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Measurement methods are a central requirement for the semantic grounding of any mathematical systems theory. 
Therefore possibility theory, as a branch of General Information Theory (en'), requires objective measurement 
methods to extend its agenda and applications beyond the fuzzy theory from which it emerged. General measur- 
ing devices, when defined on intervals of R, yield empirical random intervals which, when consistent, yield pos- 
sibility distributions as their plausibilistic traces. These empirical possibility distributions are called possibilistic 
histograms, and are fuzzy intervals. Their continuous approximations, even for very small sample sizes. yield the 
the standard fuzzy interval forms commonly used in fuzzy system applications. 

INDEX TERMS: ~ossihilistic histograms, semiotics, possibilistic measurement, general infornlation theory. 
fuzzy measures, possibility theory, random sets. random intervals, fuzzy intervals, fuzzy numbers 

INTRODUCTION: MEASUREMENT IN POSSIBILISTIC SEMIOTICS 

Historically, science has moved from deterministic models to those, like quantum and statis- 
tical mechanics and chaotic dynamics, where uncertainty and indeterminism are represented 
in terms of probability theory. Stochastic descriptions have been linked to a rich theory of sta- 
tistical information based on the stochastic entropy function. Systems Science has tradition- 
ally existed within this formal context, where distinctions are drawn between deterministic 
and nondeterministic systems, with nondeterminism represented by probability theory. 

But recent years have seen a proliferation of new, non-probabilistic mathematical meth- 
ods for the representation of uncertainty and information in systems models. Following Klir 
[1991], we call these methods collectively "General Information Theory" (GIT), which 
includes fuzzy sets, systems, and logic [Klir and Yuan, 19951; fuzzy measures [Wang and 
Klir, 19921; random set [Kendall, 19741 and Dempster-Shafer evidence theory [Dempster, 
1967; Shafer, 19761; possibility theory [de Cooman er a/ . ,  19951; imprecise probabilities 
[Walley, 19901; probability bounds [Ferson et al., 19961; rough set theclry [Pawlak, 19911; 
and others. Each of these involves some form of generalization or extension away from sto- 
chastic representations. 

Possibility theory is a component of GIT which has particular significance for Systems 
Science. This is because although probability and possibility are logically independent, they 
exist in parallel and are related within GIT in a formally analogous manner Ide Cooman, 19951: 
probability and possibility measures arise in Dempster-Shafer evidence theory as fuzzy 
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measures defined on random sets; possibility and their dual necessity measures repre- 
sent extreme ranges of probability intervals; and the distributions of all these generally 
non-additive fuzzy measures are fuzzy sets. 

Possibilistic systems in particular provide an important class of generalizations of 
classical and stochastic systems. For example, possibility distributions generalize real 
intervals, possibilistic mathematics generalizes interval analysis, and possibilistic 
processes generalize non-deterministic processes. Possibilistic versions of the key com- 
ponents of stochastic systems theory, including automata, Markov processes, networks, 
and Monte Carlo methods, are ail available [Janssen er a [ . ,  1996; Joslyn, 1994a, 1994b, 
1994~1. 

The Sot~ioric Requirement for Meusurert~ent in Systems Science 

All of these components of GIT, including possibility theory, are in and of themselves 
mere ~nathematical formalisms, mere syntax. The usefulness of such theories, their 
semantics and meaning, only become evident when used within the broader context of 
general science, Systems Science, or engineering applications. I t  is all too easy to com- 
mit referential fallacies, mistaking the map for the territory by focusing completely on 
our symbol strings and losing sight of the underlying processes of measurement and 
interpretation. 

We base the semantics and interpretation of possibility theory on ideas from semiotics 
about sign-functions and codings, and the isomorphic ideas from Systems Science about 
models. The field of semiotics [Deely, 1990; Eco, 19861 proposes three necessary elements 
for any symbol system: syntax, semantics and pragmatics. Syntactic relations are the for- 
mal, in our case mathematical, rules governing manipulation of the symbols themselves. 
Semantic relations link symbols to their meanings and interpretations. And finally prag- 
matic relations concern the use of the symbols in the world. 

These ideas are expressed in Systems Science in terms of the modeling relation, shown 
in Figure I [Joslyn, 1 9 9 5 ~ ;  Rosen, 19851. Assume sets W = ( w ]  and M = ( m ] ;  an object 
system SI = (r ,  W ) ,  r: W H W, a modeling system S2 = (f, M ) , j  M H M ;  and a coding or 
measurement function o :  W -  M. Then 0 := (S , ,  S2, o )  is a model if r , f ,  and o fonn a homo- 
morphism, so that Vw E W, o ( r ( w ) )  = f (  o ( w ) ) .  

hleasurement 
111itial Conditions 

L - - - - - - J  

"Reality" r f Prediction 

r - - - - - - 1  
w,, = r ( w l )  0,. = o(w1.)  otv = f (mt)? 

i - - - - - - J  
Corroboration 
Measurement 

Figure I Models in natural science. 
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Semiotically, o is called a sign-function between the w E Wand them E M, so that given 
t t ~  = ~ ( w ) ,  then m represents the referent w in virtue of the coding o.  Thus the coding o 
serves a semantic function within the model, encoding the meaning of the w in terms of the 
m, while the functions rand f serve syntactic functions, transferring the rv and the m through 
some dynamical processes into the future. 

Natural science is concerned with the case where S ,  = (W, r) is a system of causal, 
ontological entailments, an aspect of the natural world. In this context the semantic cod- 
ing function of o is understood as the actual physical process of measurement. The mea- 
surement o, = o(w,) at time t is used to instantiate a model. Then the clutput of the model 
m,. = f(m,) = f(o,) at a different time t' is corroborated against the measurement 0,. = o(w,.). 
If these "match", according to the appropriate criteria based on the nature of SI and S2, then 0 
is a good model. 

Figure I shows a general modeling relation. But the formal properties of the modeling 
system SZ. the modeling language, necessarily constrain the set of possible interpretations 
of the object system S,,  and the figure must be modified or instantiated in particular ways 
as appropriate given the nature of S2. 

For example, if differential equations are used in S2 as a modeling language, then the 
measurement methods used must produce states of the model m, which are represented 
mathematically as states of a dynamical system, and the prediction function f must produce 
other such states, for example by integration. Similarly, if probability theory is used in S2, 
then measurement methods must produce model states which are probability distributions, 
and prediction functions must be those from stochastic systems theory, for example a 
Markov process. 

But still the relation between a given mathematical formalism and the measurement meth- 
ods used to ground its symbols is necessarily nondeterminative and extratheoretical. 
Although the properties of S2 cotlstrain the possible interpretations, they do not determine 
them: each formalism might be left with multiple possible consistent interpretations. And 
certainly at the pragmatic level formalisms may be more or less appropriirte for certain appli- 
cations. Together, the pairing of a formalism with a particular interpretation and field of 
pragmatic applications delineates the "agenda" (to paraphrase Lotfi Zadeh') of that field. 

Existitzg Semiotics for Possibility Theory 

Fuzzy systems theory is by far the most prevalent component of GIT, and until recently pos- 
sibility theory has been tightly linked to fuzzy systems, both in its mathematics and its 
semantics [Joslyn, 1995al. Thus it is natural that the fuzzy agenda has come to dominate 
not only possibility theory, but many of the other components of GIT as well. 

Traditional fuzzy semantics is based on the interpretation of fuzzy sets as representa- 
tions of human, cognitive categories. Measurement in fuzzy systems is traditionally based 
on cognitive modeling, usually of "linguistic variables". Similarly, its applications are tra- 
ditionally in the engineering of human-created technological systems such as knowledge- 
based control systems, artificial intelligence and approximate reasoning systems, and 
decision support systems. 

'Presenlalion at the First International Workshop on the Foundations and Applications of Possibility Theoly. 
Univcrsity of Ghent, 1995. 
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But there is nothing a prior; necessary about this semiotics: GIT has other components, 
there are measurement methods other than cognitive modeling which are possible for these 
components, and there are applications in other than the typical "information engineering" 
domains. My purpose is to expand the semiotics of possibility theory beyond the tradi- 
tional fuzzy semiotics to include the modeling of complex systems without regard to the 
presence of a human, cognitive agent. It is thus necessary to develop possibilistic mea- 
surement procedures based on objective, empirical observation. 

There are, of course, existing empirical methods to derive measured possibility distributions 
in a more or less objective manner. These fall into three broad categories: 

Knowledfe Elicitcrtior~ Measurement methods utilize the human subiect in two ways. - 
In a personalist approach, more or less complicated or sophisticated methods are used to 
determine the opinions of individuals about the membership grades of some state of affairs. . - 
Alternatively, a variety of methods are used to determine the values of membership grades 
of some cognitive state of a human subject. The former are subjective methods, and the lat- 
ter may be objective, but both are too limiting for the possibilistic semiotics we wish to 
advance. 

Cor~verrecl Prohnhiliries A variety of methods exist to convert a probability distribu- 
tion, usually from an objectively measured frequency distribution, into a possibility distri- 
bution. While of course such transformations must be used when only frequency data are 
available, i t  can be shown that the resulting possibilistic representation is never ultimately 
appropriate for data initially governed by a specific frequency distribution [Joslyn, 1995bl. 
Specific data have very strong informational structures, much stronger than the very weak 
possibilistic structures. The difference between stochastic and possibilistic information is 
extraordinary: probability distributions provide virtually no possibilistic information, and 
thus virtually all conversions from frequency distributions yield incompatible possibility 
distributions. 

Pos.sihilisric Clrtsrering Finally, we can identify fuzzy and possibilistic clustering 
methods [Barone and Filev, 1995; Krishnapuram and Keller, 19931 which construct possi- 
bility distributions based on a set of measured specific vectors. We find these methods to 
be an important contribution to the objective measurement of possibility distributions, but 
here propose an alternative strategy based on a collection of measured, non-specific, 
interval-valued observations. 

A NEW Serrlioricsfi)r Possibility Theory 

When possibilistic data are desired, i t  is almost always preferable to obtain them in a form 
similar to their possibilistic representation. Thus objective, empirical measurement proce- 
durcs arc required that yield data in accordance with the semantic aspects of possibility the- 
ory, and thus governed by the mathematics of possibility theory. 

Thc additivity of frequency data results from the specificity of observations of single- 
tons, or indeed elements of any disjoint class. Therefore, the first step towards possibilistic 
nicasurement is the allowance for the possibility of norl-specific data which are possibly 
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non-disjoint, and thus rlor yielding traditional frequency distributions. This is essentially 
the concept of set statistics, originally advanced by Wang and Liu [Wang and Liu, 19841, 
and developed more by Dubois and Prade [Dubois and Prade, 1989, 19921. 

In this paper we use interval valued set statistics collected from general measuring 
devices to develop a method for the objective measurement of possibility distributions in 
the form of possibilistic histograms. We first introduce the basics of mathematical possi- 
bility theory in terms of fuzzy measures, random set and evidence theory, fuzzy sets, and 
particularly random and fuzzy intervals. We then generalize classical, point-valued mea- 
surement in terms of general measuring devices on subsets, and consider special cases rel- 
evant for possibility theory. Measuring devices defined on intervals of R yield empirical 
random intervals, and when consistent, their plausibilistic traces are empirical possibility 
distributions called possibilistic histograms. We prove these to be fuzzy intervals. Finally, 
we show that continuous approximations to possibilistic histograms, even for very small 
sample sizes, yield the the standard fuzzy interval forms commonly used in fuzzy system 
applications. 

Some aspects of this work have appeared in an introductory, synoptic, or unpublished 
form elsewhere [Joslyn, 1992, 1993b, 1994al. 

MATHEMATICAL POSSIBILITY THEORY WITHIN GENERAL 
INFORMATION THEORY 

We begin by introducing the basic aspects of mathematical possibility theory. This is done 
in the context of GIT, and so some related concepts of fuzzy sets, fuzzy measures. and ran- 
dom sets and intervals are also introduced. 

Throughout the paper assume a universe of discourse fl = ( w). Generally consider fl = (wit, 
1 5 i 5 n to be finite. Sometimes we will explicitly recognize that fl = F9, and consider half- 
open interval subsets, elements of the class denoted D := { [a,  b) R: a, b E R, a < b ) .  

A vector denoted a'= (a,) = (a,, a,, . . . , a,) is a structure of length 1 - 1  n . . = rn where each 
element a; of the vector is an element of some set a;  E X. The a; are ordered and may 
include duplicates. Let an element b  E X be said to be included in a vector b E <if 3ai, 
b = a,. Define subtraction of an element a; from a vector a'as a new vector 

;- , .- ( a l ,  a,, . . . , a;-,. ai+,.  . . . , a,) 

so that la'- a;( = rn - 1. 
Since a vector may contain duplicate elements a;,, a;, E a', a;, = a,>, therefore each vec- 

tor cidetermines a unique non-empty set A constructed by including one instance of each 
element a; E a', so that b  E a't ,  b  E A, 1 5 I A I  5 rn, and the quantity 1 ~ 1  - IAl is the num- 
ber of elements of ;which are duplicates. 

Given a class C = (A)  C 2n, define the core and support respectively as 

Finally, let V be the maximum and A the minimum operator. 
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Possibility and Other Fuzzy Measures 

The most general mathematical basis for possibility theory currently is fuzzy measure and 
integral theory, as exemplified by Wang and Klir [I9921 and de Cooman [1997a, 1997b. - - 
1997~1. These researchers generalize the standard possibility theory by extending possibil- 
ity measures to the positive reals and to lattices respectively. We will not consider these exten- 
sions directly here, kxcept tb briefly introduce some concdpts of fuzzy measures. 

The function v: 2n w [0, I ]  is a (finite) fuzzy measure [Wang and Klir, 19921 if v (0 )  = 0 
and VA, B C R ,  A c B + v(A) 5 v(B). Then q,: R ++ [O, 11 with q,(w,) := v((wi]) is a 
distribution of v if there exists a distribution operator function $: [O, 11' - [O, 11 where 
([O, I], $. 0) is an Abelian monoid ($ is a commutative, associative, operator with identity 0) 
and, in operator notation, 

Furthemlore, v is normal when v(R) = 1, so that €BwjEn q,(w;) = I. For a fixed finite fuzzy 
measure v, denote q' = (q;) := (q,({wi])) for 1 5 i 5 n. 

Probability theory results from considering the fuzzy measure Pr with probability distri- 
bution p := qp,, jj = (pi)  := +where $ = +. The standard forms of probability result: 

VA, B C R, Pr(A U B) = Pr(A) + Pr(B) - Pr(A n B), 

The central tenet of possibility theory is the introduction of a fuzzy measure I1 with pos- 
sibility distribution n := qn,  7j = (T;) := (j. The equations of probability now take the 
form: 

VA, B 0, n(A U B) = n(A) V n(B), 

Rrrtlriom Set atlri Evidence Tl~eory 

One of the richest domains in GIT is that of random sets. 

DEFINITION 4. (GENERAL RANDOM SET) Given a probability space (a, 8, Pr), then a 
function S: R ++ 2" - ((a], where - is set subtraction, is a random subset of 0 if S is 
Pr-measurable, so that V 0  # A 5 R ,  S-'(A) E 8. 

Random sets were originally developed as a branch of stochastic geometry, and their 
mathematics in general can be quite complex [Artstein and Vitale, 1975; Kendall, 19741. 
But for our purposes, and especially in the finite case, they can be seen more simply as ran- 
dom variables taking values on subsets of R.  Further, they are mathematically isomorphic 
to bodies of evidence in Dempster-Shafer evidence theory [Dempster, 1967; Shafer, 19761. 
We now reintroduce random sets in this context. 
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DEFINITION 5. (EVIDENCE FUNCTION, BASIC ASSIGNMENT) A function m: 2n [O, I] is 
an evidence function (basic assignment) when m(0)  = 0 and HArn m(,4) = 1. 

DEFINITION 6. (FINITE RANDOM SET) Given an evidence function m, then 

S : =  ((Aj m,): m, > 0) .  (7) 

is a finite random set where Aj c R, mj := m(Aj), and 1 5 j 5 N := IS' 5 2" - 1. Denote 
the focal set of S as the class y ( S )  := (A, : mj > 0) C 2n, and denote C(S) := C ( R S ) ) ,  
U(S) := U(RS)) .  

DEFINITION 8. (RANDOM SET CONSISTENCY) A random set S is consistent if C(S) # 0 .  
The plausibility and belief measures on VA C R are 

PI(A) := 2 mj, Bel(A) := 2 mj, 
A j  LA A j L A  

whereA I B denotesA f' B = 0 .  PI and Bel are generally non-additive fuzzy measures [Wang 
and Klir, 19921 without distributions, and are dual, in that VA C R, Bel(A) = 1 - PI(A). 
The plausibility assignment (otherwise known as the trace or one-point coverage) of S is 
$(S)  = (pi), where p, := Pl({w,]) = XAj3wj m,. 

When PI has a distribution operator @, then <(S) := $(S) is called the distribution of S. 
In particular, when 

then S is called specific, Pr(A) := PI(A) = Bel(A) becomes a probability measure, and 
j (S)  := $3) = c(S)  is a probability distribution. Similarly, S i s  calletl consonant ( y ( S )  
is a nest) when (without loss of generality for ordering, and letting A, := 0 )  A,-, A,. 
Now n(A) := PI(A) is a possibility measure and v ( A )  := Bel(A) is a necessity r n e a s ~ r e . ~  
6 := <(S) = c(S) is then a possibility distribution. 

Fuzzy Sets und Their Relation to Random Sers 

In fuzzy set theory, the characteristic or indicator function xA: R H (0, 1 ] of a subset A 
R, where Vw, E R 

is generalized to the membership function p ~ :  R H [0, I] of a fuzzy subset denoted R. 
The value of pa (mi) indicates the degree or extent to which o, E R. As with discrete distri- 
butions, denote fi = (pi) : = ( p ~  (mi)). 

It is clear that a fuzzy measure distribution q, is the membership function of some fuzzy 
set, and in particular probability p and possibility distributions mare. Sinlilarly, plausibility 
assignments c(S) of discrete random sets are the membership functions of fuzzy sets. Thus 
each random set S maps to a unique fuzzy set 6 (S), or to its distribution <(S) if @ exists. 
But when we begin with a particular fuzzy set 6 ,  there is generally a non-empty, nonunique 
equivalence class of random sets 'P(fi) for which V S  E Y(G), c ( S )  = fi[Goodman, 19941. 

'Since results for necessity are dual to those of possibility, only possibility will be discussed in the sequel 
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When c begins as an additive probability distribution ,5, then IT(fi)l = I, so that ,G 
uniquely determines a specific (in the sense of (9)) random set. But when fi begins as a 
maximal possibility distribution +, then in general IT(7i)l > I. All of the S E T ( + )  are 
consistent, and thus it is the consistency condition of Definition (8) which is both necessary 
and sufficient for S t o  have a maximally normalized possibility distribution ii = C(S) by (3). 

LEMMA 10. (NORMALIZATION AND CONSISTENCY) S is consistent iff V:=I pi = 1. 

Proof Case 1: Assume S i s  consistent. Then 3wi E C(S), and therefore VA,  E F ( s ) ,  wi 
E A, and pi = C,.,T(s, mj = I. Case 2: Assume Vi  pi = I so that 3w0 E 0, Pl((wo]) = 
Z,,,,,, rilj = I = k, tilj. so that it must be that VA, E R S ) ,  wo E A,, and thus oo E C(S), 
so  thcrr S is consistent. 

Consistency is weaker than consonance: each consonant random set is consistent with core 
C(S) = A , ,  but not vice versa. So while a consistent but non-consonant random set has a max- 
imal plausibility assignment +(S) = &S), its plausibility measure PI is not a possibility mea- 
sure n. But for a given possibility distribution +, there is a unique consonant random set 
S*(G) E T(+), and of course % is its possibility distribution. The possibility measure of 
P ( i i ) ,  denoted n*, is constructed by invoking (2) on 5 ,  and S*(+) can be constructed in turn 
from Il* [Joslyn, 1993a, 1994al. 

I'l* is the possibilistic approximation to the plausibility measures PI of all the other 
S E \I'(m), S f S*($). Therefore, in general when working with possibility theory in the 
context of finite random sets, a consistent random set S is a sufficient condition to gener- 
ate a possibility distribution +(S), with the knowledge that the unique approximating pos- 
sibility measure IT* and consonant random set S*(+ (S)) are always available. 

Rnnclom crnd Fuzzy Intervcrlu 

As we move to discuss possibilistic measurement proper, it will be desirable to let R = R. 

DEFINITION I I. (RANDOM INTERVAL) A random interval, denoted d, is a random set on 
R = R for which F(d) 23. 

Thus a random interval is a random left-closed interval subset of R. For random inter- 
vals, we modify the concept of the plausibility assignment slightly. 

DEFINITION 12. (RANDOM INTERVAL TRACE) Given a random interval A, define the func- 
tion p,: R H [O, I] as the plausibilistic trace, or just trace, of A, where 

Note that p, is the membership function of a fuzzy subset of R. There are two special 
fuzzy subsets of R = R which are of particular interest to us. 

DEFINITION 14. (FUZZY INTERVAL) [Dubois and Prade, 1978, 19871 A fuzzy subset of 
the real line F R is a fuzzy interval if F is maximally normalized and convex, so that 
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DEF~NITION 15. (FUZZY NUMBER) A fuzzy number is a fuzzy interval F where 3x E R, 
c ( F )  = 1x1. 

NOTE 16. FUZZY intervals generalize crisp intervals as fuzzy sets generalize crisp sets. 
Further, all fuzzy intervals and numbers are possibility distributions on R = R. 

NOTE 17. Our definition differs somewhat from others in the literature [Gil, 19921 who use 
closed intervals. First, this choice makes some of the algebraic manipulations easier. But also 
note that D is the basis for constructing Borel a-fields and Borel sets, and so our usage is 
more consistent with that of measure theory [Halmos, 1950; Wang and Klir, 19921. 

NOTE 18. Previously had been postulated as a finite set, which leads to a great deal of 
mathematical simplicity. However, even though 0 is now uncountable, complications can 
still be avoided as long as A is finite, that is as long as only finitely rnany (N) focal ele- 
ments are present. This is because an interval A = [a, b) C R can be characterized com- 
pletely by the two endpoints a and b. With each new focal element A,, N grows by I, and 
the total number of endpoints present iny(A)  grows by at most 2. Thus the focal set of a 
finite random interval can be completely represented by the finite collection of these end- 
points. I t  is only these endpoints that need to be considered, and none of the properties of 
the continuum of points between them is significant. This will be considered more completely 
in Theorems (39) and (41) below. 

MEASURING DEVICES AND EMPIRICAL RANDOM SETS 

Measurement is the general process of encoding an aspect of the "real world  into its rep- 
resentation in a formal system. It is only through measurement procedures that we can 
gain knowledge about the world; it is through the results of measurements that the world 
is "presented" to us. 

Classical Measuring Devices 

We generally think of a measuring device as producing a measured value which is a number 
x E R. For example, a thermometer calibrated in integral degrees in the interval LO, 1001 
would yield a result, say 72 degrees, 72 E 10, 1, . . . , 100). We call such a device a classical 
measuring device. 

DEF~N~T~ON 19. (CLASSICAL MEASURING DEVICE) A classical measuring device is a 
system MC := ( a ' ,  J, c), where: 

R' = {oj . ) ,  I 5 if 5 n' is the set of possible observations; 
The vector ~7 : = (wi) is the classical measurement record, a list of all the points which 
were actually observed, with 1 % s % M; and 
c:R' ++%'is the count function, w h e r e w a r e  the whole numbers and Vwj. E R' ,  
ci. := c(w;.) is the count of the number of times wj. is observed in 3'. 
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DEFINITION 20. (FREQUENCY DISTRIBUTION) Given a classical measuring device 3Mc, 
then a frequency distribution is a function f :R '  rt [0, I] where 

Ci' f (w,!,) = h, : = - . 
X;,,cp 

Denote the vector{:= (A,)  

DEFINITION 21. (FREQUENCY MEASURE) Given a frequency distribution f, then the 
frequency measure is a function ~ : 2 ~ '  I+ [O, I] where VA C R ' ,  P(A) := Xd.,,Jfi.. 

f i s  a natural probability distribution, and P is a natural probability measure as in (I). 

Getlercrl Measuring Devices 

On closer examination, however, we recognize that there is always some uncertainty on the 
readout of the thermometer. The thermometer is in fact a glass tube, a continuous object, 
which we represent as R c R. The tube is marked at certain points, say dj, indicating the 
number of degrees. When the thermometer equilibrates, the mercury stops at some point 
almost always between two of the marked points. 

While we can use subjective estimation to interpolate between these two points, within the 
formalism (or for a digital, electronic thermometer) only an b~tervnl, say B, := [d,, d,,,), can 
be reported as the result of the measurement. While any particular interval B, is usually iden- 
tified by and reported as a single number, for exampled,, d,,,, or the midpoint w, it must 
always be kept in mind that it in fact indicates the enlire interval [d3, d,+l). Observation of a 
specific position of the mercury (an x E B,) must yield an interval readout B,. Thus obser- 
vation of only the interval B, leaves uncertainty as to the "actual" valuex E B,. 

This leads to the concept of a general measuring device. 

DEFINITION 22. (GENERAL MEASURING DEVICE) A general measuring device is a sys- 
tem 3M := (C, 6, C), where: 

C :  = (Aj.) C 2". A, # 0, I 5 j' 5 N' is the class of observable sets; 
i j  := (B,) is the general m_easurement record, a list of each observed subset for 
1 5 s 5 M, so that VB, E B, ]!A, E C, B, = A,.; and 
C:C- %'is the set counting function, where VA, E C C,. : = C(Aj.) is the number - 
of occurrences of A, in B. 

Cis  the collection of all subsets which are observable by the device, and is defined here as 
a finite class. Each time a measurement is taken, an A,. 0 results as a report of 3M. The 
nature of the measuring device will depend on the elements and topological structure of C. 
In the thermometer example, C = (8,) is the collection of disjoint, equal length, half-open 
intervals B ,  = [d,, d,v+l). 

E17ipiriccrl Rundorn Sets 

Since i i s  a vector, it may contain duplicates; in other words, i t  may be that an element of 
Cis  observed more than once. 
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DEFINITION 23. (EMPIRICAL FOCAL SET) Given a general measuring device 3f, let 
YE := {A,!C C, I 5 j 5 N, be an empirical focal set derived by eliminating the dupli- 
cates from B, where: 

'JE is essentially the restriction of C to those subsets which are actually observed in the 
record i. Each of the A? is one of the N' observable sets; each of the B, is one of the M 
records that an A,. has been observed; and finally each of the A, is one of the N sets which 
was actually observed at one time or another. If N < N', then not all observable sets are in 
fact observed; if N < M then some observable sets were observed more than once. Denote 
C, as that C,. for which A, = A,., so that the C, are the positive Cf. 

Now proceed in a manner analogous to frequency distributions in classical devices from 
Definition (20). but with set-valued observations. 

DEF~N~TION 24. (SET-FREQUENCY DISTRIBUTION) Given a general measuring device 
3f then a set-frequency distribution is a function mE: YE H [O, I] where 

COROLLARY 25. m E  is an evidence function. 

Proof First, since X$, Cj = M ,  therefore 

Then, since 0 Q C, therefore from Definition (5) mE is an evidence fi~nction. W 

DEFINITION 26. (EMPIRICAL RANDOM SET) Given a general measuring device 3f, let the 
empirical random set S E  be defined as in Definition (7) fromFE and m E. 

NOTE 27. Set-based statistics and empirically derived random sets have only a small 
presence in the literature. Within crr they have been used primarily by Wang and Liu 
[1984, 19861 and Dubois and Prade [1989, 1990, 19921. Fung and Chong [I9861 provide 
an interesting example of the use of set statistics in their critique of Dempstere's rule of 
combination. 

NOTE 28. There is another entirely different sense of "set-valued statistic", as used by 
Degroot and Eddy [I 9831. Here it does not mean a mathematical propercy of some measured 
subset data, but rather an indeterminate value for the parameter of a probability distribution. 
Forexample, a uniform probability distribution would have a set-valued parameter if it was 
defined on a disconnected subset of the line, for example [I ,  21 U [5,6]. 

Disjoint Measuring Devices 

The key feature of a classical instrument is that its observable sets are disjoint. 



DI:FINITION 29. (DISJOINT MEASURING DEVICE) A general measuring device N is disjoint 
ifVAl,,A2E C , A l I A 2 .  

Generally, scientists strive to construct disjoint measuring devices. In such devices Cis  
an equivalence class on a ,  establishing observations of w E in an equivalence relation. 
Furthermore, when C i s  a partition, that is u ~ L ,  A,. = R, then C covers R,  yielding all 
observations possible. Alternatively, even when C does not cover 0, C does cover the sub- 
universe (u,"iL1 A,.) R. 

For a disjoint device, as with all general measuring devices, observations result in 
reports of A,. E C, not w E R.  Thus the observation of an A,. leaves uncertainty as to a spe- 
cific point outcome w E A,.. But what must be stressed is that ar the level of description of 
Cthere is no uncertainty or ambiguity. Rather, the cardinalities IA,.~ relative to IRl indicate 
the precision of the instrument. 

So in this case C can itself be considered as a new universe of discourse R' := 
C = (A,. 1. Of course 0' is essentially equivalent to a. The difference is just that in R' the 
ware grouped into the sets A,., and R' is considered as a collection of the A,., not of the w. 

Because the A,. are disjoint, so will the actual observed subsets A,. Then 6 becomes a 
time-series data set on points in a', and the empirical evidence function m E  becomes a 
simple frequency distribution over the disjoint A,., as a true probability distribution, and not 
as an evidence function. 

Thus we arrive at the following proposition. 

PROPOSITION 30. If 3d is disjoint, then N is a classical measuring device Nc with R' = C, - 
G' = R, and c = C. 

So we see that time-series data derived from measurement on classical instruments nec- 
essarily generate probability distributions. As argued above, a frequency conversion f' H .rr 
can be constructed, but it is better to continue the search for appropriately possibilistic mea- 
sured data. 

Cort.si.srer~r crt~cl Consor~cmt Meusuring Devices 

These are similar to consistent and consonant random sets. 

DEI'INITION 3 1. (CONSISTENT AND CONSONANT MEASURING DEVICES) A general mea- 
suring device 3f is consistent if Cis consistent. A general measuring device 3f is consonant 
if Cis a nest. 

I t  it clear that consistent and consonant measuring devices yield consistent and consonant 
empirical random sets respectively. Recall that YE = {Aj} c {A,.] = C. 

COKOI-I-ARY 32. If 94 is consistent then SE is consistent. 

Proof Since TE C C and VAT E C, 0 f C(C) c A,, therefore VAj E YE, C(C) C 
A j  so that C(C) C(yE),  requiring C ( y E )  f 0. rn 

COKOI.I+ARY 33. If N is consonant then SE is consonant. 

Pmof Follows directly from YE C C. 
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Elsewhere I have described a number of situations which are best modeled as general 
measuring devices because of the presence of non-disjoint, possibly overlapping set- 
valued observations [Joslyn, 1992, 1994a, 1994bl. Here I would like to suggest a 
thought experiment for the physical realization of consistent and consonant measuring 
devices. 

Consider Figure 2. There is a length of wall against which an experimenter can throw a 
ball, striking it somewhere between points a and b. On the left is a cclnsistent device 3l 
for measuring the ball hits. Two observers 0, and O2 view the wall through two holes in 
a screen configured so that 0, sees only the area A,., O2 only the area A,., and there is a 
partial overlap. Similarly, on the right of the figure is a consonant device, where 0, and 
O2 look through the same hole in the screen, but O2 is farther away. Now O2 can see 
everything that 0, sees, but not vice versa, so that A , .  A,.. In each case a number of 
balls are tossed, and each observer reports to the experimenter the total number of balls 
she saw hit. 

Two points are crucial here. First, the experimenter has no independent knowledge as to 
the position where the balls hit except as reported by the observers. Thus while there may 
be a "real" position of the ball hits against the wall, a11 that is known is whether it hit in A,. 
or AT. 

Second, the records of the hits reported by each observer cannot correlated, rather only 
a statistical description of the collection of observations, in this case of the total number of 
hits seen by each observer, can be reported. If the experimenter knew for any particulrr 
ball toss which of the observers (or both) reported, then he would be able to disambiguate 
where the ball struck within an element of a partition of the support U(C). 

For example. for the consistent device if it was known for a particular ball throw that 
0, but not O2 made a report, then the strike could be localized to the region A , .  - A2., 
identified as G I  in the figure. The partition in this case is { G I ,  G2, G3]. In the conso- 
nant case, if i t  was known for a particular ball throw that 0, reportetl, then necessarily 
O2 nus t  also report. In this case the partition is { G I  U G,, G2).  These cases are out- 
lined in Table I .  

Figure 2 (Left) A consistent measuring device. (Right) A consonant measwing device 
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Table I Results of correlated repons in the consistent and consonant example devices. 

Device Reports Equivalence Class Observable Set 

Consistent 01.02 GI A,. n AT 
0,. -01 GI A,. -A,. 
1 0 1 . 0 2  GI A ,  - A ,  

Consonant 01~02 G2 Alp 
01. - 0 2  Impossible impossible 
- 0 1 . 0 2  GI U GI A~ - A,. 

POSSIBILISTIC HISTOGRAMS FROM EMPIRICAL 
RANDOM INTERVALS 

We now move to possibilistic histograms by considering measuring devices which yield 
empirical random intervals. 

DEFINITION 34. (INTERVAL MEASURING DEVICE) A measuring device $4 is an interval 
device $4, if R = R and C D. 

Note that now C may be infinite, either countably or uncountably, but as discussed in 
Note (18), we will restrict ourselves to finite samples of C. 

DI!FINITION 35. (EMPIRICAL RANDOM INTERVAL) For an interval measuring device $4, 
let the empirical random set SE produced from the (finite) measurement record of $4, be 
an empirical random interval denoted d E .  

In the sequel we will deal almost exclusively with random intervals both in general and 
in the consistent case. 

PKOP~SITION 36. From the plausibility assignment formula (13) and the set-frequency dis- 
tribution function definition (24), given an empirical random interval d E ,  then Vx € U(pd~), 

p,. (x) = mF = - 
A j 3 x  M ' 

The Fornz of Finite Randorn Inrervals 

The following definitions are summarized in Table 2, and are illustrated in the example in 
the next section using Figure 3. 

First, i t  will prove very useful to denote the endpoints and the "order statistics" [David, 
198 1 I of the endpoints of the focal elements of a random interval. 

D E ~ l ~ l r l o N  37. (RANDOM INTERVAL FOCAL SET COMPONENTS) Assume a random 
interval d. 

Denote by A, E F ( d )  the closed intervals A, := [I,, r,). 
Let I ( j ,  and r c j ,  be the order and "reverse order" statistics of the left and right end- 
points, so that 

are permutations of the I,, rj. 
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Table 2 Summary of h e  componenLs of the focal set and plausibilistic trace of a random interval. 
- 

Group Components Bound" Description 

Observable class 
Measurement record 
Empirical focal :;el 
Left and right endpoint vectors 
Joint endpoint vcctor 
Ordered joint endpoint vector 
Endpoints set 
Left and right endpoints 
Domain interval of p 
Function intervals of o 

Figure 3 (Left) (top) An example measurement record from an interval measuring device on [O. 5). (bottom) Its 
random interval and order statistics. (Right) Its plausibilistic trace. 

Denote the vectors of endpoints and ordered endpoints as 

2':: (11, 12, . . . , IN), I?' := (r l ,  r2, . . . , rN), i:= ( 1 1 ,  12, . . . . IN, 1 . 1 .  r2, . . . . rN). 

:= ([(I), 4 2 1 ,  . . . , I(N), r ( ~ ) .  r ( ~ -  I , .  . . . , r(~) ) .  

Let 

El:= (e:,) , E':= (e;,], E : = [ e k ] .  

be the sets of endpoints with duplicates omitted from 2'. .?,and 2 respectively, where 

Veil E E', e:lE I?, b'e;,E E: EL,  E l?, Vet E E, ek (5 2, 

k ~ :  E I S ~ ' S Q ~ : =  I E ~ I ,  I S ~ S Q : = :  I E I .  

so that E'UE'= Eand g+Qr)Q.  Further, let theekEEbeordered with e,<ez<.. .<e 

Let r := {Gk)  for 1 5 k 5 Q - I ,  where Gk := [el. ek+,). 
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THEOREM 39. For a random interval d 

1 5 Q r ,  Q'sN, N +  I S Q S 2 N .  

Proof The inequalities in (38) will be strict or not depending on whether a pair A,,, A,> 
share an endpoint. All the A, are distinct, so they cannot share both endpoints. This forces 
most, but not all, of the I j ,  r, to be distinct. Consider an initial observation A l  := [a, b), so 
that now N = I ,  Q' = Q' = 1 ,  Q = 2. Then add a second observation A2 : = [c, d), so that 
N = 2. One possibility is that c @ { ( I ,  h )  3 d, so that now Q' = Q' = 2, Q = 4. On the other 
hand, if c E [a, b],  then d 4 {a, b ) ,  so Q' = 1 ,  Q' = 2; and similarly if d E [a,  b], then c 
4 [a,  b],  so Q' = 2, Q' = I. In each case, Q = 3. So in general, as each observation is added, 
at least one, and at most two distinct endpoints are added. Thus the result follows. 

We now characterize the plausibility assignments of random intervals. Below, denote 
p : = p, for a fixed random interval A .  

DEFINI.I.ION 40. (Plausibilistic Trace Form) Assume a random interval A 

For an interval A E D a n d y  E [O, I], let p(A) = y denote that Vx E A,  p(x) = y. 
Let Y := ITk) for I 5 k 5 Q - I, where 

Tk := {(x, y) E Gk X [O,I] : x E Gk. y = p(x)]. 

for!  5 k 5 Q -  I. 

p is a piecewise-constant collection of the left-closed segments Tk. It is thus completely 
characterized by the GI., which partition the closure of the support U ( d ) ,  and the values 
of p which are constant across each Gk. Further, as the ordinate x moves rightward, if it 
trnnsits an endpoint which is only a left endpoint, p jumps discretely up; and as it transits 
:in endpoint which is only a right endpoint, p jumps discretely down. 

I 
THEOREM 4 1 .  Assume a random interval d 

I. If U ( d )  is not connected, then r contains a partition of U ( d ) ;  
2. If U ( d )  is connected, then l' is a partition U ( d ) ;  
3. Vl 5 k 5 Q -  I, 3!y E 10, I], p (Gk)=y ,TI .=  G k X  [y] ;  
4. V I 5 k 5 Q - 2 :  

ek+l E E! ek+~ @ Er + p(Gk) < p(Gk+l), 

ek+l E E: ek+l 4 E' p(Gk) > p(Gk+l). 

Proof Recall that Vx E [W, p(x) = Z,,,, C,/M and VC, > 0. Thus p(x) is proportional to 
the sum of the counts on all the focal elements A, in which x is contained. Let a := [el, eQ). 

I. It is apparent that, for example, GI U G2 = [el, e2) U [eZ, e3) = [el, e3), and so on, so that 
UckEl GI. = cr. Since the Gk are disjoint, therefore they partition a. If U ( d )  is not con- 
nected, then there are some x E a which for which p(x) = 0. These points exist in their 
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own (perhaps multiple) Gk, such that VA, E Y ( d ) ,  A, I GI. Remove all such Gk from T. 
The remaining Gk still partition the remaining portion of u, and that portion is just U(A). 

2. Continuing from above, if U ( d )  is connected, then no such Gk must be removed from 
r, and the Gk still partition a = U ( d ) .  

3. For any k,  consider x, x' E Gk. Since there is no endpoint eke between x and x', therefore 
x and x' are contained within exactly the same collection of A,, so that p(x) = p(xl) = y 
for some y E [0, I]. This is true Vx, x' E Gk, so that y = p(Gk). 

4. Select a Gk, select an x E Gk, and select an x' E G ~ + ~ .  Let ek+l = lo E E' be some left 
endpoint lo, but not a right endpoint, so that ek+, 4 Er. Now lo is the only endpoint 
between x and x', so VA, E Y ( d ) ,  I, 5 x + I, x', but x < lo 5 x'. Sox'  is contained 
within all of the A, which contain x, but is also contained withinAo == [lo, rO). Therefore, 
from (l3), p(xl) - p(x) = C~/M > 0, so that p(Gk) = p(x) < p(xl) = P ( G ~ + ~ ) .  A sim- 
ilar argument proves the final case. 

Thus each of the ek is equal to at least one of the (left or right) observed endpoints I, or 
r,, and p i s  completely determined by the coordinates (e,, p(e,)). 

An Example 

An example measurement record from an interval device, its random interval, and its plau- 
sibilistic trace are shown in Figure 3 for C = ([a, b) [O, 5)).  Five subset measurements 
are made yielding the measurement record 

After eliminating duplicates from i, then the set of observed intervals YE with N = 4 < 
M = 5 and random interval dE are 

FE = l13.5.4), [3,4), 1 1 2 ,  [2,2.5)), 

aE = 1([3.5,4),.2), (13,4),.2), ([1,2),.4), ([2,2.5),.2)). 

YE is inconsistent, and the support U ( d E )  = [ I ,  2.5 ) U [3,4) is not connected. The com- 
ponents of YE are 

= (3.5.3, I, 2 ,4 ,4 ,2 ,2 .5) ,  if = (3.5,3, 1,2), I? = (4,4, 2, 2.5), 

with Q = 6, Q' = 4. and Q' = 3. The trace is the step function on the rig,ht of Figure 3 with 

p(r1.2)) = .4, p([2,2.5)) = .2, p([3,3.5)) = .2, p([3.5,4)) = .4 

and p(x) = 0 elsewhere. 

Consistent Random Intervals 

The following are some important properties of consistent random intervals. 



THEOREM 42. (CONSISTENT ENDPOINTS) d is consistent iff 

tnax I, = I ,,, < r,,, = mjn r,, 
j I 

Proof 

Case I :  Assurne d is consistent with core C = [I, r )  : = C ( d )  and focal set 3 :  = 'J(d), 
recalling that I < r. Fix anx E C. Since VAj E 3 C C A,, therefore VAj E 3, .r E Ai. So VA, 

E 3 I,  5 x, and in particular I,,, = max 1, 5 x. For the right endpoints, VAJ E 3, .r < rj, 

and in particularx < r(,, = min rj. Thus Vx E C,I,,, 5 x < r(,,, so that (43) holds, and 
C = [ I ,  r )  L [I,,), r(,,). If C C [I,,,, r(,,), then either 3x E [I(,,, Ic or 3x E [r, r,,,). 

In either case, VA, E 3, x E A,, x E C, which contradicts the consistency of A. Thus 
C = I I ,  r )  = r(,)). 

Case 2: Assume I(,, < r(,,. Consider an arbitrary x E [I(,), r,,). Since I(,) is the right- 
most left endpoint, therefore VA,, x 2 I ( , ) .  Similarly, VA, E 3 x < r(,,. Therefore for all 
such x E [I(,), r(,,), VA,, x E A,, SO that C ( 3 )  = [I(,), r(,)) # 0 and d is consistent by 
Definition (8). 

COKOI.I~ARY 44. (ENDPOINT ORDERING) d is consistent iff there is a joint linear order 
on 12 

I'roof Trivial from Definition (37) and the consistent endpoint conditions of 
Theorem (42). 

LEMMA 45. (CONSISTENT RANDOM INTERVAL MONOTONICITY) If d is consistent then 
p a  is monotone nondecreasing from -m to C ( d )  and monotone nonincreasing from 
C ( d )  to w. 

Proof Denote p := pa. The proof will be carried out for x E [-a, r(,,). The remain- 
ing argument follows analogously for x E [I(,,, w ] .  Recall that endpoint ordering of 
Corollary (44) carries ove r to the e :~  and e;.. 

I. For x E [ -w,  el), clearly 3 A,, x E A,, so p(x) = 0. 
2. Let I := [el. ehl). For x E I, from the endpoint ordering of Corollary (44) 3 eo E Er, 

eo E I. Therefore from Theorem (4 I), cases 3 and 4, Vx, x' E I, s<x' 4 0  5 p(x) 5 p(xl). 
3. Finally, fix x E [e&, e;.). From Theorem (42). x E C(p), so that p(x) = I ,  and t/x' E 

[-a), eh~),  p(.vf) 5 dx) .  

For random intervals there is a form of Lemma (10) showing the equivalence of trace 
normalization and consistency. 
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COROLLARY 46. (RANDOM INTERVAL NORMALIZATION AND CONSISTENCY) X is consis- 
tent iff 

supp,(x) = 1. 
XER 

(47) 

Proof Case 1: If X i s  consistent, then (47) follows by the same argument as in Case I 
of the proof of Lemma (10). Case 2: Assume a random interval X with trace p := pa 
From Theorem (41). we know that p is piecewise constant, with 

VI 5 k 5 Q - I ,  b'x € Gk, p(x) = lim p(y) = lim p(y). 
v - t r :  Y+ek+l 

So for (47) to hold, there must be a Gk, p(G,) = 1.  The argument then follows as in Case 2 
of the proof of Lemma (10). 

Possibilistic Histogranls 

We now move to describe possibilistic histograms proper as possibility distributions 
derived from consistent empirical random intervals. 

DEFINITION 48. (POSSIFJILISTIC HISTOGRAM) Given a consistent empirical random inter- 
val X E ,  let the possibility distribution .rrE := p , ~  derived according to the plausibility 
assignment formula (I 3) be called a ~ossibilistic histogram. - . . - 

Possibilistic histograms are similar to ordinary (stochastic) histograms, but resulting from 
overlapping interval observations, and thus governed by the mathematics of random sets. 

COROLLARY 49. (POSSIBILISTIC HISTOGRAM FORM) If rE is a possibilistic histogram, then 

Proof Follows simply from the proof of Lemma (45) and the fact that U(vE) is connected, 
from Corollary (44). 

Figure 4 shows an example of a possibilistic histogram for C = ( [ a ,  17) [O, 5)}. 

Possibilistic Hisrogrutns us Fuuy Inrervuls 

As stochastic histograms are naturally probability distributions, so possibilistic histograms 
are natural representations of possibility distributions. Since possibility theory is a weak 
representational form for uncertainty [Joslyn, 1993~1, it is appropriate that they produce 
meaningful forms of possibility distributions even given very few observations. In particu- 
lar, all possibilistic histograms are fuzzy intervals. 

THEOREM 50. If a finite random interval X is consistent then its trace p, is convex. 

Proof Assume a consistent finite random interval X with trace p := pa. From 
Corollary (46), pis normal. Convexity follows from the following three cases, which them- 
selves follow from the Lemma (45). Let x, y, z E R, x 5 y 5 z. 

1. If x 5 y 5 ebr then T(X) A ~ ( y )  = T(X) 5 ~ ( 2 ) .  
2. 1f e b ~  5 x 5 y then ~ ( x )  A ~ ( y )  = ~ ( y )  5 T(:). 
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Figure 4 (Left) (lop) A measurement record. (middle)dE (bottom) Components of wE. (Right) Possibilistic his- 
togram a%ith more components. 

3. I f  x 5 ebl 5 ehr 5 y then: if x 5 z 5 eh., then ~ ( x )  5 .rr(z); similarly, if e b ~  5 z 5 y, 
then ~ ( y )  5 ~ ( z ) .  Therefore ~ ( z )  2 ~ ( x )  A ~ ( y ) .  

COROLLARY 5 1. If the trace pd of a finite random interval d is normal, then it is convex. 

r o o  Let pa be normal. Then from Corollary (46), d is consistent, and thus convex 
from Theorem (50). 

We now arrive at the central result of this paper: 

THEOREM 52. The trace ~ A E  of an empirical finite random interval dE is a possibilistic 
histogram .rrE if an only if i t  is a fuzzy interval. 

Proof Case 1: If pd6 is a possibilistic histogram .rrE, then from Definition(48) dE is 
consistent, from Corollary (46) it is normal, from Corollary (51) it is convex, so from 
Definition (14) i t  is a fuzzy interval. Case 2: If p d ~  is a fuzzy interval, then from Definition 
(14) i t  is normal, from Corollary (46) dE is consistent, and from Definition (48) P ~ E  is a 
possibilistic histogram .rrE. 

COROI~LARY 53. No possibilistic histogram .rrE is a fuzzy number. 

Proof From Theorem (52) we know that .rrE is a fuzzy interval. For .rrE to be a fuzzy 
number from Definition (15) there must be an x E R, C(.rrE) = {XI .  But we know that this 
cannot be the case, since from Corollary (49) C(.rrE) = [ei,, e;,). rn 

CONTl NUOUS APPROXIMATIONS 

Possibilistic histograms play the role in possibility theory that ordinary histograms do in tra- 
ditional statistics. As maximum likelihood and other estimation methods are used in statistics 
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to generate continuous probability distributions which approximate the: histogram, so it is 
desirable to develop continuous or smooth approximations to possibilistic histograms. 

DEFINITION 54. (CONTINUOUS APPROXIMATION)  Given a possibilistic histogram 
.xE, denote *as a possibility distribution which is continuous on U(.xE)  and approximates .xE. 

One of the most significant differences between possibilistic and stochastic histogranis is 
that the former are collections of constant left-closed segments Tk of generally different 
lengths, not discrete points. Therefore, normal interpolation or approximation methods (such 
as curve-fitting or maximum-likelihood estimation) are not appropriate. Instead, a represen- 
tative set of candidate points from the segments Tk should be selected, and then a continu- 
ous curve 5 fitted to tltem. 

Candidate Points 

First, characterize a possibilistic histogram .xE as 

rE = Y = { T k )  = ((1, n E ( x ) ) ]  U ( n E )  X [O, I ] .  

Then it is necessary to characterize the candidate points from the possibilistic histogram. 

DEFINITION 55. (POSSIB~L~ST~C HISTOGRAM C A N D I D A T E  POINTS) As:jume a possibilistic 
histogram .xE = Y. Then denote: 

The left and right endpoints of each of the Tk, I 5 k 5 Q - I : 

t1 .- 
k . -  (ek, .xE(ek)), t i : =  (ek,,, .xE(ek)). 

The midpoints of each of the Tk, 1 s k 5 Q - I: 

The midpoint of the core: 

The endpoints of the suppon at the axis: 

The set of all the interval mid- and end-points to which a continuous curve ,nay optiotl- 
ally be fit: K' := ( t i ,  t;, h , ) .  
The set of all these optional interval mid- and end-points to which a continuous curve 
actually will be fit: K K'. 
Finally, the set of all the points to which the curve will be fit: D := {c, I, r )  U K c nE. 

The structure of D is then characterized by the following principle: 

P R I N C I P L E  56. ( C A N D I D A T E  POINT SELECTION) K may be any subset of K'  such that 
V.r E U ( . x E ) ,  there is at most one point in K for which x is the ordinate. 

Note that K = 0 is allowed. 
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Both Definition (55) and Principle (56) are justified by the following argument: 

I. Possibilistic norn~alization requires at least one point from the core to be a candidate. 
c is the only natural single point from the core, and so its requirement serves as the 
least restrictive normalization requirement. 

2. For .Ti to be zero outside the support U(.rrE) and for ?i to be continuous, ?i should drop 
to the axis through the points I and r. 

3. The above two criteria are the only necessary conditions to construct a continuous pos- 
sibility distribution with support U(.rrE). Therefore (c, I, r )  D, but K may be empty. 

4. For each interval Tk, the naturally identifiable points, which are also consistent with 
the ordinal nature of possibilistic information, are t i ,  t i ,  and hk. Therefore they ntay 
be included in K. 

5. The final requirement in Principle (56) is simply a statement that ii must be a func- 
tion, so that Vx E U(F), 3!?i(x). For example, this would preclude, for a fixed k, 
including both the right limit of Tk and the left endpoint of T,, , ,  which are equal in x 
but differ in aE(x). 

Consider the example in Figure 5. The left side shows two interval observations in dashed 
lines below the axis, each of which is observed once. The components of the Tk with N = 

M = 2, Q = 3, and c = h2 are also shown. t{ and t ;  are excluded from K due to conflicts 
with I and r, leaving a candidate set 

Any subset K K'  (including the empty set) can be chosen as long as i t  does not contain 
either set of conflicts (ti ,  t i )  or (t',, t i ] .  

Piecewise Lirteur Al~/~ro.rimations 

Once n set of points is selected, a variety of curve-fitting methods are available to determine 
E. The simplest and most direct is to connect them with line segments, producing a piecewise 
linear, continuous distribution. Three of these are shown on the right of Figure 5 for the sets 

K = [ h , ,  t i , .  t;, h , ) .  K = 0, K = ( t ; ,  t i ) ,  

Figure5 (Lcft) A silnple possibilistic histogram with its candidate points. (Right) Three example piecewise 
li~ic:~rco~ilinuous approximalions. 
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Figure 6 Typical fuzzy intervals and numbers used in applications 

moving from the outside to the inside respectively. Alternatively, nonlinear regression or 
s ~ l i n e  methods can be used to fi t  the selected ~ o i n t s  to one of the ex~onential or auadratic 
forms which are commonly used for fuzzy numbers [Dubois and Prade, 1978; Tanaka and 
Ishibuchi, 19931. 

An advantage of the line-segment method is that even given very 5:w observations, ?i 
has the same form as the fuzzy intervals and numbers typically used in fuzzy systems 
applications. Some of these are shown in Figure 6, with some example observed intervals 
below them which could give rise to them. Case A is a square distribution produced by a 
single crisp interval [a, b ] ;  B is the triangular form, produced in all cases when d = c and 
K = IZI; Cis  the outermost case of Figure 5 for the observations [f, i], [g, h ] .  

In case D it is also common for .rr to extend to the right by letting m -3 m, so that b'x 'x I ,  
~ ( x )  = I .  Either condition can result when point observations j, k, 1 are interpreted either as 
distances from a fixed rn (perhaps an upper bound), or as magnitudes in relation to one or the 
other infinities. In this last case, .rr is simply equivalent to a cumulative probability distribu- 
tion; but this approach is in keeping with the ordinal possibilistic concepts of capacity, dis- 
tance, and similarity. 
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