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Abstract 
In this paper we consider forms of autonomy, forms of semiotic 
systems, and any necessary relations among them. Levels of 
autonomy are identified as levels of system identity, from adi- 
abatic closure to disintegration. Forms of autonomy or closure 
in systems are also recognized, including physical, dynamical, 
functional, and semiotic. Models and controls are canonical 
linear and circular (closed) semiotic relations respectively. We 
conclude that only at higher levels of autonomy do semiotic 
properties become necessary. In particular, all control systems 
display at least a minimal degree of semiotic autonomy; and all 
systems with sufficiently interesting functional autonomy are 
semiotically related to their environments. 
Keywords: Modeling, Control, Semiotics, Autonomy. 

1 Introduction 
A crucial aspect of the modern Information Sciences, from 
robotics to  self-organizing databases, is the manner and 
extent to  which information systems can be said to be “au- 
tonomous”. Of course, there are many different senses of 
autonomy, from mere physical separation to the establish- 
ment of complex functional relations sufficient to allow the 
identification of the systems as “independent actors”. But 
in any event, some sense of closure of the system’s activ- 
ities, or identification of processes which are closed loops, 
is required. These closures can also take many forms, in- 
cluding physical boundaries, dynamic self-organization like 
autocatalytic chemical cycles, and informational “bound- 
aries”, as in elementary sensor-affector functioning loops. 

For many classes of information systems, closures are 
of a semiotic nature, where there is now a closure of 
meaning within the system through interaction with the 
environment. Here issues arise concerning the use and in- 
terpretation of symbols (as in “symbol grounding”), rep- 
resentations, and/or internal models (whether explicit 
or implicit) by the system; and the syntactic, semantic, 
and pragmatic relations among the sign tokens, their in- 
terpretations, and their use or function for the systems in 
question. This is the case, for example, with biological 
systems, whose autonomy is enabled by their own genetic 

information as used in the context of their environments; 
and with control systems, where autonomy is enabled by 
the information in their engineered construction and use 
by human operators. 

In this paper, we consider various classes of autonomous 
and semiotic systems, and consider the question whether 
there is any form of mutual necessity among these classes. 
In particular, we will consider the question as to whether 
autonomous systems of a certain class have any necessary 
semiotics properties, and vice versa. 

2 Autonomy and Identity 

Autonomy literally means “self-governing”, and is derived 
from the Greek for “self-law”. In linguistic history, auton- 
omy typically refers to social governing bodies, for example 
autonomous regions within nations. Generally, it has im- 
plications of independence, separatedness, and apartness. 
In modern scientific usage, autonomy has come to be as- 
sociated with the self-regulation of smaller systems, and 
in particular how on the one hand biologically evolved or- 
ganisms, and on the other mechanically designed robotic 
systems, develop and maintain autonomous functioning in 
variable environments. 

New classes of systems and environments, which we can 
broadly describe as Distributed Information Systems (DIS), 
have attracted a great deal of attention. Examples of these 
computerized virtual environments include Nets, Webs, 
and Multi-User Virtual Environments (MUVE’S) [S ,  141. 
The systems which inhabit these spaces include humans 
and software agents. The nature of autonomies in these 
classes of systems is therefore also of great interest. 

2.1 

In systems science, we try to produce generalized models 
of system-environment couplings in a variety of modal- 
ities. In tracing the relations within and between sys- 
tems, we can generally recognize two forms of relations: 
input/output relations, where linear influences flow 
through systems (or components of systems, or system- 
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environment couplings) ; and closures, where circular in- 
fluences flow within systems (or components, or couplings). 

We therefore recognize autonomy in particular as a form 
of closure. Many types of closures are also recognized in 
systems science, including self-reference (referential clo- 
sure), self-organization (functional closure), autopoei- 
sis (organizational closure), control (causal closure), au- 
tocatalytic cycles (dynamic closure), etc. 

Each form of closure introduces a form of hierarchical 
scaling. In particular, boundaries distinguish those pro- 
cesses which are included in the closure (and are therefore 
inside the closure), from those which are excluded from the 
closure (and thus outside). There is a corresponding sta- 
bility, in that processes involved in the closure generally 
exist at  a relatively smaller spatial scaling, and both faster 
and more permanent temporal scaling, than those outside. 
It is through this hierarchy that system identity itself is 
established in terms of those boundaries and stabilities. 

2.2 Forms of Autonomy 
Generally, we can recognize a continuum of classes of au- 
tonomous systems. One extreme is complete adiabatic 
isolation, and its corresponding complete boundary: no 
energy or information can flow across that barrier. No 
processes of organization or development can occur, but 
rather there is only an inexorable collapse to thermody- 
namic equilibrium. 

The other extreme can never actually be reached. As 
a system becomes less closed from its environment, it be- 
comes more involved in linear flows, and has weaker bound- 
aries. In the limit, it actually loses all identity, and ceases 
to exist as a distinct system. 

It is clear that real, complex systems (the systems which 
are of most interest to us, like organisms, complex mech- 
anisms, and DIS), cannot exist at either extreme of au- 
tonomy. Rather, they are all both autonomous in certain 
modes with respect to their environments, and simulta- 
neously involved, in other modes, in throughput relations 
with their environments. 

For example, common objects have a form of physi- 
cal autonomy, maintaining their identity by physical clo- 
sure and separation, but interacting through energetic ex- 
changes. Classical self-organizing systems have a form of 
dynamic autonomy, maintaining their identity by clo- 
sures of flows and structures, but interacting through in- 
put/output flows of matter and energy. Organisms have 
a form of functional autonomy, where their identity is 
maintained by a constantly shifting organizational closure, 
but interacting through informational flows. 

We introduce here the concept of semiotic autonomy. 
Semiotically autonomous systems (similar to what Pat- 
tee calls semantically or semiotically closed systems [lo]) 
maintain cyclic relations of perception, interpretation, de- 

cision, and action with their environments. These are 
semiotic processes, involving the reference and interpre- 
tation of sign tokens maintained in coding relations with 
their interpret ants. 

Semiotic closures produce corresponding intentional clo- 
sures and boundaries of meaning, allowing complex func- 
tional relations to exist within and between them and their 
environments. These are sufficient to establish forms of 
identity based on self-reference, allowing the identification 
of these systems as “independent actors”. It has been hy- 
pothesized that these systems are equivalent to the class of 
organisms [7]. It is the nature of these semiotic relations, 
and therefore the nature of semiotic autonomy, which we 
wish to consider below. 

3 Models and Controls as Semiotic 
Systems 

In systems theory and cybernetics the modeling relation 
and the control relation serve as two dstinct, canonical 
classes of relations between a system and its environment, 
or “the world”. Each of these is, in turn, a particular form 
of semiotic system. 

3.1 Simple Models and Controls 
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Consider a classical control system. All knowledge of the 
environment by the system is mediated through the mea- 
surement (perception) process, which provides a (partial) 
representation of the environment. Based on this, the sys- 
tem then chooses a particular action to take in the world, 
which has consequences for the change in state of the world 
and thereby states measured in the future. 

To be in good control, the overall system must form a 
negative feedback loop, so that disturbances and other ex- 
ternal forces from “reality” (noise or the actions of other 
external control systems) are counteracted by compensat- 
ing actions so as t o  make the measured state (the repre- 
sentation) as close as possible to some desired state, or 
at least stable within some region of its state space. If 
rather a positive feedback relation holds, then such fluctu- 
ations will be amplified, ultimately bringing some critical 
internal parameters beyond tolerable limits, or otherwise 
exhausting some critical system resource, and leading to 
the destruction of the system as a viable entity. 

The left side of Fig. 1 is a functional view of a simple 
control system, representing the logical relations among 
certain components of the system and the world: the nodes 
are logical constructs and the arrows are labeled by the 
kind of relations which hold between them, or the nature 
of the constraint one places on the other. 

Alternatively, a structural version of the same diagram 
is shown in the right side of Fig. 1, representing now the 



physical entities in the system and the world and how they 
are structurally related: the nodes are subsystems which 
perform certain physical processes, and the arrows are la- 
beled by how they interact. Thus the physical sensors 
interact with the state of affairs in the world to produce a 
representation (token), which is passed to the agent, which 
executes a decision to choose a particular action taken in 
the world. Note how generally the functional and struc- 
tural views are dual: nodes in one are generally arrows in 
the other, and vice versa. 

Now consider the canonical modeling relation as in left 
side of Fig. 2. As in the control relation, the processes of 
the world are still represented to the system only through 
measurement processes. But now the decision relation is 
replaced by a prediction relation, whose responsibility is to 
produce a new representation which is hypothesized to be 
equivalent (in some sense) to some future observed state of 
the world. To be a good model, the overall diagram must 
commute, so that this equivalence is maintained. 

As with the control system, this is a functional represen- 
tation, and a structural version is also shown on the right 
side of Fig. 2. Here as well the sensors enter into relations 
with states of affairs in the world and create representa- 
tions, but these are now sent only to a comparator. There 
is no relation back from the system to the world. 

Controls and models, as systems, have fundamentally 
different topological relations with their environments, and 
these map to the previous discussion of fundamental pro- 
cesses in systems science. Consider a system S in relation 
to its environment E. Naturally there are two sets of re- 
lations g: E I+ S from the environment to the system and 
f :  S I+ E back from the system to the environment. In 
the modeling relation, only g is present as a measurement 
function, and thus the structure of a model is fundamen- 
tally linear, from the world to the model. But in a control 
relation, g is present as measurement, but f is also present 
as the action relation from the system back to the world. 
Thus control is fundamentally circular, from the system to 
the world and back again. 

3.2 Complex Modeling and Control Rela- 
tions 

Of course, the relations described here are a great deal 
more complex in real control systems. In general, modeling 
and control are combined in real systems in a variety of 
complex ways [6]. 

Computation in Control: It is possible to augment the 
control system with a computation relation between 
the representation of the measured state and another 
which is then passed to the decider. This “compu- 
tation” plays the role of cognition, information pro- 
cessing, or knowledge development. Typically, extra 

or external knowledge about the state of the world or 
the desired state of affairs is brought to bear, and pro- 
vided to the agent in some processed form such as an 
error condition or distance from optimal state. In real 
systems computations take such forms as the more ab- 
stract or combined perceptions in neural organisms or 
the results of a real computation in machines. 

Hierarchical Control: Classical linear control systems 
theory for hierarchical control emerges here (the par- 
ticular representation presented by Powers [12, 1311 
is shown in Fig. 3). The computer is viewed as a 
comparator between the measured state and a hypo- 
thetical set point or reference level (goal). This then 
sends the second representation of an error signal to 
the agent. Such systems are hierarchically scalable, in 
that representations can be combined to form higher 
level representations, and actions of one control sys- 
tem can be the determination of the set-point of an- 
other, thus allowing goals to decomposed as a hierar- 
chy of sub-goals. While ultimately the lower level is 
responsible for taking action in the world, it is doing 
so under the control of the comparison of a high-level 
goals against a high-level representation. 

3.3 Hybrid Modeling and Control 
So it is clear that control can be done either with or with- 
out modeling (planning). The difference between models 
and controls is that in control the representation of what 
is is compared to what is wanted, while in modeling it is 
compared to what is expected (based on the model’s pre- 
dictions). We recognize model-less control as what Ashby 
called “error control” [l, 31, as distinguished from “cause 
control”, which does involve the prediction of future events 
to guide actions. We also know cause control as anticipa- 
tory [15] or feedforward control. 

Ashby actually favored cause control, since in principle it 
could be made perfect (with a perfect model of the world), 
while error control can only be improved in the limit at 
infinitesimal lag. However, this is at the expense of having 
to have a good model of the system being controlled, which 
is commonly an inordinate burden. 

Various hybrid control architectures are also possible.: 

Mixtures: The simplest is to modify computation to in- 
clude a further measurement, used to corroborate the 
results of the computational step. The world is now 
the source of both the initial sensory input and the 
corroboratory measurement, but these steps are sepa- 
rated in time. This allows the introduction of the rela- 
tion between the agent and the representation, and it 
becomes apparent that functionally this relation actu- 
ally is the control relation itself. Thus we notice, with 

‘See also ht tp  ://www.ed.uiuc .edu/csg. 
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Powers, that it is not, in fact, the state of the world 
which is being controlled, but rather the perception of 
the state of the world by the system. This fundamen- 
tal result of constructivism falls out naturally from 
our descriptions here. 

Anticipatory: Usually when we think about cause or an- 
ticipatory control there is an embedded model which 
acts in the role of the agent to make a decision as to 
which action to take. Thus we replace the agent with 
an inner system which is both a model and a control 
system. This inner system is a control system in the 
sense that there are states of its “world”, its “dynam- 
ics”, and an “agent” making decisions. However, it is 
also a model in that the states of its “world” are in 
fact representations, and its “dynamics7’ is actually a 
prediction function. The inner system is totally con- 
tained within the outer system, and runs at a much 
faster time scale in a kind of modeling “imagination”. 
The representation from the sensors is used to instan- 
tiate this model, which takes imaginary actions result- 
ing in imaginary stability within the model. Once this 
stability is achieved, then that action is exported to 
the real world. 

3.4 Semiotic Relations in Controls and 
Models 

Models and control systems are frequently both cast in the 
semiotic context, thereby evoking the distinctions among 
three distinct classes of semiotic concepts [2, 41: 

Syntactic: Concerning the formal properkiies of symbol 

Semantic: Concerning the interpretation of tokens as 

tokens as used in symbol systems. 

their meanings. 

Pragmatic:  Concerning the use of symbol tokens and 
their meanings for the overall purposes or survivabil- 
ity of the system. 

We can identify the forms of relations present in models 
and control, and distinguish them in virtue of the funda- 
mental concepts of variety and constraint. 

Coding: The constraint placed on  tokens by themselves. 
Codings (computations) are an expression of syntax, 
and are usually deterministic string replacement. As 
Pattee has commented at length [ll], coding substi- 
tutions are computational, memory-dependent, and 
rate-independent . 
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Measurement: The constraint placed on  tokens by the 
world. In sharp contrast to coding or computation, 
measurement provides the LLgrounding” of the symbol 
tokens. 

Decision: The constraint placed on  actions by tokens. 
Given the presence of a certain representation, either 
as the result of measurement or of computation, a 
particular action results. 

Dynamics: The constraint placed on  the world by itself. 
The rate-dependent dynamical structure of the uni- 
verse, deterministic at some level. 

Each of these relations is a form of constraint. Given 
a particular model or control system, there is then very 
little freedom: a given state of affairs in the world will re- 
sult in specific representations, predictions, decisions, and 
actions. 

But that is not to say that all these relations are the 
same kind of constraint. In particular, we can distinguish 
laws from rules [7, 10, 11, 141. Laws are wholly (onto- 
logically) necessary at all levels of analysis, but rules are 
necessary at one level, and contingent at another: once 
a particular rule or coding (set of interpretations) is es- 
tablished, then it must be followed, but in general from a 
perspective outside the system many such interpretations 
are possible. 

This property of rules is the hallmark of semantic sys- 
tems: that the coding of their symbol tokens act as contin- 
gent functional entailments, and are thus dually contingent 
and necessary at complementary levels of analysis. From 
within the symbol system, the token must necessarily be 
interpreted according to the code, but from without we are 
(or “evolution is”) free to choose any coding we please. 
They are conventional, constructed and interpretable by 
a certain closed “linguistic community” [9]. The school of 
biosemiotics [5] is dedicated, in some sense, to the proposi- 
tion that the classes of semiotic systems and living systems 
are equivalent, or at least coextensive [5, 71. 

In terms of the components identsed above, coding, 
measurement, and decision are all potentially rules. For 
systems embedded in real environments, the dynamics of 
the world must always be lawful. For systems embedded 
in artificial environments, the dynamics become rules at a 
higher level of analysis, effectively the “virtual physics” of 
that particular artificial world [14]. 

Thus the presence of rules (contingent functional en- 
tailments) in a “good” system, whether an “accurate” 
model or a “good” control system, implies a level of meta- 
constraint in addition to those identified above, namely the 
constraint on which rules themselves are viable. The mak- 
ing of appropriate choices is exactly the semantic function 
in a semiotic system. It is on this required “appropriate- 
ness” of the choice of the agent that the “intelligence” of 
the semiotic system rests: a certain action is “correct” in 
a given context, while another is not. It is only on this 
basis that meaning or semantics can be said to be present 
in a control system or a model. 



This additional level of constraint is what Pattee calls 
selection [ll]. 

Selection: The constraint on measurement, computation, 
and decision by  the world. This new level of constraint 
is the constraint within the space of all possible rules, 
in particular of all possible measurements, all possible 
computations, and all possible decisions. 

Selection is an example of the pragmatic aspect of semiotic 
systems, and must be provided by a force acting outside 
of the system (control system or model) itself. The typi- 
cal agents of this selection are either natural selection or 
the decisions provided by the designer. Thus in a system 
which has contingent entailments (rules) the pragmatics 
of the selection of those rules invokes semantic relations of 
meaning among the components. 

4 Levels of Semiotic Autonomy 
Finally we are able to consider the questions which are 
actually motivating us here: to  what extent do semiotic 
relations imply autonomy, and vice versa? 

First, it is clear that unlike models, control systems are 
forms of closure, and thus imply boundaries and identity 
in virtue of that closure. Furthermore, that closure rests 
on exactly the pragmatic selection (whether by natural 
selection or by an engineer) and semantic decision-making 
which makes them semiotic systems. Therefore it is safe 
to assert that all viable control systems of the form shown 
in Fig. 1 have a form of semiotic autonomy. 

However, pure models of the form shown in Fig. 2 do not 
necessary show any form of closure. Of course, “naked” 
models never exist in isolation. Rather, they are built by 
humans or have evolved in organisms in order to serve the 
purposes of some embedding control system, as in Fig. 4. 

This is actually a very important point: just by build- 
ing models or representations of some part of the world, 
I do not become semiotically autonomous with respect to 
that environment. Rather, that model must be used, those 
symbols must be interpreted, in a cyclic process of inter- 
action with that environment, in order to  achieve some 
pragmatic purpose. 

The converse question then becomes, given a system 
which is autonomous in some aspects, need it be semiotic? 
The obvious general answer is no: certainly mere physical 
autonomy, and even the kinds of dynamical autonomous 
shown by complex self-organizing physical system, do not 
imply any form of rule-following semiotic phenomena. 

However, consider that I observe a system which appears 
to have an autonomy of action in a particular context, in 
that it is able to produce behavior which is in some sense 
“contrary” to my expectations of a physically law-following 
system. For example, a ball does not roll off a hill, but tries 

to climb up it. This is evidence that rule-followingl and 
thus semiotic, relations are present in that system. 
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