
 PNWD-4299

Prepared for the U.S. Department of Energy
under Contract DE-AC05-76RL01830

A Typed Path Metric in Semantic
Graphs

C Joslyn
S al-Saffar
S Purohit

July 2011

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the

United States Government. Neither the United States Government nor any agency

thereof, nor Battelle Memorial Institute, nor any of their employees, makes any

warranty, express or implied, or assumes any legal liability or responsibility

for the accuracy, completeness, or usefulness of any information, apparatus,

product, or process disclosed, or represents that its use would not infringe

privately owned rights. Reference herein to any specific commercial product,

process, or service by trade name, trademark, manufacturer, or otherwise does not

necessarily constitute or imply its endorsement, recommendation, or favoring by

the United States Government or any agency thereof, or Battelle Memorial

Institute. The views and opinions of authors expressed herein do not necessarily

state or reflect those of the United States Government or any agency thereof.

PACIFIC NORTHWEST NATIONAL LABORATORY

operated by

BATTELLE

for the

UNITED STATES DEPARTMENT OF ENERGY

under Contract DE-AC05-76RL01830

Printed in the United States of America

Available to DOE and DOE contractors from the
Office of Scientific and Technical Information,

P.O. Box 62, Oak Ridge, TN 37831-0062;
ph: (865) 576-8401

fax: (865) 576-5728
email: reports@adonis.osti.gov

Available to the public from the National Technical Information Service, U.S.

Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161
ph: (800) 553-6847

fax: (703) 605-6900
email: orders@ntis.fedworld.gov

online ordering: http://www.ntis.gov/ordering.htm

This document was printed on recycled paper.

(9/2003)

mailto:reports@adonis.osti.gov
mailto:orders@ntis.fedworld.gov
http://www.ntis.gov/ordering.htm

PNWD-4299

A Typed Path Metric in Semantic Graphs

C Joslyn

S al-Saffar

S Purohit

July 2011

Prepared for the U.S. Department of Energy under

Contract DE-AC05-76RL01830

Pacific Northwest National Laboratory

Richland, Washington 99352

A Typed Path Metric in Semantic Graphs

Cliff Joslyn, Sinan al-Saffar, Sumit Purohit

July 20, 2011

Contents

1 Ontologies and Semantic Graphs 1

2 Path Types, Path Type Expressions, and Paths 3

3 Typed Path Queries 6

4 Typed Path Distance 6

5 Algorithm 8

1 Ontologies and Semantic Graphs

Let [[n]] = {1, 2, . . . , n}.

Assume a knowledgebase K : = 〈O, G〉, with ontology O = 〈V ,SV, E ,SV〉 and semantic graph
G = 〈V, E〉. This is specified as follows:

Node Types (Classes): A set of node types (classes): V : = {V ι}Nι=1.

Class Hierarchy: Our classes are arranged in a hierarchy, or partial order: SV = 〈V ,≤V〉. We
say V ≤V V ′ if V is subsumed by V ′. If either V ≤V V ′ or V ≥V V ′, then we say that V and
V ′ are comparable (descendant-ancestor), denoted V ∼ V ′; if neither V ≤V V ′ nor V ≥V V ′,
then we say that V and V ′ are non-comparable (siblings or cousins), denoted V |V ′.

Nodes: A set of nodes: V = {vi}ni=1.

Node Type Function: Each node has a unique type: tV : V → V , tV(vi) = V ι.

We can now abuse some notation for convenience as follows. First we can also denote a
node as vι

i , indicating its class tV(vi) = V ι. Furthermore, since tV is a function, it induces
a partition of V via the equivalence classes of the nodes of a certain type. Thus for a fixed
tV , it’s convenient to reuse the notation V ι = {vi ∈ V : tV(vi) = V ι} ⊆ V extensionally,
whereas before it was an intensional type. Also denote nι = |V ι|, and V =

⋃N
ι=1 V ι, so that

n =
∑N

ι=1 nι.

Edge Types: A set of edge types between classes: E : = {Eκ}Mκ=1 ⊆ V2, so that ∀Eκ ∈ E , Eκ =〈
V ι, V ι′

〉
. Establish domain and range functions dom, ran: E → V , dom(Eκ) = V ι, ran(Eκ) =

2

V ι′ . For convenience, we can also denote

Eκ = 〈dom(Eκ), ran(Eκ)〉 =
〈
V ι, V ι′

〉
.

Edge Type Hierarchy: Our edge types are also arranged in their own partial order SE = 〈E ,≤E〉 ⊆
S2
V . Note that SE is a sub-order of the product order of the class hierarchy. Thus it has the

constraint that the domains and ranges of subsuming edge types are subsumed as classes:

Eκ ≤E Eκ′ → dom(Eκ) ≤V dom
(
Eκ′

)
, ran(Eκ) ≤V ran

(
Eκ′

)
.

Edges: A set of edges E = {ek}mk=1, where each edge is an ordered pair ek = 〈vi, vi′〉.

Edge Type Function: Each edge has a unique type: tE : E → E , tE (ek) = Eκ.

As for classes, we can abuse more notation for edges. First, also denote an edge as eκ,ι,ι′

k ,
where κ indicates the node type tE(ek) = Eκ, ι indicates the domain V ι = dom(Eκ), and ι′

indicates the range V ι′ = ran(Eκ). Then, reuse Eκ extentionally for the set of edges, Eκ =
{ek ∈ E : tE(ek) = Eκ. Also denote mκ = |Eκ|, and E =

⋃M
κ=1 Eκ, so that m =

∑M
κ=1 mκ.

Consider the small example knowledgebase K = 〈O, G〉 = 〈〈V ,SV, E ,SE〉 , 〈V, E〉〉 shown in Figs.
1–3. For classes, we have

V = {Place, Person, Phone, Object, Entity}, N = 5

E = {Owns-Place, Owns-Phone, Lives-At, Located-At, Owns, Relation}, M = 6

with the hierarchies shown in Fig. 1. The domains and ranges of the edge types are shown in Table
1.

Object

Person Phone

Place

Entity

Owns

Owns-Place Owns-Phone

Lives-At

Relation

Located-At

Figure 1: (Left) Node type hierarchy SV . (Right) Edge type hierarchy SE .

For nodes and node types, we have

V = {s, u, f, m, g, p}, n = 6

V 1 = {s, u, f}, n1 = 3; V 2 = {m, g}, n2 = 2; V 3 = {p}, n3 = 1; V 4 = V 5 = ∅, n5 = n6 = 0

where the letters indicate the entities shown in the semantic graph in Fig. 2. Intensionally we have
e.g. tV(m) = V 2, and extensionally v2

1 = m, both indicating that Mario Rossi is (the first node) of
type two, and is thus a Person. For edges, we have:

E1 = {〈m, u〉}, m1 = 1; E2 = {〈m, p〉}, m2 = 1; E3 = {〈m, f〉 , 〈m, u〉 , 〈g, u〉}, m3 = 3;

E4 = {〈p, f〉}, m4 = 1; E5 = {〈m, s〉}, m5 = 1; E6 = ∅;

3

Mario Rossi (m)

Select Gourmet Foods (s)

Owns

1176 Floyd Ave. (f)Lives At

703-734-0104 (p)

Owns-Phone Located At

Muktar Galab (g)2932 University Dr. (u)

Lives At

Lives At

Owns-Place

Figure 2: An example semantic graph 〈V, E〉.

κ κ̂ Eκ Symbol dom(Eκ) ran(Eκ) κ̂ EκT

1 1 Owns-Place PL Person Place 7 Property-Of
2 2 Owns-Phone PH Person Phone 8 Phone-Of
3 3 Lives-At LI Person Place 9 Abode-Of
4 4 Located-At LO Phone Place 10 Location-Of
5 5 Owns O Person Entity 11 Owned-By
6 6 Relation R Entity Entity 12 RelationT

Table 1: Edge types.

E = {〈m, s〉 , 〈m, u〉 , 〈m, p〉 , 〈m, f〉 , 〈m, u〉 , 〈g, u〉 , 〈p, f〉}, m = 7.

Intensionally we have e.g. tE(〈g, u〉) = E3, and extensionally e3
3 = 〈g, u〉, both indicating that Mario

Rossi is related to University Drive as the (third instance of the) third edge type, and thus “Lives
In”.

Table 1 shows the complete intensional description of all the edge types, including their domains,
ranges, and inverses (see Sec. 2 below). While a single graphical representation of the complex
structure of O is daunting, the left side of Fig. 3 illustrates in a simplified form the “base” relations
between the “leaf” edge types operating on the “leaf” node types, while on the right, all of the edge
types are shown in the context of the complete inheritance hierarchy V amongst the node types.

2 Path Types, Path Type Expressions, and Paths

Consider each edge type as a binary relation Eκ ⊆ V ι × V ι′ in the cross product of its domain
and range classes, consisting of edges as ordered pairs e =

〈
vι, vι′

〉
. Casting Eκ as an nι × nι′

matrix Eκ
nι×nι′ , then EκT

nι′×nι is its transpose, an nι′ × nι matrix consisting of the inverse edges

eT =
〈
vι′ , vι

〉
. Let

Ê : = {Eκ}Mκ=1 ∪
{
EκT

}M

κ=1

4

Person

Phone

Place

Lives At

Located At

Owns-Place

Owns-Phone

Object

Person Phone

Place

Entity

Owns-Place

Owns-Phone

Lives-At

Owns

Located-At

Relation

Figure 3: (Left) Example ontology cast as a graph O = 〈V , E〉. (Right) Convolution of edge types
in the context of the node hierarchy V .

be the complete set of all such “forward” and “inverse” edge types, so that |Ê| = 2M , and refer to
an extended edge type Ê κ̂ ∈ Ê , where now 1 ≤ κ̂ ≤ 2M . So an extended edge type Ê κ̂ is either
a forward Eκ or inverse edge type EκT . The edge type hierarchy naturally extends to extended
edge types, where Ê κ̂ ≤Ê Ê κ̂′

iff

1. Ê κ̂ and Ê κ̂′
are both forward edge types Eκ, Eκ′

, and Eκ ≤E Eκ′
; or

2. Ê κ̂ and Ê κ̂′
are both reverse edge types EκT , Eκ′T , and EκT ≤E Eκ′T .

Note that if Ê κ̂, Ê κ̂′
are forward and reverse (or reverse and forward), then Ê κ̂|E κ̂′

.

We can similarly extend to individual edges, letting Ê =
⋃M

κ=1(E
κ ∪ EκT) be the set of extended

edges, so that an individual extended edge is ê ∈ Ê. We also have an extended edge type function
t̂E : Ê → Ê , so that e.g. if E κ̂ = EκT is the inverse of a edge type Eκ ⊆ V ι×V ι′ , then t̂E

(
êκ̂,ι,ι′

k

)
=〈

V ι′ , V ι
〉
.

A path type P of length η is an η-long string in Ê∗ (the free monoid over Ê , now seen as an
alphabet of both the forward and inverse edge types), denoted P =

〈
Êj

〉η

j=1
for Êj ∈ Ê . Each

element Êj ∈ P of the path type could be a forward or reverse edge type, so that for each Êj ∈ P ,
there is a base edge type Eκ ∈ E so that Êj = Eκ or Êj = EκT .

Let a path type expression (pathexp) π be a (limited) regular expression in Ê . Supported
operators include

|, (), ^, $, {m,n}, *, ?, +
A path type P is accepted by the pathexp π if P is a word of π.

Consider two comparable (subsumptive) edge types E ′κ′ ≤E Eκ. Then let l
(
E ′κ′

, Eκ
)

be the

maximum chain length in the relation hierarchy SV connecting E ′κ′
upward to Eκ. We can then

represent the degree of subsumption or subsumptiveness between them as

σ
(
E ′κ′

, Eκ
)

= α
l
(
E′κ′

,Eκ
)
, (1)

where α ≥ 1 is a free parameter to be tuned. α specifies the extent to which subsumption is to be
taken into account. If α = 1, then subsumption is not considered, whereas the more that α > 1,

5

the more subsumption is taken into account. By default, if not otherwise specified, set α = 2.

Note that thereby σ(E ′κ′
, Eκ) ≥ 1, with σ(E ′κ′

, Eκ) = 1 iff E ′κ′
= Eκ or α = 1, and that σ(E ′κ′

, Eκ)
increases as the max chain length between E ′κ′

and Eκ in the subsumption hierarchy grows, up
to αH where H is the height of the relation hierarchy. Also note that if E ′κ′|Eκ, so that they are
non-comparable (siblings or cousins), then

σ(E ′κ′
, Eκ) =∞ (2)

by convention.

Consider two path types P ′, P of the same length η. Then we say P ′ is subsumed by P when
each edge type in P ′ inherits from each corresponding edge type in P :

P ′ ≤ P : = ∀1 ≤ j ≤ η, Ê ′
j ≤E Êj .

If all these corresponding types are equal, then we say that the path type P is type-equal to path
type P ′, and denote that as

P ′ ' P : = ∀1 ≤ j ≤ η, Ê ′
j = Êj .

If one path type P ′ is subsumed by another P , then we can measure it’s ontologically-adjusted
length L(P ′|P) relative to P as the total subsumptiveness of the corresponding edge types:

L(P ′|P) =
η∑

j=1

σ(Ê ′
j, Êj). (3)

Note that L(P ′|P) ≥ η, with L(P ′|P) = η ↔ P ′ ' P .

For a pathexp π, use Êj to denote the “atomic” extended edge type of its j’th element. Then we
can say that a path type P ′ is subsumed by a pathexp π when each edge type in P ′ inherits from
the atomic extended edge type it matches in the expression, or

P ′ ≤ π : = ∀1 ≤ j ≤ η, Ê ′
j ≤E Êj .

If all these corresponding types are equal, then we say that the path type P ′ is type-equal to the
pathexp π, and denote that as

P ′ ' π : = ∀1 ≤ j ≤ η, Ê ′
j = Êj .

The ontologically-adjusted length L(P ′|π) of a path type P ′ relative to a pathexp π can then be
defined exactly as in (3), using our abusive notation for Êj ∈ π, so that now L(P ′|π) = η ↔ P ′ ' π.

Finally, define a path p of type P as a vector p : = 〈Aj〉2η+1
j=1 of length 2η + 1, where η is the

length of P . For j odd, Aj is a node vι, and for j even, Aj is an extended edge êκ̂,ι,ι′ . For a path
p, define its type as tP (p) = P , and also denote this as pP . A path pP must be consistent with
its path type P and the ontology O, in that ∀1 ≤ j ≤ η, we have

t̂Ê(A2j) = Êj = 〈tV(A2j−1), tV(A2j+1)〉 ,

or in English, the type of the extended edge at position 2j in the path must be the same as the type
of the extended edge at position j in the path type, and the node types of the nodes at positions
2j − 1 and 2j + 1 in the path must be the appropriate node types of the edge at position 2j.

6

3 Typed Path Queries

Fix two nodes v, v′. Then we can define a subsumptive typed path query, or just “path query”,
as a structure Q : = 〈π, v, v′〉 where π is a query pathexp. A path query Q requests paths pP of
type P = tP (pP) for which:

• A1 = v;

• A2η+1 = v′;

• There exists a path type P ′ such that,

– P ′ is accepted by the query pathexp π; and

– P ′ subsumes P , P ≤ P ′.

For a path query Q, let P = {pl}µl=1 be the set of µ paths returned.

Continuing our example, we begin with the extended edge types:

Ê = {Owns-Place, Property-Of, Owns-Phone, Phone-of, Lives-At, Above-Of, Located-At, Location-Of,
Owns, Owned-By, Relation, RelationT

}

There are many syntactic and notational options for pathexps. Referring to Table 1, we will use
the edge type symbol for the “forward” direction, and the transpose superscript ·T for the “inverse”
direction.

Consider the pathexp π1 = OT O LIT, and path query Q1 =
〈
π1, s, g

〉
. Referring to Fig. 2, in English

we’re asking for all the typed paths from Select Gourmet Foods to Muktar Galab which match to
Owned-By, then Owns, and finally Abode-Of. Q1 returns µ = 1 path

P = {p1 =
〈
s, OT , m, PL, u, LIT , g

〉
}

with η = 3 and path type P 1 : = tP (p1) =
〈
OT , PL, LIT

〉
. p1 matches our path query Q1, because

A1
1 = s, A1

2η+1 = A1
7 = g, the path type P 1 =

〈
OT , PL, LIT

〉
≤

〈
OT , O, LIT

〉
= P ′1 (because

PL ≤E O), and P ′1 is accepted by our pathexp π1.

Now relax the search criteria slightly to Q2 =
〈
OT R{1, 3} LIT, s, g

〉
, or in English, all the paths

from Select Gourmet Foods to Muktar Galab whose first edge is still Owned-By, and whose last
edge is still Abode-Of, but with at least one, and at most three, intervening edges of any types.
Then our return set has µ = 2 paths

P = {p1 =
〈
s, OT , m, LI, u,LIT , g

〉
, p2 =

〈
s, OT , m, PL, u, LIT, g

〉
}.

Finally consider the path query Q3 =
〈
(LI|LIT) + (LI|LIT)+, f, g

〉
, or in English, all the paths

from Floyd Ave. to Muktar Gulab involving chains of at least two Lives-At or Abode-Of edges.
There’s again µ = 1 match P = {p1 =

〈
f, LIT , m, LI, u,LIT, g

〉
}.

4 Typed Path Distance

We seek a semi-metric function d : V 2 → [0,∞], so that d(v, v′) = d(v′, v) and d(v, v′) = 0↔ v = v′.

7

Assume a library of pathexps Π = {π}. Fix two nodes vι, v′ι
′ ∈ V , with types ι, ι′ respectively.

For each pathexp π ∈ Π in our library, let P(π, v, v′) be the µ paths p returned from the path query
Q = 〈π, v, v′〉.

Definition 4 (Path Expression Adjusted Minpath) For a path query Q = 〈π, v, v′〉 with re-
turn set P(π, v, v′), let

Mπ(v, v′) : =

0, v = v′

Minp∈P(π,v,v′)L(tP (p)|π), µ > 0, v 6= v′

∞, µ = 0, v 6= v′

be the minimum length of its returned paths adjusted to the path query Q.

In English, Mπ(v, v′) is the minimum of the ontologically-adjusted path lengths of the µ paths p

conformant with the query path π; zero if the nodes are identical; or infinite if there are no return
paths between distinct nodes.

Theorem 5 Mπ(v, v′) = 0↔ v = v′.

Proof: It is sufficient to show for µ > 0, v 6= v′, that ∀p ∈ P(π, v, v′), L(tP (p)|π) > 0. We know
that L(tP (p)|π) is minimal at η iff tP (p) ' π, so that if all returned paths are type-equal to π, and
so Mπ(v, v′) is just the minimum returned path type length. In turn, η is minimal at 1 iff there
is at least one returned path which is a single link. Thus only under both conditions is Mπ(v, v′)
minimal at 1.

For a node pair v, v′, we are interested in identifying those pathexps π ∈ P in the library which
have some return paths, and those which do not. So define

Πv,v′ : = {π ∈ Π : Mπ(v, v′) <∞} ⊆ Π.

Definition 6 (Typed Path Directed Distance) Let d̂Π : V 2 → [0,∞] be defined as

d̂Π(v, v′) : =

∑
π∈Π

v,v′
Mπ(v,v′)

|Πv,v′ |
, Πv,v′ 6= ∅

∞, Πv,v′ = ∅
.

In English, d̂Π(v, v′) is the average, over those pathexps in the library which return paths, of the
adjusted minpath between v and v′, and infinite if there are no such pathexps.

Definition 7 (Typed Path Distance) Let dΠ : V 2 → [0,∞] be defined as

dΠ(v, v′) : =

Min
(
d̂Π(v, v′), d̂Π(v′, v)

)
, d̂Π(v, v′)× d̂Π(v′, v) =∞

d̂Π(v,v′)+d̂Π(v′,v)
2 , d̂Π(v, v′)× d̂Π(v′, v) <∞

.

In English, the typed path distance is the typed path directed distance in the one direction in which
the nodes are connected, if they are connected in only one direction; and the average of those in
both directions if they are connected in both directions.

8

Theorem 8 dΠ(v, v′) is a semi-metric. Moreover, d̂Π(v, v′) is infinite only if v and v′ are not
connected by any pathexps π ∈ Π in either direction.

Proof: By inspection, d is symmetric. Positive definiteness follows from (5). The final clause
follows because Mp(v, v′) < ∞ if there is some return path for either the query 〈p, v, v′〉 of the
query 〈p, v′, v〉 for v 6= v′.

Continuing our example, we have our library:

Π = {π1, π2, π3} = {OT O LIT, OT R{1, 3} LIT, (LI|LIT) + (LI|LIT)+}.

We will illustrate two queries in the library:

1. v = s, v′ = g: Consider the first query path π1 = OT O LIT with its return set

P1 =
{
p1
1 =

〈
s, OT , m, PL, u, LIT , g

〉}

and µ = 1. The path type of the single returned path is tP (p1
1) = P 1

1 =
〈
OT , PL, LIT

〉
with

η = 3. Since PL < O, we have P 1
1 ≤ π1. With α = 2, and PL immediately below O in the

relation hierarchy, we have σ(PL, O) = 2 for the second link in the path type, and thus the
adjusted path length is L(P 1

1 |π1) = 1 + 2 + 1 = 4, even though η = 3. Since this is the only
returned path, and s 6= g, we also have the adjusted minpath between s and g using π1 as
Mπ1(s, g) = 4.

For the next query path π2 = OT R{1, 3} LIT, we have µ = 2 returned paths with types
P 2

1 =
〈
OT , LI, LIT

〉
and P 2

2 =
〈
OT , PL, LIT

〉
, yielding L(P 2

1 |π2) = 1 + 2 + 1 = 4 and
L(P 2

2 |π2) = 1 + 4 + 1 = 6, so that Mπ2(s, g) = min(4, 6) = 4.

Finally, considering π3 = (LI|LIT) + (LI|LIT)+, there are no return paths, so Mπ3(s, g) =∞.

Now referring to (6), we have Πs,g′ = {π1, π2} ⊆ Π, so that d̂Π(s, g) = 4+4
2 = 4.

Looking next at d̂ going the other direction, none of the queries
〈
πl, g, s

〉
have any return

paths for l ∈ [[3]], so d̂Π(g, s) =∞, and from (7) we have dΠ(s, g) = min(d̂Π(s, g), d̂Π(g, s)) =
min(4,∞) = 4.

2. v = f, v′ = g: Now P(π1, f, g) = P(π2, f, g) = ∅, so that Mπ1(f, g) = Mπ2(f, g) = ∞.
But for π3 = (LI|LIT) + (LI|LIT)+, we have a single path match in each direction, so that
Πf,g = Πg,f = {π3}. We have Mπ3(f, g) = Mπ3(g, f) = 3, since the match is precise over
path type length η = 3, yielding d̂Π(f, g) = d̂Π(g, f) = 3, and finally dΠ(f, g) = 3.

5 Algorithm

9

Algorithm 1 Typed path directed semi-metric d̂Π(v, v′).

INPUT: Library of path type expressions Π, e.g.:

Π = {π1, π2, π3} = {OT O LIT, OT R{1, 3} LIT, (LI|LIT) + (LI|LIT)+}.

INPUT: A free parameter α for the amount of subsumptive “stretching”, by default α = 2.

INPUT: Two nodes of interest v, v′ ∈ V , e.g. 〈s, g〉.

OUTPUT: Directed semi-metric dΠ(v, v′) ∈ [0,∞].
if v = v′ then

return 0
end if
Let Πv,v′ ← ∅
Let d̂Π(v, v′)← 0
for all path type expressions π ∈ Π in the library do

Let P be the set of subsumptively matching paths, e.g. for π1 we have

P1 =
{
p1
1 =

〈
s, OT , m, PL, u, LIT , g

〉}
.

Let µ be the number of subsumptively matching paths, e.g. for π1 we have µ = 1
if µ > 0 then

Let Mπ(v, v′)← ∞
Let Πv,v′ ← Πv,v′ ∪ {π}
for each of the paths returned, e.g. p1

1 do
Let P ′ be the path type of the returned path, e.g. P ′1 =

〈
OT , PL, LIT

〉
.

Let η be the length of P ′.
for L(P ′|π)← 0, j ← 1; j + +; j ≤ η do

Let Ê ′
j be the edge type of the j’th edge in P ′

Let Êj be the edge type of the j’th edge in π
Let l(Ê ′, Ê) be the length of the longest chain in the relation hierarchy from
Ê ′ up to Ê

Let L(P ′|π)+ = αl(Ê′,Ê)

end for
Let Mπ(v, v′)← min(Mπ(v, v′), L(π′|π))

end for
Let d̂Π(v, v′)+ = Mπ(v, v′)

end if
end for
if |Πv,v′ | = 0 then

return ∞
else

return d̂Π(v,v′)
|Πv,v′ |

end if

10

Algorithm 2 New typed path semi-metric dΠ(v, v′).

INPUT: Path type expression library Π.

INPUT: A free parameter α for the amount of subsumptive “stretching”, by default α = 2.

INPUT: Two nodes of interest v, v′ ∈ V , e.g. 〈s, g〉.

OUTPUT: Semi-metric dΠ(v, v′) ∈ [0,∞].
Let d1 ← d̂Π(v, v′)
Let d2 ← d̂Π(v′, v)
if d1 =∞ or d2 =∞ then

return Min (d1, d2)
else

return d1+d2
2

end if

