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A bs t r act 

General database systems are described from the Gen- 
eral Systems Theoretical (GST) framework. In this 
context traditional information theoretical (statisti- 
cal) and general information theoretical (fuzzy mea- 
sure and set theoretical, possibilistic, and random set 
theoretical) representations are derived. A prelimi- 
nary formal framework is introduced. 

1 Introduction 

The Computer Research and Applications group 
(CIC-3) of the Los Alamos National Laboratory is 
deeply interested in a number of database problems 
related to "data mining" in general [3], and fraud and 
anomaly detection in particular. Such problems are 
typically plagued by a number of distinct challenges, 
including high complexity and dimensionality of the 
data, and multiple forms and sources of uncertainty. 

Motivated by these problems, this paper lays some 
initial groundwork for the integration of three dis- 
tinct formal fields: database theory [2] concerns 
the structures and processes of (usually relational) 
database information systems; general systems 
theory (GST) [5] is a general formal theory for repre- 
senting and modeling systems of all kinds; and gen- 
eral information theory (GIT) [7] is the general 
theory for representing uncertainty and information 
in systems. 

After some mathematical preliminaries, we first lay 
out some formal definitions relating database theory 
to GST, including a number of GIT structures which 
fall out naturally. We then introduce bipartate graph- 
ical representations of two dimensional projections, 
and finally introduce random set representations in 
the context of both complete and incomplete infor- 
mation. 

2 Mathematical Preliminaries 

Denote INM := { 1 , 2 , .  . . , M }  and IN := IN,. 
Denote a vector 2 := ( x ~ , z z , .  . . , Z M )  = (2,) ,i E 

INM. For a fixed a E INM, denote vector- 
element inclusion as s E 2 := 3i E I N M , ~  = 
s,; vector-element subtraction as 2 - st := 
(21,z2,. . . , zz-l, %,+I,. . . , z ~ )  if s, 5 2, or as just 
2 otherwise; and given another vector i? := (st,) ,if E 
INM, define vector-vector subtraction as 2 - 2' := 
( ( ( 2  - si) - XI) - . . . - ZC'M,). 

We now introduce some basic concepts of GIT [4,6, 
7, lo]. Given a nonempty, finite set R = {U,}, 1 5 
i 5 n, then a function v: 2" H [0,1] is a finite fuzzy 
measure if v(0) = 0 and VA, B C fl, A B -+ v(A) 5 
v(B).  The trace of a fuzzy measure v is a function 
q ' : f l e  [0,1] whereVw, E f l , q ' (wz )  :=v({w,}). If in 
addition there exists an operator function @: [0, 112 
[0,1], with CB associative and commutative, such that 
VA R,v(A) = $ w , E A q u ( ~ , ) ,  then @ is said to be 
a distribution operator of v and q y  its distribution. 

f : f l  H [0,1] is a probability distribution if 
f (w, )  = 1; and 7r: fl H [0,1] is a possibility 

distribution if V ~ z = , 7 r ( ~ , )  = 1, where V is the m a -  
imum operator. f induces a probability measure 
F :  2" e [ O , l ] ,  where VA fl, F ( A )  := f(wz).  
The traditional properties of probability measures 
hold, in particular VA,B 5 51, F(A  U B )  = F(A) + 
F ( B )  - F ( A  n B )  

Similarly, 7r induces a possibility measure II: 2" e 
[0,1], where now V A  E O,II(A) = 7r(wx), and 
now the "maxitive" possibilistic property VA, B C 
51, II(A U B )  = II(A) V II(B) hold. F and II are both 
fuzzy measures with distribution operators + and V 
and distributions f and 7r respectively. 

Whereas the canonical measure of the information 
content of a probability distribution is the classical 
stochastic entropy H(f) := - E:=, f(w,) log2(f(wx)), 
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in possibility theory the nonspecificity measure 

n 

N ( T )  := CT(W~) log, 
i=2 

n 

C( . (Wi )  - 4 W i f l ) )  k 2 ( i ) ,  
i=l 

where T ( w ~ + ~ )  = 0 by convention, is most well justi- 
fied. Various multidimensional (joint, marginal, and 
conditional) information measures are also available. 

Given a probability space ( X ,  C ,  Pr), then a func- 
tion S : X  C) 2" - {@}, where - is set subtraction, 
is a random subset of R if S is Pr-measurable, so 
that VA E R,S-l(A) E E. Thus a random set S as- 
sociates a probability (ProS-l)(A) to each A R. 
Since here R is finite, then more specifically we can 
define an evidence function m:2" r-) [0,1], where 
CAcnm(A) = 1, and then define a random set as 
S := {(Aj,mj) : mj > 0}, where Aj E R,mj := 
m(Aj), and 1 5 j 5 N := IS1 5 2" - 1. Denote the 
focal set as F(S)  := {Aj  : mj 0}, where each Aj 
is a focal element. Define the core and support of S 
respectively as 

c(s) := n A ~ ,  u(s) := U A ~ .  
AjEF(S) A j E F ( S )  

Given a random set S, then denote two evidence 
measures called plausibility and belief 

Pl(A) := mj, Bel(A) := mj, 

AinA#O AjEA 

respectively for A 0. Let p := qpl be the trace of 
S. 

When T(S)  is specific, so that VAj E 7, lAjl = 1, 
then P1= Bel is a probability measure with distribu- 
tion p .  When T ( S )  is consonant, so that VAj,Aj, E 
F, either Aj 5 Aj, or Aj 2 Aj, , then P1 is a possibil- 
ity measure with distribution p .  Finally, when F is 
just consistent, so that C ( S )  # 0, then while P1 is not 
a possibility measure, still p satisfies the properties of 
a possibility distribution, and a unique, best approxi- 
mating possibility measure 11* is available. Note that 
consonance implies consistency. 

3 Projections and Extensions of 
Relations 

We now recapitulate some of the essential points of 
database theory [2] from the perspective of GST. 

Assume a set of M finite dimensions Xi := {xi;} 
for 1 5 i 5 M ,  1 5 ji 5 ni = IXil. Without ambi- 
guity, denote xi E Xi .  The overall space is therefore 

n 
X := X X, with n := 1x1 = n,"=, n,, with individual 

states 2 := (xi,) E X. 
Assume a subset of indices K C INM, and let 

7 K  := INM - K .  Where possible without ambiguity, 
denote K as a simple list of its elements, for example 
K = 124 := K = {1,2,4}, or K = 10,11,12 := K = 

Define the projection of the space X through K as 
X J- K = X K  := X xk, which is the K variables of 

X .  Denoting IC' E T K ,  then X 4 K has corresponding 
projected vectors 

Z=1 

{10,11,12}. 

k 6 K  

ZJ- K = ZK := (Z,",) = 2.- ( Z k t )  € X J- K,  

which are the K variables of the Z. 
Note that IZKI = IKI 5 M .  Also, if 3!i' E 

I N M ,  K = { i ' } ,  then X J- K is just the collection of 
"singleton" vectors { (xi:,)} for all x;:, E Xtl. Then 
just denote X J- K := X%t. 

More generally, assume two sets of indices K ,  K' C 
MM. Then the projection of X J- K again through 
K' is just X J- ( K  n K'). Thus we identify X = X J- 
NM, so that X 3. K = X J- (INM n K) .  Of course if 
K n K' = 8 then the projection is empty. 

Now consider X J- ( K  U K'),  and define this as the 
extension to K' of X J- K ,  denoted ( X  J- K )  f K'. 
Essentially this is just adding the K' variables back 
in to X J- K ,  so that 

(X -1 K )  t K' := x J- ( K  U K') = ( X  J- K') f K. 

The vector 

(2 J- K )  f K' := 3 - (21) , I € ' ( K  U K') 

is just the sub-vector of 3 containing both the K and 
the K' variables. Here, if K' C K then the extension 
is meaningless. 

4 Databases 
Define a collection X := (ZI,&, . . . , 2 ~ )  = (Zj)  , j  E 
INN, as a vector of the records Zj E X .  X is usually 
represented tabularly as a matrix with N rows (data 
items) and A4 columns (fields, dimensions). Denote 
the projection of X through K as X J- K := (Zj J- K ) .  

Assume a subset of indices on the observations Y C 
J". Then denote Y := (31j),VZj E Y .  Call this 
"subsetting". Usually Y must be specified according 
to some condition or values of the 2, for example Y := 
{Z E X : z1 = x:}, for some x; E X I .  We will 
shorten this sometimes, for example here by denoting 
Y := {ZI = .A}. 

Projecting reduces the number of columns of the 
database, and subsetting the number of rows of the 
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database. These can be combined, considering the 
subsetted database Y being projected through the K 
dimensions. Thus denote a database proper as a sys- 
tem V(Y, K) := Y -1 K ,  or just V without ambiguity. 

Clearly V is a sufficient representation of a real 
database. Since the X i  are assumed finite, scalar vari- 
ables will be represented ordinally by some appropri- 
ate binning. In the limit, this will reflect the finite 
precision of the computer representation. Nor are we 
currently considering relational databases, but rather 
a simple flat table, perhaps produced by a large join 
over many component tables. 

Note that V J. K‘ = (Y -1 K )  -1 K’ = V(Y, K n K’). 
So, as above, if 3!i‘ E INN, K’ = {i’}, then we denote 
V J. K’ 5 Xi!. In other words, projecting V through 
a single dimension i’ just identifies that portion of Xi,  
which V touches. 

Furthermore, consider that 

3i‘ E I”, 3!jif E INni,, v -1 {i‘} = { ZZ,} , 
or in other words, for a given dimension i‘ the values 
of all the records is identical, namely z$<, . Then D and 
V J. ~ { i ’ }  = V J. K - {i’} are equivalent databases, 
since the value of the Xi! dimension is constant across 
all its records. So in particular, if Y := {zit = z:} 
for some z6 E Xi, ,  then this effectively reduces the 
dimensionality of V by one, since then V(Y, K )  = 
V(Y, K - {i‘}). 

4.1 Information Functions in 
Databases 

Any database D(Y, K )  induces the following: 

A counting function CY,K: X J- K C )  IN~YI, or just 
c without ambiguity, where c(2) is the number of 
times that each record type Z E X J. K has been 
observed in Y. Note that CacxlK c(2) = (YI. 

e A joint frequency function f y , ~ :  X J. K I+ [0,1], 
or just f ,  where 

A joint possibility distribution function 
TY,K: X J. K c+ [0,1], or just 7-r, where 

e A relation RY,K E X J. K ,  where Z E R ++ 
c ~ , K ( Z )  > 0. The 2 E RY,K are just the pro- 
jected record types which have been observed at 
least once in the subset Y. 

An incidence function I :  X I-) (0, l}, with 

For g E {C, f ,T,I},  denote g N , K  := g”,K and 
gY,M := gy,“. Note that f N , M  and TN,M are just 
the global, joint frequency and possibility distribu- 
tions of the 3 E X. 

c and f are generally additive functions, while 9 
and I are maxitive. 

Proposit ion 1 VK 5 I N M ,  

Obviously I ( Z )  = 1 ++ c(Z) > 0 ++ f(Z) > 0 ++ 
~(2) > 0. F’rom the frequency point of view, I (and 
thus R) represents the set of states with positive fre- 
quency, or probability, or in other w?rds the set of 
states which is possible, or have been seen. Note that 
c determines f and 7-r; f and IY 1 or T and VaEXLK c(2)  
determines c; and either c, f or 7-r determine I; but I 
determines neither c nor f .  

Let g E {c,  f ,  T ,  I } .  For a fixed K ,  the marginal 
over K is defined as the projection of any of these 
functions through these dimensions. Define g K : X  4 
K I+ ran(g), with g K ( Z K )  := EZExKg(Z) for g E 
{ f , c } ,  and g K ( Z K )  := V Z G X K  g ( 2 )  for g E { x , I } .  

Marginalization is preserved across projections for 
the additive information functions, but not for the 
maxitive. In particular, C N , K  and f N , K  are just the 
K-marginals of c, f. 

Proposition 2 

But the properties of both distributional operators 
are preserved across subsetting. 

Proposit ion 3 Fix Y 2 INM,  and let 77 := { y j }  be 
a partition of Y .  Then VK 2 INN, 
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Once we fully attach the entropy and nonspeci- 
ficity measures, in both their simple and multi-variate 
forms, to the additive and maxitive functions respec- 
tively, then we are more or less equipped to apply 
many of the standard set of GST and statistical tools 
for multivariate modeling, for example: mask anal- 
ysis and reconstructibility analysis [5],  in either the 
probabilistic or possibilistic contexts [l]; K-systems 
analysis [9]; and hierarchical log-linear modeling [8]. 

4.2 Example 

As an example, let N = 50 and M = 3, with X1 := 
{a ,  b,c}, X:! := {x,y}, and X, := {a,p}.  Fix Y := 
INN, K := INN. Then let c, f ,r,  and I be defined by 
the table: 

X 3 X Z X I I C  f R I  
a x a I 1 0.02 0.05 1 

b 

Y a  
b 

p x a  
b 

Y a  
b 

C 

C 

C 

C 

The projections are then: 

0 0.00 0.00 0 
8 0.16 0.40 1 
4 0.08 0.20 1 
3 0.06 0.15 1 
0 0.00 0.00 0 
8 0.16 0.40 1 
0 0.00 0.00 0 

20 0.40 1.00 1 
4 0.08 0.02 1 
2 0.04 0.10 1 
0 0.00 0.00 0 

xz X1 J c12 f'2 7 9  1'2 
x a 1  9 0.18 0.32 1 

b 

Y a  
b 

C 

C 

x3 x1 
a a  

b 
C 

P a  
b 
C 

0 0.00 0.00 0 
28 0.56 1.00 1 

5 0.16 0.29 1 
5 0.10 0.18 1 
0 0.00 0.08 0 

c13 f 1 3  R13 113 

5 0.10 0.25 1 
3 0.06 0.15 1 
8 0.16 0.40 1 

12 0.24 0.60 1 
2 0.04 0.10 1 

20 0.40 1.00 1 

Q x I 9 0.18 0.32 1 
Y 

Y 
P x  

7 0.14 0.25 1 
28 0.56 1.00 1 
6 0.12 0.21 1 

x1 I c1 f '  7r1 I' 
a 1 17 0.34 0.61 1 

c I 28 O.1° 0.56 0.18 1.00 1 

37 0.74 1.00 
13 0.48 0.35 

16 0.32 0.47 
34 0.68 1.00 

5 Graphical Representations 
When IKI = 2, then V has a simple graphical repre- 
sentation. Assume, without loss of generality, that 
K = {1,2}, then X , , X z  can be represented as 
nodes of the two parts of a bipartate graph G := 
( X l , X z , E ) ,  where E := R so that ( x 1 , x 2 )  E E ++ 
I ( ( x 1 , x 2 ) )  = 1. We then label the edge ( x 1 , x 2 )  with 
c12( (x' ,xz)), fl' ((5' , x')), or d2( ( x1 , 9)) as appro- 
priate, and the label on a node xi E X i  is the marginal 
ci(zi), f i ( x i ) ,  or ri(xi). 

Fig. 1 shows f 1 2  and d2 for the example above. 
Note that the unlabeled version of the graph is simply 
a representation of I or R: those nodes which have 
ever been seen, and are thus connected with some 
positive probability or possibility, are present. 

6 Random Set Representations 
For continued simplicity, again assume K = { 1,2}. 
For i E K ,  denote i' := 3 - i. Define two structure 
functions Si: Xi I+ 2x;r, where 

In other words, Si(xi) is the image of I in Xi) ,  or the 
subset of all nodes in Xi,  that are linked to xi with 
positive probability or possibility. 

Each marginal frequency distribution fi induces a 
random subset of Xi), where VA Xi# ,  

C2iES;i(A) fi(zi), 
m(A) := otherwise 

3xi  E X i ,  S ( x i )  = A 

In other words, each marginal probability f i ( x i )  is 
projected into a subset probability over the collection 
of nodes in the other dimension that it is positively 
linked to. 

Consider our example for K = { 1,2}. Then S1 and 
S2 induce respectively the random sets 

s' := {({x, Yl, -34) 7 ({XI, .w 1 ({Y}, .lo)}, 

S2 := { ( { a , c } ,  *74) > ( { a ,  b ) ,  .26)}, 
with traces p' = (.go, .44), p2 = (1.00, .26, .74). No- 
tice that S2 is consistent, but S1 is not, so that p2 
is a possibility distribution. This example is shown 
graphically in Fig. 2. 
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f' P2 P 

y .26 y .29 

.56 c 1.00 c 

Figure 1: Graphical representations of P ( N ,  {1,2}). (Left) f 12. (Right) d2. 

Figure 2: Graphical representations of the random 
sets S1, S2 induced by 'D(N, 12). 

The Si reveal a combination of structural and nu- 
merical information about the joint distribution, and 
in particular the distribution of joint values which are 
not positively related, or for which I ( 2 )  = 0. In par- 
ticular, if all joint values are possible, or have been 
seen, then the induced random sets will be vacuous. 

Proposition 4 If V j  E I N n 4 , V j '  E INni, ,  
I((zj,zjl)) = 1, then Si = {(Xit,l)}. 

firthermore, this structural information is com- 
pletely derivable from the joint distribution f I 2 .  In- 
stead, what we are especially interested in is situa- 
tions where there is incomplete information, which 
only the random set model can represent. 

Consider the situation where we have good statisti- 
cal information about one field X1 in a database, but 
only weak structural or coupling information about 
how that variable is related to another X2. Thus, 
continuing our example, we are given f1  , and I ,  but 
not the other marginal f 2  or the joint f 1 2 .  In our 
example, this would be represented by the table 

a .34 

.56 

where ? indicates any number in ( O , l ] ,  or in other 
words just that 1 1 2  = 1 in that cell. This is shown 
graphically in Fig. 3. 

.34 

.10 

.56 

Figure 3: Random set S1 when only f1 and I are 
known. 

In this case while we can determine f12(c, z) = .56 
and f12 (6, y) = . lo, still f12 (a ,  z) and f12 (a ,  y) have a 
degree of freedom between them, and each is bounded 
within (0 ,  .34). 

In general the f l2 are vastly underdetermined by f1 
and I ,  and only the random set representation S1 is 
sufficient. In particular, p will be an upper bound on 
a class of functions which approximate a probability 
distribution which f would impose on f 
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7 Conclusions [9] Shaf€er, Gary P.: (1997) “.K-Systems Analysis: An 
Anti-Silver Bullet Approach to Ecosystems Model- 

This examination is, of course, preliminary and cur- ing”, Advances in Systems Science and Applications, 

tions immediately present themselves: [lo] Wang, Zhenyuan and Klir, George J: (1992) f i z z y  
sory, and a number of important questions and direc- pp. 32-39. 

Measure Theory, Plenum Press, New York 
Definition of the final, crucial, database opera- 
tion of refining and coarsening of any of the di- 
mensions Xi (these operations change the ni, and 
thus the number of overall possible states, while 
not affecting N or M ) ;  

Similarly, treatment of fuzzy projections, allow- 
ing for gradations of inclusion in coarsened cate- 
gories; 

The expected behavior of joint and conditional 
information measures under each of the opera- 
tions of projection, subsetting, and refining; 

Extension of induced random sets to IKI > 2; 

The relationship between the properties of 
databases and the topological structure of the 
corresponding induced random sets; 

And finally, and most importantly, the relation- 
ship between the directly derived information 
functions f and T and the corresponding induced 
random set distributions p, especially when p is 
itself either additively f or maxitive 7r. 
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