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Abstract As data structures and mathematical objects used for complex systems
modeling, hypergraphs sit nicely poised between on the one hand the world of net-
work models, and on the other that of higher-order mathematical abstractions from
algebra, lattice theory, and topology. They are able to represent complex systems
interactions more faithfully than graphs and networks, while also being some of the
simplest classes of systems representing topological structures as collections of mul-
tidimensional objects connected in a particular pattern. In this paper we discuss the
role of (undirected) hypergraphs in the science of complex networks, and provide
a mathematical overview of the core concepts needed for hypernetwork modeling,
including duality and the relationship to bicolored graphs, quantitative adjacency and
incidence, the nature of walks in hypergraphs, and available topological relationships
and properties.We closewith a brief discussion of two example applications: biomed-
ical databases for disease analysis, and domain-name system (DNS) analysis of cyber
data.

1 Hypergraphs for Complex Systems Modeling

In the study of complex systems, graph theory has been the mathematical scaffold
underlying network science [4]. A graph G = 〈V, E〉 comprises a set V of vertices
connected in a set E ⊆ (V

2

)
of edges (where

(V
2

)
here means all unordered pairs of

v ∈ V ), where each edge e ∈ E is a pair of distinct vertices. Systems studied in
biology, sociology, telecommunications, and physical infrastructure often afford a
representation as such a set of entities with binary relationships, and hence may be
analyzed utilizing graph theoretical methods.

Graph models benefit from simplicity and a degree of universality. But as abstract
mathematical objects, graphs are limited to representing pairwise relationships
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between entities, while real-world phenomena in these systems can be rich in multi-
way relationships involving interactions among more than two entities, dependen-
cies between more than two variables, or properties of collections of more than two
objects. Representing group interactions is not possible in graphs natively, but rather
requires either more complex mathematical objects, or coding schemes like “reifica-
tion” or semantic labeling in bipartite graphs. Lacking multi-dimensional relations,
it is hard to address questions of “community interaction” in graphs: e.g., how is a
collection of entities A connected to another collection B through chains of other
communities?; where does a particular community stand in relation to other com-
munities in its neighborhood?

The mathematical object which natively represents multi-way interactions in
networks is called a “hypergraph” [6].1 In contrast to a graph, in a hypergraph
H = 〈V, E〉 those same vertices are now connected generally in a family E of hyper-
edges, where now a hyperedge e ∈ E is an arbitrary subset e ⊆ V of k vertices,
thereby representing a k-way relationship for any integer k > 0. Hypergraphs are
thus the natural representation of a broad range of systems, including those with the
kinds of multi-way relationships mentioned above. Indeed, hypergraph-structured
data (i.e. hypernetworks) are ubiquitous, occurring whenever information presents
naturally as set-valued, tabular, or bipartite data.

Hypergraph models are definitely more complicated than graphs, but the price
paid allows for higher fidelity representation of data which may contain multi-way
relationships. An example from bibliometrics is shown in Fig. 1.2 On the upper left is
a table showing a selection of five papers co-authored by different collections of four
authors. Its hypergraph is shown in the lower left in the form of an “Euler diagram”,
with hyperedges as colored bounds around groups of vertices. A typical approach
to these same data would be to reduce the collaborative structure to its so-called “2-
section”: a graph of all and only the two-way interactions present, whether explicitly
listed (like paper 1) or implied in virtue of larger collaborations (as for paper 2). That
co-authorship graph is shown in the lower right, represented by its adjacency matrix
in the upper right. It can be seen that the reduced graph form necessarily loses a great
deal of information, ignoring information about the single-authored paper (3) and
the three-authored paper (2).

Hypergraphs are closely related to important objects in discrete mathematics used
in data science such as bipartite graphs, set systems, partial orders, finite topologies,
abstract simplicial complexes, and especially graphs proper, which they explicitly
generalize: every graph is a 2-uniform hyergraph, so that |e| = k = 2 for all hyper-
edges e ∈ E . Thus they support awider range ofmathematicalmethods, such as those
from

1Throughout this paper we will deal only with “basic” hypergraphs in the sense of being undirected,
unordered, and unlabeled. All of these forms are available and important [3, 16].
2Hypergraph calculations shown in this paper were produced using PNNL’s open source hypergraph
analytical capabilities HyperNetX (HNX, https://github.com/pnnl/HyperNetX) and the Chapel
Hypergraph Library (CHGL, https://github.com/pnnl/chgl); and additionally diagrams were pro-
duced in HNX.

https://github.com/pnnl/HyperNetX
https://github.com/pnnl/chgl
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Fig. 1 Bibliometrics example comparing graphs and hypergraphs. (Upper left) Collaborative
authorship structure of a set of papers. (Lower left) Euler diagram of its hypergraph. (Upper right)
Adjacency matrix of the 2-section. (Lower right) Co-authorship graph resulting from the 2-section

computational topology, to identify features specific to the high-dimensional com-
plexity in hypernetworks, but not available using graphs.

Hypergraph methods are well known in discrete mathematics and computer sci-
ence, where, for example, hypergraph partitioning methods help enable parallel
matrix computations [9], and have applications in VLSI [22]. In the network sci-
ence literature, researchers have devised several path and motif-based hypergraph
data analytics (albeit fewer than their graph counterparts), such as in clustering coef-
ficients [31] and centrality metrics [14]. Although an expanding body of research
attests to the increased utility of hypergraph-based analyses [17, 20, 24, 30], and are
seeing increasingly wide adoption [19, 28, 29], many network science methods have
been historically developed explicitly (and often, exclusively) for graph-based anal-
yses. Moreover, it is common for analysts to reduce data arising from hypernetworks
to graphs, thereby losing critical information.

As explicit generalizations of graphs, we must take care with axiomatization, as
there aremany, sometimesmutually inconsistent, sets of possible definitions of hyper-
graph concepts which can yield the same results (all consistent with graph theory)
when instantiated to the 2-uniform case. And some graph concepts have difficulty
extending naturally at all. For example, extending the spectral theory of graph adja-
cency matrices to hypergraphs is unclear: hyperedges may contain more than two
vertices, so the usual (two-dimensional) adjacency matrix cannot code adjacency
relations. In other cases, hypergraph extensions of graph theoretical concepts may
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be natural, but trivial, and risk ignoring structural properties only in hypergraphs. For
example, while edge incidence and vertex adjacency can occur in at most one vertex
or edge for graphs, these notions are set-valued and hence quantitative for hyper-
graphs. So while subsequent graph walk concepts like connectivity are applicable
to hypergraphs, if applied simply, they ignore high-order structure in not accounting
for the “widths” of hypergraph walks.

Researchers have handled the complexity and ambiguity of hypergraphs in differ-
ent ways. A very common approach is to limit attention to k-uniform hypergraphs,
where all edges have precisely k vertices (indeed, one can consider graph theory
itself as actually the theory of 2-uniform hypergraphs). This is the case with much
of the hypergraph mathematics literature, including hypergraph coloring [11, 25],
hypergraph spectral theory [7, 8], hypergraph transversals [2], and extremal problems
[32]. k-uniformity is a very strong assumption, which supports the identification of
mathematical results. But real-world hypergraph data are effectively never uniform;
or rather, if presented with uniform hypergraph data, a wise data scientists would be
led to consider other mathematical representations for parsimony.

Another prominent approach to handling real-world, and thus non-uniform, hyper-
graph data is to study simpler graph structures implied by a particular hypergraph.
Known by many names, including line graph, 2-section, clique expansion, and one-
mode projection, such reductions allow application of standard graph-theoretic tools.
Yet, unsurprisingly, such hypergraph-to-graph reductions are inevitably and strik-
ingly lossy [10, 23]. Hence, although affording simplicity, such approaches are of
limited utility in uncovering hypergraph structure.

Our research group is dedicated to facing the challenge of the complexity of
hypergraphs in order to gain the formal clarity and support for analysis of complex
data they provide. We recognize that to enable analyses of hypernetwork data to
better reflect their complexity but remain tractable and applicable, striking a balance
in this faithfulness-simplicity tradeoff is essential. Placing hypergraph methods in
the context of the range of both network science methods on the one hand, and
higher-order topological methods on the other, can point the way to such a synthesis.

The purpose of this paper is to communicate the breadth of hypergraph methods
(which we are exploring in depth elsewhere) to the complex systems community. In
the next section we survey the range of mathematical methods and data structures
we use. Following that we will illustrate some uses by showing examples in two
different contexts: gene set annotations for disease analysis and drug discovery, and
cyber analytics of domain-name system relations.

2 Hypergraph Analytics

A hypergraph is a structure H = 〈V, E〉, with V = {v j }nj=1 a set of vertices, and
E = {ei }mi=1 an indexable family of hyperedges ei ⊆ V .Hyperedges come indifferent
sizes |ei | possibly ranging from the singleton {v} ⊆ V (distinct from the element
v ∈ V ) to the entire vertex set V .
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Table 1 Incidence matrix of
example hypergraph Fig. 1

1 2 3 4 5
a 1 1 0 1 0
b 0 0 0 1 1
c 0 1 0 0 1
d 1 1 1 0 0

Fig. 2 Dual hypergraph H∗
of our example

Ahyperedge e = {u, v}with |e| = 2 is the same as a graph edge. Indeed, all graphs
G = 〈V, E〉 are hypergraphs: in particular, graphs are “2-uniform” hypergraphs, so
that now E ⊆ (V

2

)
and all e ∈ E are unordered pairs with |e| = 2. It follows that

concepts and methods in hypergraph theory should explicitly specialize to those
in graph theory for the 2-uniform case. But conversely, starting from graph theory
concepts, there can be many ways of consistently extending them to hypergraphs.
The reality of this will be seen in a number of instances below.

Hypergraphs can be represented in many forms. In our example in Fig. 1 above,
letting V = {a, b, c, d} for the authors and E = {1, 2, 3, 4, 5} for the papers, we first
represent it as a set system

H = {{a, d}, {a, c, d}, {d}, {a, b}, {b, c}}.

We commonly compress set notation for convenience, and when including edge
names as well, this yields the compact set system formH = {1:ad, 2:acd, 3:d, 4:ab,
5:bc}. This representation in turn points to the fact that a hypergraphH is determined
uniquely by its Boolean incidence matrix Bn×m , where Bji = 1 iff v j ∈ ei , and 0
otherwise. The incidence matrix for the example from Fig. 1 is shown in Table 1.
Note that hypergraph incidence matrices are general Boolean matrices, rectangular
and non-symmetric, unlike the adjacency matrices typically used to define graphs;
while the incidence matrices of graphs are restricted to having precisely two 1’s
in each column. Also, adjacency structures for hypergraphs are substantially more
complicated than for graphs, and in fact are not matrices at all.

The dual hypergraphH∗ = 〈E∗, V ∗〉 ofH has vertex set E∗ = {e∗
i }mi=1 and fam-

ily of hyperedges V ∗ = {v∗
j }nj=1, where v∗

j : = {e∗
i : v j ∈ ei }. H∗ is just the hyper-

graph with the transposed incidence matrix BT , and (H∗)∗ = H. We thus consider
that hypergraphs always present as dual pairs, which we call the “forward” and the
“dual” somewhat arbitrarily, depending on how the data are naturally presented. But
this is not true for graphs: the dual G∗ of a graph G is 2-uniform (and hence still a
graph) if and only if G is 2-regular (all vertices have degree 2), in which case G is a
cycle or disjoint union of cycles. The dual of our example is shown in Fig. 2.
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Fig. 3 Two different layouts
of the bicolored graph
representation of the
hypergraph H

There is a bijection between the class of hypergraphs and that of bicolored
graphs3 G = 〈V, E, φ〉, where now E ⊆ (V

2

)
is a set of unordered pairs of vertices

(graph edges), and φ : V → {0, 1} with {vi , v j } ∈ E iff φ(vi ) �= φ(v j ). Conversely,
any bicolored graph G determines a hypergraph H by associating the vertices and
hyperedges of H with the two colors respectively, and then defining Bj,i = 1 if and
only if {vi , v j } ∈ E . Figure 3 shows two different layouts of the bicolored graph form
of our example hypergraph H.

Moving from the bijection between bicolored graphs and hypergraphs to establish-
ing canonical isomorphisms still requires careful consideration, ideally in a categor-
ical context [12, 15, 33]. While a number of complex network analytics for bipartite
graph data can be applied naturally to hypergraphs, and vice versa, depending on
the semantics of the data being modeled, questions and methods for data with this
common structure may be better addressed in one or another form, if only for algo-
rithmic or cognitive reasons. Nor does it mean that graph theoretic methods suffice
for studying hypergraphs. Whether interpreted as bicolored graphs or hypergraphs,
data with this structure often require entirely different network science methods than
(general) graphs. An obvious example is triadic measures like the graph clustering
coefficient: these cannot be applied to bicolored graphs since (by definition) bicolored
graphs have no triangles. Detailed work developing bipartite analogs of modularity
[5], community structure inference techniques [26], and other graph-based network
science topics [27] further attests that bipartite graphs (and hypergraphs) require a
different network science toolset than for graphs.

In graphs, the structural relationship between two distinct vertices u and v can only
be whether they are adjacent in a single edge ({u, v} ∈ E) or not ({u, v} /∈ E); and
dually, that between two distinct edges e and f can only be whether they are incident
at a single vertex (e ∩ f = {v} �= ∅) or not (e ∩ f = ∅). In hypergraphs, both of
these concepts are applicable to sets of vertices and edges, and additionally become
quantitative. Define adj : 2V → Z≥0 and inc : 2E → Z≥0, in both set notation and

3Typically the concept of a bipartite graph is used here, which is a graph that admits to at least one
bicoloring function. The resulting differences are interesting, but not significant for this paper.
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(polymorphically) pairwise:

adj(U ) = |{e ⊇ U }|, adj(u, v) = |{e ⊇ {u, v}}|

inc(F) = | ∩e∈F e|, inc(e, f ) = |e ∩ f |

for U ⊆ V, u, v ∈ V, F ⊆ E, e, f ∈ E . In our example, we have e.g. adj(a, d) =
3, adj({a, c, d}) = 1, inc(1, 2) = 2, inc({1, 2, 3}) = 1. These concepts are dual, in
that adj on vertices inH maps to inc on edges inH∗, and vice versa. And for single-
tons, adj({v}) = deg(v) = |e 
 v| is the degree of the vertex v, while inc({e}) = |e|
is the size of the edge e.

This establishes the basis for extending the central concept of graph theory, awalk
as a sequential visitation of connected nodes, to hypergraphs. Consider a (graph)walk
of length � as a sequenceW = v0, e0, v1, e1, . . . , e�, v�+1 where vi , vi+1 are adjacent
in ei , 0 ≤ i ≤ �, and (dually!) ei , ei+1 are incident on vi+1, 0 ≤ i ≤ � − 1. Then W
can be equally determined by either the vertex sequence v0, . . . , v�+1, or the edge
sequence e0, . . . , e�. In contrast, with quantitative adjacency and incidence in hyper-
graphs, sequences of vertices can be adjacent, and sequences of hyperedges incident,
in quantitatively different ways, and need not determine each other. Indeed, vertex
sequences become hyperedge sequences in the dual, and vice versa. For parsimony
we work with edgewise walks, and define [1] an s-walk as a sequence of edges
e0, e1, . . . , e� such that s ≤ inc(ei , ei+1) for all 0 ≤ i ≤ � − 1. Thus walks in hyper-
graphs are characterized not only by length �, indicating the distance of interaction,
but also by “width” s, indicating a strength of interaction (see Fig. 4).

For a fixed s > 0, we define the s-distance ds(e, f ) between two edges e, f ∈
E as the length of the shortest s-walk between them, or infinite if there is none.
Note that a graph walk is a 1-walk. We have proved [1] that s-distance is a metric,
and can thus define the s-diameter as the maximum s-distance between any two
edges, and an s-component as a set of edges all connected pairwise by an s-walk.
Connected components in graphs are simply 1-components, and our example graph is
“connected” in that sense, having a single 1-connected component. But it has three 2-
components, the hyperedge sets {1, 2}, {4}, and {5}. Other network science methods
generalize from graphs to hypergraphs [1], including vertex s-degree, sclustering
coefficients, and both s-closeness and s-betweenness centralities.

Fig. 4 Two s-walks of length � = 2. (Left) Lower width s = 1. (Right) Higher width s = 3
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In graphs, two edges e, f are only incident or not, but in hypergraphs, there could
additionally be an inclusion relationship e ⊆ f or f ⊆ e. Indeed, define a toplex
or facet as a maximal edge e such that � ∃ f ⊇ e, and let Ě ⊆ E be the set of all
toplexes. Then the inclusiveness I (H) ∈ [0, 1) of a hypergraphH is the proportion
of included edges, that is, the ratio of non-facets to all edges: I (H) : = |E \ Ě |/|E |.
For a hypergraphH, let Ȟ =

〈
V, Ě

〉
be the simplification ofH, andwe callH simple

when H = Ȟ. I (H) = 0 iff H = Ȟ is simple, so that all edges are toplexes. In our
example, there are three toplexes Ě = {acd, ab, bc}, so that I (H) = 2/5.

Maximal I (H), on the other hand, is more complicated, and the case when all
possible sub-edges are present, so that E is closed by subset. This yields H as an
abstract simplicial complex (ASC), so that if e ∈ E and f ⊆ e then f ∈ E . Let
Ĥ = 〈

V, Ê
〉
be the ASC generated by H, so that Ê = {g ⊆ e}e∈E is the closure of

the hyperedges by subset. Each hypergraph H then maps to a class of hypergraphs
we call a hyperblock [H], so that each pair of hypergraphs H′,H′′ ∈ [H] have the
same ASC: Ĥ′ = Ĥ′′. It follows that they also have the same toplexes: H′∧= H′′∧.

This results in another representation we call a simplicial diagram, shown for
our example in Fig. 5. The toplexes Ě of H are shown as a collection of hyper-
tetrahedrons joined where they intersect. This is also sufficient to indicate the ASC
Ĥ, and, indeed, all the hypergraphs H′ ∈ [H] in the hyperblock of H are included
in the diagram. They are distinguished by additionally labeling the hyperedges (and
circling singletons) actually included in a particular hypergraphH′ ∈ [H], including
both their toplexes and their included edges. In our example, these are 3 = {d} ⊆ 1 =
{a, d} ⊆ 2 = {a, c, d}. Contrast with the singleton {b} or graph edge {a, c}, which
are only in the ASC Ĥ, and not edges inH itself.

Given a hypergraphH, we can define its k-skeleton k-skel(H) = {e ∈ E : |e| =
k} as the set of hyperedges of size k. Each k-skel(H) is thus a k-uniform sub-
hypergraph of H, and we can conceive of H as the disjoint union of its k-uniform
skeletons: H = ⊔

k k-skel(H). Where the k-skeleton is the set of all edges of size
k present in a hypergraph H, in contrast the k-section is the set of all edges of size
k implied by H, that is, all the vertex sets which are sub-edges of some hyperedge.
Formally,Hk = k-skel

(Ĥ)
, so that the k-section is the k-skeleton of the ASC ofH,

and the ASC is the disjoint union of the sections: Ĥ = ⊔
k Hk .

Fig. 5 Example hypergraph
H as a simplicial diagram
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Since the k-skeletons are all uniform, and any k-section or union of k-sections is
smaller than the entire hypergraph H, there is substantial interest in understanding
howmuch information about a hypergraph is available using only them.The 2-section
in particular, which is a graph with adjacency matrix BBT , can be thought of as a
kind of “underlying graph” of a hypergraph H. Also of key interest is the 2-section
of the dual hypergraph H∗, called the line graph L(H) = (H∗)2, which dually is a
graph with adjacency matrix BT B. As noted above in the discussion of Fig. 1, these
are particularly widely used in studies when confronted with complex data naturally
presenting as a hypergraph. The limitations of this are evident in the example in
Fig. 6. On the left are our example hypergraph and its dual, and in the center the
2-sectionH2 and the line graph L(H) = (H∗)2. On the right are the results of taking
the maximal cliques of the 2-sections as hyperedges in an attempt to “reconstruct”
the original hypergraph H. It is clear how much information is lost.

The ASC Ĥ is additionally a topological complex, that is, a collection of different
k-dimensional structures attached together in a particular configuration or pattern.
Indeed, the hyperblock [H] of a (finite) hypergraphH generates a number of (finite)
topological spaces of interest [13]. The most cogent of these is the Alexandrov
topology with a sub-base consisting of m open sets Tj = {e ⊇ e j }e∈E ; that is, for
each hyperedge e j ∈ E , the sub-base element Tj is constructed by collecting all
its superedges. The full topology T (H) is generated by taking all unions of all
intersections of these sub-base elements Tj .

The topological space T (H) will reflect the inherent complexity of the over-
all “shape” of the hypergraph H. This includes those portions which are con-
nected enough to be contracted, and also the presence of open loops, “holes”
or “voids” of different dimension, which can obstruct such contractions. This is

(a) Forward hyper-
graph H.

(b) Forward
2-section
H2.

(c) Forward clique re-
construction.

(d) Dual hypergraph
H∗.

(e) Line graph
L(H) = (H∗)2.

(f) Dual clique recon-
struction.

Fig. 6 2-sections and their clique reconstructions
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Fig. 7 An example simple hypergraph Ȟ with β = 〈1, 1, 1〉. (Left) Euler diagram of Ȟ. (Right)
Simplicial diagram of H∧

called the homology of the space T (H), and is characterized by its Betti num-
bers βk, 0 ≤ k ≤ max |e j | − 1, of H, indicating the humber of holes of dimen-
sion k present in H. We collect the Betti nubmers to create a Betti sequence
β = 〈βk〉max |e j |−1

k=0 .
The presence of such gaps may invoke questions or hypotheses: what is stopping

the connectivity of these holes, of filling them in? In our example, β1 = 1 because
of the single open 1-cycle indicated by edges ab, bc, and ca. Contrast this with the
similar cycle acd, which is closed in virtue of the hyperedge 2.β0 = 1, indicating that
H is 1-connected; while β2 = 0, so that β = 〈1, 1, 0〉. By comparison, the simplicial
diagram of the simple hypergraph Ȟ shown in Fig. 7 contains a hollow tetrahedron
(four triangles surrounding a void), in addition to the open cycle of graph edges on
the left. Thus its Betti sequence is β = 〈1, 1, 1〉.

3 Example Applications

Herewe illustrate some of themathematical structures andmethods introduced above
in brief reports of two example case studies.

3.1 Human Gene Set Example

While network science using graph theory methods is a dominant discipline in
biomolecular modeling, in fact biological systems are replete with many-way inter-
actions likely better represented as hypergraphs. Genes interact in complex com-
binations, as recorded in a panoply of biomedical databases. We have begun an
exploratory examination of the usefulness of hypergraphs in elucidating the relation-
ships between human genes, via their annotations to semantic categories of human
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Table 2 Distribution of annotations across biological databases

Database Annotations

GO biological process 12,305

Reactome pathways 2,291

Chemicals 3,289

Diseases 2,683

Total 20,568

biological processes in the Gene Ontology4 and the Reactome pathway database,5

chemicals from the Chemical Entities of Biological Interest ontology,6 and diseases
from theHumanDiseaseOntology.7 These data were selected to help us better under-
stand potential overlaps between gene sets with causative relations in metabolic rare
diseases, like phenylketonuria and Alpha-1 antitrypsin deficiency, and their known
biological processes and chemical interactions. We also seek to explore potential
overlaps in pathway, biological process, and chemical gene sets as a means to elu-
cidate novel gene targets for drug repurposing, which can then be evaluated in the
lab.

Data for this analysis were obtained from PheKnowLator v2.0.0.8 We compiled a
hypergraph H = 〈V, E〉 with |V | = 17,806 human genes as vertices against |E | =
20,568 annotations as hyperedges, distributed across the source databases as shown
in Table 2 (noting that there is substantial overlap among these sources). Of these
edges, 8,006 are toplexes, yielding an inclusivity of I (H) = 61.1%, and the density
of the incidence matrix B is 0.000926. Figure 8 shows the distribution of vertex
degree deg(v) = adj({v}) and edge size |e| = inc({e}), with the expected expoential
distribution.

Figure 8 shows only the lowest, “first order” distribution of the hypergraph struc-
ture, the adjacency and incidence of singletons. Consideration of higher-order inter-
actions would require expensive combinatorial calculations of, for example, k-way
intersections and hyperedge inclusions of arbitrary sets of vertices. A modest step
towards that goal in ourmethodology is first to focus on toplexes,which determine the
topological structure, and then their pairwise intersections: inc(e, f ) for e, f ∈ Ě .
This is shown in the left of Fig. 9, which reveals a long tail, indicating a significant
number of pairs of annotations with large intersections of genes. Attending to inci-
dences of even higher order would reveal the increasingly rich complex interactions
of gene sets.

4http://geneontology.org/docs/ontology-documentation.
5https://reactome.org.
6https://www.ebi.ac.uk/chebi/.
7https://disease-ontology.org/.
8https://github.com/callahantiff/PheKnowLator, downloaded on 03/05/20, see also https://github.
com/callahantiff/PheKnowLator/wiki/v2-Data-Sources.

http://geneontology.org/docs/ontology-documentation
https://reactome.org
https://www.ebi.ac.uk/chebi/
https://disease-ontology.org/
https://github.com/callahantiff/PheKnowLator
https://github.com/callahantiff/PheKnowLator/wiki/v2-Data-Sources
https://github.com/callahantiff/PheKnowLator/wiki/v2-Data-Sources
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Fig. 8 Distributions of: (Left) Vertex degree deg(v) = adj({v}); (Right) Edge size |e| = inc({e})

Fig. 9 (Left) Distribution of the size of toplex intersections: inc(e, f ) for e, f ∈ Ě . (Right) #
components (orange) and size of largest component (blue)

Of even more interest is the right of Fig. 9, which shows distribution information
about the connected s-components for different intersection levels s. On the top the
number of s-components is shown in orange, and the size of the largest component
in blue, all as a function of increasing s. Expectedly these appear monotonic increas-
ing and decreasing respectively, but it’s notable that even for large s there persist
some very large components, again demonstrating the large multi-way interactions
amongst these gene sets.

3.2 DNS Cyber Example

The Domain Name System (DNS) provides a decentralized service to map from
domain names (e.g., www.google.com) to IP addresses. Perhaps somewhat counter-
intuitively, DNS data present naturally as a hypergraph, in being a many-many rela-
tionship between domains and IPs. While typically this relationship is one-to-one,
with each domain uniquely identifying a single IP address and vice versa, there are
a number of circumstances which can violate this, for example domain aliasing,

www.google.com
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Fig. 10 Portion of the incidence matrix for ADNS data

hosting services where one IP serves multiple websites, or duplicated IPs to manage
loads against popular domains.

ActiveDNS (ADNS) is a data set maintained by the Astrolavos Lab at the Georgia
Institute of Technology.9 It submits daily DNS lookups for popular zones (e.g., .com,
.net, .org) and lists of domain names. Using data from April 26, 2018 as an example,
this day consists of 1,200 Avro files with each file containing on average 900K
records. Our hypergraph representation coded each domain (hyperedges e ∈ E) as
a collection of its IPs (vertices v ∈ V ). A small portion of the incidence matrix B is
shown in Fig. 10.

To identify some of the simplest hypergraph-specific properties, we looked [21]
specifically at the 2-components, and identified the one with maximum 2-diameter
(6), which is shown in Fig. 11. The IP addresses in this component all belong to
the IP range 103.86.122.0/24 and the domains are registered to GMO INTERNET,
INC according to WHOIS records. Moreover, current DNS queries for most of these
domains at a later date resolve to IPs in the range 103.86.123.0/24 and have a “time
to live” of only 120s. This pattern of quickly changing of IP address is consistent
with the “fast flux” DNS technique which can be used by botnets to hide malicious
content delivery sites and make networks of malware more difficult to discover [18].

9https://activednsproject.org.

https://activednsproject.org
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Fig. 11 The 2-component with largest 2-diameter, possibly indicating fast flux behavior

Fig. 12 Three 2-components with non-trivial homologies

Other 2-components reveal non-trivial homologies, three of which are shown
in Fig. 12. DNS1 has β = 〈1, 1, 0, 0, . . .〉, with a visible hole surrounded by a 1
dimensional loop on the top. DNS2 has β = 〈1, 1, 2, 0, . . .〉, and DNS3 has β =
〈1, 3, 1, 0, . . .〉, indicating one and three 1-dimensional holes, and two and one 2-
dimensional voids, respectively. The open loops in DNS2 and DNS3 are harder
to visualize, so Fig. 13 shows a simplicial diagram of one of the two 2-dimensional
voids inDNS2. There are two solid tetrahedrons for the domains potterybarn.comand
pbteen.com, eachwith four IPs, three ofwhich (those ending in .160, .9, and .105) they
share. Then wshome.com is a triangle in the foreground, and westelm.com a triangle
behind (see caption for details). These are effectively “transparent window panes”
surrounding a hollow tetrahedral space. Identification of such multi-dimensional
open-loop structures affords the opportunity to consider these as hypotheses: on
what basis is the Pottery Barn company structuring its multiple domains over their
multiple IPs in this complex pattern?
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Fig. 13 Simplicial diagram of the complex pattern of IPs shared by some Pottery Barn domains
around one of the two 2-dimensional voids in DNS2 of Fig. 12. wshome.com is the transparent
foreground triangle with IPs ending in .160, .88 and .98; and westelm.com the background triangle
with IPs ending in .98, .88, and .9. Potterybarn.com and pbteen.com are solid tetrahedrons with
four IPs each
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