
The Process Theoretical Approach

to Qualitative DEVS∗

Cliff Joslyn†

NRC Research Associate

NASA Goddard Space Flight Center

Email: joslyn@kong.gsfc.nasa.gov

URL: http://gwis2.circ.gwu.edu/~joslyn

Abstract

Qualitative extensions to the Discrete EVent Sys-
tems (devs) formalism are presented based on some
new ideas relating general process and automata theory
and General Information Theory (git). Specifically,
we will consider the applicability of possibilistic and
fuzzy processes and automata to the devs methodol-
ogy. Much of the devs formalism can be cast into
classical finite automata theoretical terms. Classical
automata generalize to qualitative temporal processes
with input and output where states are valued on a lat-
tice and the state transition function is implemented
by algebraic semiring operators. Special cases include
classical deterministic, nondeterministic, and stochas-
tic (Markov) processes, and the newer fuzzy and pos-
sibilistic processes. In this way devs can be extended
qualitatively in terms of general Moore automata.

1 Introduction

The Discrete EVent Systems (devs) methodology
[30] has emerged in recent years as an important mod-
eling and simulation formalism. devs is an attrac-
tive methodology because of its generality and sim-
plicity, and thus it has been extended in a number of
directions, including: nonstandard logics [10], adap-
tive model structure [2], distributed and parallel im-
plementations [24], Markov processes [1, 20], mixture
with discrete time methods for continuous systems
modeling [16, 23], and nondeterministic time-advance
functions and symbolic time bases [31].

One very attractive feature of devs is its closeness
to mathematical systems theory, and in particular fi-

∗Prepared for the 1996 Conference on AI, Simulation, and
Planning in High Autonomy Systems (AIS ’96).

†Mailing address: Mail Code 522.3, NASA Goddard Space
Flight Center, Greenbelt, MD, 20771.

nite process and automata theory [29]. Fishwick and
Zeigler have argued [9] that such systems-theoretically
based modeling methods can provide a more appro-
priate base to develop Qualitative Modeling (qm) [8]
than the traditional qualitative physics bases.

This work generally is intended to move in that
direction, while not dismissing the important issues
brought up by traditional qm approaches [15]. This
paper will describe extensions to devs based on some
new ideas which relate general process and automata
theory with General Information Theory (git) [18]
and qm. Specifically, we will consider the applicabil-
ity of possibilistic and fuzzy processes and automata
to the devs methodology.

2 The Process Theoretical View of

Classical DEVS

We first define devs and cast them in process the-
oretical terms.

2.1 DEVS

Following Zeigler [30], we have:

Definition 1 (Discrete EVent System (DEVS))
Let D := 〈X, Y, S, t, δint, δext, λ〉, where:

• X is a set of external events;

• Y is a set of outputs;

• S is a set of states;

• t: S 7→ [0,∞] is the time advance function, where
[0,∞] := IR+ ∪ {∞};

• δint: S 7→ S is the internal transition function;

1

cliff
Text Box
Joslyn, Cliff A: (1996) "The Process Theoretical Approach to Qualitative DEVS", in: Proc. 7th Conf. on AI, Simulation, and Planning in High Autonomy Systems (AIS '96), ed. Bernie Zeigler, pp. 235-242, San Diego CA



• δext: Q × X 7→ S is the external transition func-
tion, where

Q := {〈s, e〉 : s ∈ S, 0 ≤ e ≤ t(s)}

=
⋃

s∈S

[0, t(s)] ⊆ S × [0,∞]

is the total state set; and

• λ: S 7→ Y is the output function.

These functions are interpreted as follows. Assume
that D is in state s ∈ S. If an event x ∈ X arrives
after a duration e ≤ t(s), then D transits to state
δext(〈s, e〉 , x). If no event arrives before t(s), then s is
said to expire, and D transits to state δint(s). Finally,
at all times, D produces output λ(s).

2.2 Classical Processes

We now adapt the following classical definitions of
finite processes and automata from Hopcroft and Ull-
man’s standard text [11].

Definition 2 (Finite Processes and Automata)
Assuming the following sets and functions:

State Set and Initial State: S and s0 ∈ S;

Inputs and Outputs: X and Y ;

State Transition Function: δ: S × X 7→ S;

Output Function: λ: S × X 7→ Y ;

then define the following systems:

Mealy Automaton: A := 〈S, s0, X, Y, δ, λ〉

Moore Automaton: Given A, if ∀s ∈ S, ∀x1, x2 ∈
X, λ(s, x1) = λ(s, x2), then define AO :=
〈S, s0, X, Y, δ, λ ↓ X〉, where λ ↓ X: S 7→ Y is the
projection of λ through X: ∀s ∈ S, (λ ↓ X)(s) :=
λ(s, x0), for any arbitrary x0 ∈ X.

Finite Automaton: Given AO, if Y = ∅, then define
AF := 〈S, s0, X, δ〉;

Finite Process: Given AF , if X = ∅, then define
Z := 〈S, s0, δ ↓ X〉.

A Mealy automaton is interpreted as a full automaton;
the outputs of a Moore automaton depends entirely on
the state, and not on the inputs; a finite automaton
has no outputs; and a finite process has no inputs.

2.3 Process-Theoretical View of DEVS

Clearly devs share a great deal in common with
classical automata. But classical automata, finite
state machines, and sequential processes differ from
devs in that devs have a continuous-time role played
by the time advance function t(s) ∈ [0,∞]. By fo-
cusing on the discrete aspect of devs, that is the dis-
crete events, we can cast devs to some extent in finite
process-theoretical terms.

Definition 3 (devs Moore Automaton) Given a
devs D, and an s0 ∈ S, then the system AO

D(s0) :=
〈S, s0, X

∗, Y, δ∗, λ〉 is the Moore automata constructed
from D with initial state s0, where: S, s0, Y , and λ are
as above;

• X∗ := (X × [0,∞)) ∪ {T} is the extended input
alphabet; and

• δ∗: S × X∗ 7→ S is the extended state transition
function, with ∀s ∈ S, ∀x∗ ∈ X∗,

δ∗(s, x∗) :=

{
δint(s), x∗ = T

δext(〈s, e(x)〉 , x), x∗ = 〈x, e(x)〉
.

AO
D(s0) is interpreted as follows:

• The input alphabet X is extended in two ways:

1. Each input event x ∈ X which might occur
is paramaterized by its time of occurrence
e(x) ∈ [0,∞);

2. The special event T is added;

• The internal and external transition functions δint

and δext are combined into the new extended tran-
sition function δ∗. AO

D
(s0) necessarily receives an

input x∗ ∈ X∗, which is either:

1. An event x ∈ X at time e(x) ≤ t(s),
triggering the external state transition to
δext(〈s, e(x)〉 , x); or

2. The special event T ∈ X∗, indicating that s

has expired, and triggering the internal state
transition to δint(s).

Because of the continuous-time nature of devs

they cannot be described purely in classical finite
automata-theoretical terms. Thus AO

D(s0) is not a
complete representation of D. Instead, AO

D(s0) is the
Moore automaton embedded within a larger system
which will complete the representation of D. This
larger environment is responsible for interpreting the
time advance function t so that:



• Any incoming event x ∈ X occurs at an accept-
able time e(x) ≤ t(s); and

• When s expires, then the special event T ∈ S∗ is
sent to AO

D
(s0).

3 GIT for Qualitative Modeling

3.1 Qualitative Modeling Methods

Classical devs are entirely deterministic: a devs

persists in a specific state, and, either on receiving an
input event or expiring, transits to another specific
state. There are situations when such specific and de-
terministic models are problematic, for example when:

• there is poor knowledge about the system being
modeled or it is incompletely specified;

• there are missing or incomplete data;

• systems have parameters or states that are not
known with certainty;

• or complexity makes detailed prediction difficult.

Under these circumstances qm techniques [3, 8],
broadly described as the attempt to model systems
at deliberately high levels of abstraction, can help. Of
course, these approaches produce models that are less
precise than they might be, but with the tradeoff of
potentially greater tractability and accuracy (the less
you say, the better your chance of being right).

When looking to provide a qualitative capability
in devs, it is natural to turn to the generalizations
of processes and automata which involve uncertainty.
Traditional extensions include nondeterministic [11]
and stochastic [26] processes. These map directly to
one of the most prominent qm methods, which involve
placing uncertainty distributions on state variables.

Here the uncertainty about some attribute is repre-
sented mathematically by weights on all possible val-
ues. The set of weights, as a distribution, acts as a
meta-state in the space of all such distributions, and
functional equations relating these meta-states pro-
duce predictions about the meta-state distribution at
future times. The most familiar of these models are
Markov processes, Bayesian networks, and other kinds
of stochastic models [21].

3.2 Possibility Theory in GIT

But recent years have seen a proliferation of new,
non-probabilistic mathematical methods for the rep-
resentation of uncertainty and information in systems

models. Following Klir [18], we call these methods col-
lectively “General Information Theory” (git), which
includes fuzzy sets, systems, and logic [19]; fuzzy mea-
sures [28]; random set [17] and Dempster-Shafer evi-
dence theory [25]; possibility theory [6]; and others.
Each of these involves some form of generalization or
extension away from stochastic representations, and
probability is retained in git as a limiting case.

Within git, possibility theory stands out, because
although it is logically independent from probabil-
ity, they exist in parallel and are formally analo-
gous [4]: probability and possibility measures arise in
Dempster-Shafer evidence theory as fuzzy measures
defined on random sets; possibility and their dual ne-
cessity measures represent extreme ranges of probabil-
ity intervals; and the distributions of all these gener-
ally non-additive fuzzy measures are fuzzy sets.

A detailed description of fuzzy and possibility the-
ory is not possible here (see [5, 14, 19]), but I will
introduce some basic concepts. Assume a finite uni-
verse Ω = {ωi}, 1 ≤ i ≤ n. A function ν : 2Ω 7→
[0, 1] is a (finite) fuzzy measure [28] if ν(∅) = 0 and
∀A, B ⊆ Ω, A ⊆ B → ν(A) ≤ ν(B). A fuzzy subset

denoted Ã ⊆̃ Ω is defined by its membership function
µ

Ã
: Ω 7→ [0, 1]. µ

Ã
(ωi) indicates the extent to which

ωi ∈ Ã, with µ
Ã
(ωi) = 1 indicating complete inclusion

and µ
Ã
(ωi) = 0 indicating complete exclusion.

A possibility measure Π is a fuzzy measure where
∀A, B ⊆ Ω, Π(A ∪ B) = Π(A) ∨ Π(B) and ∨ is the
maximum operator. Then the possibility distribution
is a function π: Ω 7→ [0, 1], with π(ωi) = Π({ωi}). In
reverse, ∀A ⊆ Ω, Π(A) =

∨
ωi∈A π(ωi), and for nor-

malization Π(Ω) = 1 ↔
∨n

i=1
π(ωi) = 1. So to some

extent it is justified to view possibility theory as sim-
ilar to probability theory where + and × are replaced
by ∨ and u (although this risks oversimplification). u
remains as a free parameter.

Further components of possibilistic systems theory
include possibilistic measures of information, which
are called nonspecificities and are strict correlates
to stochastic entropies, and possibilistic correlates of
most of the constructs of stochastic systems theory,
including marginals, joints, and conditionals, possi-
bilistic Bayesian networks, and possibilistic processes
and automata [14].

4 General Process Theory and GIT

Classical processes and automata can be general-
ized in the context of git to a class of general au-
tomata defined as temporal processes with input and



output where states are valued on a lattice and the
transition function is represented by an algebraic semi-
ring. Depending on the choices made for the semi-
ring operators, valuation lattice, and normalization
conditions, the traditional classes of deterministic,
nondeterministic, and stochastic (Markov) processes
are recovered. Other choices result in the newer
classes of fuzzy and possibilistic (possibilistic Markov)
processes [14], both of which generalize nondetermin-
istic processes better than stochastic processes do.

4.1 General Processes

Following Peeva [22] and Joslyn [14] we have:

Definition 4 (General Process) A system Z :=〈
S, φ0, V,R, ∆

〉
is a general process if:

• V is the valuation set, a lattice with 0, 1 ∈ V .
Here we assume that V is a chain with V ⊆ [0, 1];

• R = 〈t,u〉 is a conorm semiring, so that:

– t: V 2 7→ V (resp. u: V 2 7→ V ) is a triangular
conorm (resp. norm): an associative, com-
mutative, monotonic operator with identity
0 (resp. 1);

– u distributes over t;

• ∆: S2 7→ V is the transition function; and

• φτ : S 7→ V are a family of state functions for τ ∈
{0, 1, . . .}, with:

– φ0 a given initial state function; and

– ∀s ∈ S, τ > 0,

φτ (s) :=
⊔

s′∈S

φτ−1(s′) u ∆(s, s′). (5)

When S is finite with S = {si}, 1 ≤ i ≤ n := |S|,
then it is common to consider:

• φτ as the vector ~φτ = 〈φτ
i 〉, with φτ

i := φτ (si);

• ∆ as a matrix ∆ = [∆ij] for 1 ≤ i, j ≤ n, with
∆ij := ∆(si, sj); and

• ~φτ = ~φτ−1◦∆ where ◦ is matrix composition over
the semiring R, as shown in (5).

General processes act as generalized first order sta-
tionary Markov processes. The φτ act as distributions
on the states si, giving a weight in [0, 1] to each state
at each time τ . Similarly, ∆(si, sj) is the weight on

the transition from state sj to state si. (5) then deter-
mines future state vectors from past state vectors and
∆. Depending on the particular properties of V and
R, general processes might take on different forms,
including classical finite processes as a special case.
These will be considered below.

Definition 6 (Normal Processes) Assume a gen-
eral process Z. Then:

• φt is normal if
⊔

s∈S φt(s) = 1;

• ∆ is transition normal if ∀s′ ∈ S,
⊔

s∈S ∆(s, s′) =
1;

• Z is normal if ∆ is transition normal and ∀t ≥
0, φt is normal.

Theorem 7 (Process Normality) [14] For a gen-
eral process Z, if φ0 is normal and ∆ is transition
normal, then Z is normal.

4.2 Special Processes

A number of cases follow depending on the spe-
cializations made for R, V , and normalization. These
are summarized in Tab. 1 and Fig. 1, where for
x, y ∈ [0, 1], x +b y := (x + y) ∧ 1 is the bounded
sum operator and ∧ is the minimum operator. In
the figure, non-degeneracy is simply the condition that
∀τ, ∃si, φ

τ
i > 0; and certainty is the condition for de-

terministic systems described below. We now describe
these classes more specifically:

Stochastic: When R = 〈+b,×〉 is an additive semi-
ring, then Zp is a stochastic process. Now
pτ(si) := φτ (si) ∈ [0, 1] is the probability of be-
ing in state si at time τ ; ∆ is a stochastic matrix
with pτ (si|sj) := ∆ij the conditional probabil-
ity of transiting from state sj to state si; and
◦ is normal matrix composition ·. Here normal-
ization by + is required, so that ∀τ,

∑
i pτ

i = 1.
This implies the weaker conorm +b normalization
(
∑

i pτ
i ) ∧ 1 = 1.

Fuzzy: When R = 〈∨,u〉 for any norm u then Z̃ is

a fuzzy process [27]. Now ~µτ := ~φτ ⊆̃ S is the
fuzzy set representation of the overall meta-state;
µτ (si) := φτ (si) ∈ [0, 1] is the degree of member-

ship of si in the set of states of Z̃ ; ∆ ⊆̃ S2 is now
a fuzzy matrix representing a fuzzy relation of the
fuzzy linkage between the prior state s′ and the
subsequent state s; and ◦ is fuzzy matrix compo-
sition [19]. Note that there is no normalization,
and all values are unconstrained over [0, 1].



Deterministic

Nondeterministic

Possibilistic

Fuzzy

Stochastic

XXXXXXXXz

XXXXXXXXz

��������9

��������9

�
�

�
�

�
�

�
��=

?
Z

Z
Z

Z
Z

Z
Z

ZZ~

〈∨,u〉

〈+b,×〉

{0, 1}

Normal

{0, 1}

{0, 1}

Certain

Non-degenerate

General:
〈t,u〉 , [0, 1]

Figure 1: Relations among classes of processes

Nondeterministic: Given a fuzzy process Z̃ , if V is
restricted to {0, 1} ⊆ [0, 1], then Zn := Z̃ is a
classical nondeterminstic process [11], so that at
time τ Zn exists in a set of possible states and
any state can transit to multiple states.

Deterministic: Given either a stochastic process Zp

with V = {0, 1}, or a nondeterministic process Zn

with the certainty requirement ∀τ, ∃!si, µ
t(si) =

1, then Zd results as a classical deterministic
process [11]. Zd is always in one definite state,
and transits to another definite state. We have:

Theorem 8 [14] Each deterministic process Zd

maps to a unique finite process Z from (2), and
vice versa.

Possibilistic: Finally, given a fuzzy process Z̃ which
is normal by ∨, then Zπ := Z̃ is a possibilistic
process [13, 14]. Now πτ (si) := φτ(si) ∈ [0, 1]
is the possibility of being in state si at time τ ;
∆ is called a possibilistic matrix Π := ∆, with
πτ (si|sj) := Πij = ∆ij being the conditional pos-
sibility of transiting from state sj to state si; and
◦ is again fuzzy matrix composition.

4.3 Possibilistic Processes

The important new class of possibilistic processes
was introduced by Joslyn [13, 14] (see also Janssen et
al. [12]). They are essentially possibilistic correlates

of first-order, stationary Markov processes, and mark
the appearance of a new form of qualitative process.

An example possibilistic process is shown in Fig. 2
for S = {x, y, z}. The arcs indicate state transitions,
each of which is non-additively weighted with the con-
ditional possibility of the transition. So, for example,
π(x|y) = .8, and the possibilistic transition matrix is

Π =




0.0 0.8 0.0
1.0 0.0 0.0
0.2 1.0 1.0


 .

Π is transition normal, with a 1 in each column, or
equivalently each node has an out-arc labeled 1. Nodes
may have multiple out-arcs, however, so that a unitary
weight does not indicate a necessary, but rather a com-
pletely possible transition. For example, from state x,
transition to z is .2 possible, but transition to y is also
(completely) possible. z is an absorbing state, with
self-transition the only possibility.

Let u = ∧, and assume that at time τ = 0 the sys-
tem begins definitely in state x, so that ~π0 = 〈1, 0, 0〉T ,
which is normal. Then future state vectors are

τ 0 1 2 3 4
~πτ 1.0 0.0 0.8 0.0 0.8

0.0 1.0 0.0 0.8 0.0
0.0 0.2 1.0 1.0 1.0

.

(7) guarantees that all state vectors are normal. The
process settles into a normal element of state z, which
acts as a kind of attractor or absorbing state. But



Class Denotation R V Normal

Stochastic Zp 〈+b,×〉 [0, 1] Yes

Fuzzy Z̃ 〈∨,u〉 [0, 1] Not necessarily
Nondeterministic Zn 〈∨,u〉 {0, 1} Yes
Deterministic Zd 〈+b,×〉 = 〈∨,u〉 {0, 1} Yes
Possibilistic Zπ 〈∨,u〉 [0, 1] Yes

Table 1: Special cases of processes.

z (1,0)3.00(0,-1)5.00

(-1,0)5.006

y

x
HHHHHj

�����*
������

?

1

1

.2

1
.8

Figure 2: Weighted state transition diagram for a possibilistic process.

in virtue of the cycle between x and y with transi-
tion possibilities of 0 and .8 respectively, each of those
states in turn remains .8 possible. State y can never
recover the 1 possibility it has at t = 1, because the
system is never again unequivocally in state x.

4.4 General Automata

From (2), finite processes are at the heart of the
automata models, including devs. Similarly, general
processes can be extended to general automata.

Definition 9 (General Automata) Given a gen-
eral process Z =

〈
S, φ0, V,R, ∆

〉
and input and out-

put alphabets X and Y , extend the state transition
function to ∆′: S × X × S 7→ V , and introduce a gen-
eral output function Λ: S×X × Y 7→ V . Then define:

General Mealy Automaton:
A :=

〈
S, φ0, X, Y, ∆′, Λ, V,R

〉
where given that

x ∈ X is the current input then φτ is extended to

φ′τ(s) :=
⊔

s′∈S

φ′τ−1(s′) u∆′(s, x, s′).

General Moore Automaton: Given A, if

∀
s∈S

∀
x1,x2∈X

∀
y∈Y

Λ(s, x1, y) = Λ(s, x2, y)

then define AO :=
〈
S, φ0, X, Y, ∆′, Λ ↓ X, V,R

〉
;

Finite Automaton: Given AO , then if Y = ∅, then
define AF :=

〈
S, φ0, X, ∆′, V,R

〉
.

In these systems inputs and outputs are added. The
inputs essentially paramaterize the weighted state
transition function, or can be seen as providing a set of
transition matrices ∆′(x), one for each input symbol.

Similarly, the output function Λ(s, ·, y) in the gen-
eral Mealy automaton is a set of matrices Λ(x) para-
materized by x ∈ X recording the conditional weight
of outputting y given being in state s. The final output
distribution at time τ is then given by Λ(x) ◦ φ′τ . As
discussed in Sec. 4.2, depending on the specialization
of R and V , these weights may be fuzzy, stochastic,
nondeterministic, deterministic, or possibilistic.

5 Process General DEVS

It is clear that these ideas are directly applicable to
the definition of a general process theoretical exten-
sion of a classical devs. We will do this by extending
the Moore automaton of a devs AO

D(s0) to a general
Moore automaton.

Definition 10 (devs General Moore Automaton)
Assume a general Moore automaton AO

D
=〈

S, φ0, X∗, Y, ∆′∗, Λ, V,R
〉

where:

• X∗ is an extended input alphabet as in (3);

• ∆′∗: S × X∗ × S 7→ V is the set of transition ma-
trices parameterized by the x ∈ X as in (9); and

• We denote here Λ: S × Y 7→ V as the simple
weighted output function which is not dependent
on the input x, as in the Moore automaton of (9).



Following (3) in reverse, we can now construct a
generalized devs by distinguishing state transitions
triggered by event inputs 〈x, e(x)〉 ∈ X∗ and those due
to internal transitions for T ∈ X∗. Thus we arrive at
the following definition of a general devs.

Definition 11 (General devs) A general devs is
a system D̂ := 〈X, Y, S, t, ∆int, ∆ext, Λ, V,R〉, where:
X, Y, S, t, Λ, V , and R are as above (S finite);

• ∆int: S
2 7→ V is the general internal transition

function;

• ∆ext: Q×X×S 7→ V is the general external tran-
sition function, with Q as above in (1).

These are interpreted as follows. Assume that D̂ is
unequivocally in a certain state s0 ∈ S, represented
as the vector ~φ with φ0 = 1 and ∀si 6= s0, φi = 0. If
an event x ∈ X arrives after a duration e ≤ t(s), then

D̂ transits to the new state vector ~φ′ = ∆ext(x) ◦ ~φ.
If no event arrives before t(s), then D̂ transits to the

new state vector ~φ′ = ∆int ◦ ~φ. Finally, D outputs a
weighted vector of output symbols given by Λ ◦ ~φ.

6 Future Work

These ideas can be continued different directions:

• This formulation separates the Moore automaton
core of a devs from the continuous aspect of the
time of the input events. Thus the input events
are not given general weights, that is events x ∈
X occur unequivocally. Extension to weighted
input events remains to be done.

• Similarly, we do not deal with coupled general
devs. This development depends on the above
weighting of inputs, since in a coupled devs the
outputs of one devs, which are weighted, are fed
to the inputs of another, which have not been.

• Ahn and Kim [1] and Melamed [20] have also con-
sidered autonomous devs as stochastic processes.
It would be useful to compare our approach with
theirs, and to consider generalization of their ap-
proach to fuzzy, possibilistic, or other forms.

• Classical devs input and output segments are in-
tervals, which generalize naturally to fuzzy inter-
vals [7], which are both generalizations of classi-
cal intervals and kinds of possibility distributions.
Here the membership grade would indicate the
extent to which a certain time point is included

in the interval, and thereby the extent to which a
certain event or transition occurs.

• Finally, Joslyn and Henderson [16] have suggested
that weights can be placed on the linkages among
the components of a coupled devs, indicating
some information about the degree to which the
linkage holds. The variety of automata models is
then available depending on the choices of valu-
ation lattice, semiring operators, and normaliza-
tion.

References

[1] Ahn, MS and Kim, Tag Gon: (1993) “Analy-
sis on Steady State Behavior of DEVS Models”,
in: Proc. 4th Conf. on AI, Simulation and Plan-
ning in High Autonomy Systems, ed. J. Rozenblit,
pp. 142-147

[2] Barros, Fernando J; Mendes, Maria T; and
Zeigler, Bernard P: (1994) “Variable DEVS—
Variable Structure Modeling Formalism”, in:
Proc. 5th Conf. on AI, Simulation and Planning
in High Autonomy Systems, ed. PA Fishwick, JW
Rozenblit, pp. 185-190, IEEE Computer Society
Press, Los Alamitos CA

[3] Bobrow, Daniel G, ed.: (1985) Qualitative Rea-
soning about Physical Systems, MIT Press, Cam-
bridge MA

[4] Cooman, Gert de: (1995) “The Formal Analogy
Between Possibility and Probability Theory”, in:
Foundations and Applications of Possibility The-
ory, ed. G de Cooman et al., pp. 71-87, World
Scientific, Singapore

[5] Cooman, Gert de, ed.: (1996) Possibility Theory
I: Measure- and Integral-Theoretic Groundwork,
in: Int. J. General Systems, in press

[6] Cooman, Gert de; Ruan, D; and Kerre, EE, eds.:
(1995) Foundations and Applications of Possibil-
ity Theory, World Scientific, Singapore

[7] Dubois, Didier and Prade, Henri: (1987) “Fuzzy
Numbers: An Overview”, in: Analysis of Fuzzy
Information, v. 1, pp. 3-39, CRC Press, Boca Ra-
ton

[8] Fishwick, PA and Luker, Paul A, eds.: (1990)
Qualitative Simulation Modeling and Analysis,
Springer-Verlag, New York



[9] Fishwick, PA and Zeigler, BP: (1990) “Qualita-
tive Physics: Toward the Automation of the Sys-
tems Problem Solver”, in: Proc. Conf. on AI,
Simulation and Planning in High Autonomy Sys-
tems, ed. BP Zeigler and J. Rozenblit, pp. 118-
134, IEEE Computer Society Press, Washington
DC

[10] Hong, GP and Kim, TG: (1994) “The DEVS For-
malism: A Framework for Logical Analysis and
Performance Evaluation for Discrete Event Sys-
tems”, in: Proc. 5th Conf. on AI, Simulation
and Planning in High Autonomy Systems, ed. PA
Fishwick, JW Rozenblit, pp. 170-175, IEEE Com-
puter Society Press, Los Alamitos CA

[11] Hopcroft, John E and Ullman, Jeffery D: (1979)
Introduction to Automata Theory Languages and
Computation, Addison-Wesley, Reading MA

[12] Janssen, Hugo J; Cooman, Gert de; and Kerre,
Etienne: (1996) “First Results for a Mathemati-
cal Theory of Possibilistic Processes”, to appear
in: Proc. 1996 European Meeting on Cybernetics
and Systems Research

[13] Joslyn, Cliff: (1994) “On Possibilistic Au-
tomata”, in: Computer Aided Systems Theory—
EUROCAST ’93, ed. F. Pichler and R. Moreno-
Diáz, pp. 231-242, Springer-Verlag, Berlin

[14] Joslyn, Cliff: (1994) Possibilistic Processes for
Complex Systems Modeling, UMI Disseration Ser-
vices, Ann Arbor MI, PhD dissertation, SUNY-
Binghamton

[15] Joslyn, Cliff: (1994) “Possibilistic Approach to
Qualitative Model-Based Diagnosis”, Telematics
and Informatics, v. 11:4, pp. 365-384

[16] Joslyn, Cliff and Henderson, Scott: (1996) “cast

Extensions to dasme to Support Generalized In-
formation Theory”, in: Computer-Aided Systems
Technology—EuroCAST ’95, ed. Franz Pichler,
pp. 237-252, Springer-Verlag, Heidleberg

[17] Kendall, DG: (1974) “Foundations of a Theory
of Random Sets”, in: Stochastic Geometry, ed.
EF Harding and DG Kendall, pp. 322-376, Wiley,
New York

[18] Klir, George: (1991) “Generalized Information
Theory”, Fuzzy Sets and Systems, v. 40, pp. 127-
142

[19] Klir, George and Yuan, Bo: (1995) Fuzzy Sets
and Fuzzy Logic, Prentice-Hall, New York

[20] Melamed, Benjamin: (1976) Analysis and Simpli-
fication of Disccrete Event Systems and Jackson
Queueing Networks, PhD dissertation, University
of Michigan

[21] Pearl, J: (1988) Probabilistic Reasoning in Intel-
ligent Systems, Morgan Kaufman, San Mateo

[22] Peeva, Kety: (1991) “Equivalence, Reduction
and Minimization of Finite Automata over Semi-
rings”, Theoretical Computer Science, v. 88:2,
pp. 269-285

[23] Praehofer, Herbert: (1991) “Systems Theoretic
Formalisms for Combined Discrete-Continuous
Systems Simulation”, Int. J. of General Systems,
v. 19, pp. 219-240

[24] Praehofer, Herbert and Reisinger, G: (1994) “Dis-
tributed Simulation of DEVS-Based Multiformal-
ism Models”, in: Proc. 5th Conf. on AI, Simula-
tion and Planning in High Autonomy Systems,
ed. PA Fishwick, JW Rozenblit, pp. 150-156,
IEEE Computer Society Press, Los Alamitos CA

[25] Shafer, Glen: (1976) Mathematical Theory of Ev-
idence, Princeton U Press, Princeton

[26] Starke, PH: (1972) Abstract Automata, North
Holland, Amsterdam

[27] Topencharov, V and Peeva, K: (1981) “Equiv-
alence, Reduction and Minimization of Finite
Fuzzy Automata”, J. Mathematical Analysis and
Applications, v. 84, pp. 270-281

[28] Wang, Zhenyuan and Klir, George J: (1992)
Fuzzy Measure Theory, Plenum Press, New York

[29] Zeigler, BP: (1984) “Systems Theoretic Founda-
tions of Modelling and Simulation”, in: Sim-
ulation and Model-Based Methodologies, ed. TI
Ören, BP Zeigler, pp. 91-118, Springer-Verlag,
Heidelberg

[30] Zeigler, BP: (1985) Multifacetted Modeling and
Discrete Event Simulation, Academic Press, San
Diego

[31] Zeigler, BP and Chi, Sungdo: (1993) “Sym-
bolic Discrete Event System Specification”, IEEE
Trans. on Systems, Man, and Cybernetics,
v. 22:6, pp. 1428-1443




