided smong them, since all could be perf
or any number of them could be in any state of degradation. Instead, it is naturel
represent this confidence as a possibility distribution (or general fuzzy set) on e:
sensor's output. Again, an observation in the core indicates complete confidence, wt
one outside the suppon indicates complete sensor failure.

SensorsSystem
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Rcprescntation of a graduated dcgrec of scnsor failurc allorvs a corrcrponding grr
uatcd dcgrce of confidence in modcl prcdictions, The nced for this has been noted
Fulton ( 19901 "whcn we detcct a brokeo scasor, grcat difficuhy arise€ if we contir
diagnosing other failurcs, bccausq typical rule-based systetre do not degradc tcn
whcn sensors fail (becauce thc mapping is dependent or a completc and accurat€ sct
scnsor data)."

Posslb l$tlc models propet

In thc sequcl, thc term (systcrn model" will rcfer to thc FGM or the behavior mo
gcnerally. So finally, it is uscful to consids possibilistic methods applicd dir€ctly
thc systcm modcls thcmsclves, construcaing them .B possibilistic proccsscs such
possibilistic automata, ard not as fuzzy arithmaic systcms as discussed above.

Input to thcac rystcms (tclcmetry, alarms, and crrors) may or may not bc pro,i
possibility distributions, since both c sp ( standard) intervals and point valucs r

spccial casos of poesibility distributions. But if they arc, thcn it was discusscd hou, tl
can be possibilistically weightcd. A possibilistic FGM thcn would be responsible i

producing as its output a set of fault hypothescs that arc possibilistically weighted I

input to the bchavior modcl. This would, in turn, g€nerate model prediction ern
with possibilistic wcights.

A systcm modcl that is a posoibilistic automaton can also b€ casl as s possibilis
Markov proccss. AB such, its kcy componcnt is its transition matrix II, cssentiall;
vcctor of conditional possibility distributions as disqusscd abovc. Each conditio:
possibility distribution rcpresents the possibility, for a givcn input, of transiting frl
onc systctr statc to anothcr.

Thc scmantics of this traasition matrix in a system model is understood in terms o
subsystemJwcl model whcre the conditional possibilistic wcight indicates a nr
additive coupling or relatcdness among subsyst€ms. This could bc, for e>rample, r

cfllcicncy of thc subsystcm, as in thc approach of Doyle, Sellers, and Atkinson ( 198t

Or, whcn considering the system modcl as a causal graph, as in thc approach of Ht
Schuctde, and La Vallee ( 199), the wcights indicate the dcgree of causal connectiv
between subsyst.ms.

Thus in the possibilistic approach a system model is essentially a possibilistic n
work, whcre nonadditivc, possibilistic weights are placcd on the arcs of a causd gral
The corresponding network appcars similar to a Bayesian network, but the mathem
ics is possibilistic, not stochastic.

CONCN.USION AND FUTURE DIRECTIONS

We hsve considered possibility theory .s a qualitative modeling method in th€ cont
of GIT ( probability theory, Dempster-Shafer evidence thcory, r4ndom set theory, a

fuzzy theory). We have also defined the key concepts of model-based diagnosis, a
have considered, in the cort€xt of spacecraft dia€nosis, the potential for the appli,
tion of possibility theory to MBD in terms of symptom and error detection, d:
fusion, sensor failure modeling, and nonadditive causal graphs.

It should be emphasized that this work is still in the basic research phase. Mathemr
cal possibility theory is still being developed, and most of the key concepts in possibl
tic modeling (for example, possibilistic measurement and autom&ta) have only bt
deflned in the past year or so, The application of poscibility theory to the modeling
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physical systems and the scmantics of possibility in empirical contexts is being cons
ered only by a few.

This work points to many future dircctions for research, including computer-bas
implementation of possibilistic modcls proposcd by the author (Joslyn, 1994b), a
continued exploration of the conditions for the applicability of possibilistic modcli
to spacccraft systems,
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