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Abstract

Modern cyber defense and anlaytics requires general, formal
models of cyber systems. Multi-scale network models are
prime candidates for such formalisms, using discrete mathe-
matical methods based in hierarchically-structured directed
multigraphs which also include rich sets of labels. An ex-
emplar of an application of such an approach is traffic anal-
ysis, that is, observing and analyzing connections between
clients, servers, hosts, and actors within IP networks, over
time, to identify characteristic or suspicious patterns. To-
wards that end, NetFlow (or more generically, IPFLOW)
data are available from routers and servers which summa-
rize coherent groups of IP packets flowing through the net-
work. In this paper, we consider traffic analysis of NetFlow
using both basic graph statistics and two new mathematical
measures involving labeled degree distributions and time in-
terval overlap measures. We do all of this over the VAST
test data set of 96M synthetic NetFlow graph edges, against
which we can identify characteristic patterns of simulated
ground-truth network attacks.

1 Introduction

Cybersecurity analysts must increasingly manipulate
massive-scale, high-resolution flows to identify, categorize,
and mitigate attacks involving networks spanning institu-
tional and national boundaries. A flow in this context is
an aggregation of packet-level communication between two
cyber systems over some network protocol between specific
ports for a period of time. Flow data can be acquired at
all levels of the Internet Protocol (IP) communications hi-
erarchy, starting with bits and packets: each packet passing
through a router or switch is inspected for a set of attributes
and determined to be unique or associated with packets al-
ready seen. All packets with the same source, destination,
ports and protocol are grouped into a flow and packets and
bytes are aggregated accordingly. We find that this level
of aggregation at the flow level is distinctly valuable and
complementary to the more detailed packet level for expos-
ing and reasoning about the communication graph patterns
with which analysts work.

In this paper, we introduce a network-theoretical anlaysis
of NetFlow multigraphs as follows:
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• A basic characterization of NetFlow multigraphs and
their projections to IP and port subgraphs.

• A description of the VAST cyber challenge test data.

• Some anlaytical results using basic NetFlow statistics.

• Characterizing IP interaction using novel information
theoretical labeled graph degree distributions.

• An approach to characterizing temporal flow relations
using interval orders and interval mathematics on flows.

While there have been a number of past attempts at
IPFLOW graph analytics [3, 5], they have typically been
limited in scale or complexity [6, 9], and frequently do not
consider flow direction or other attributes [1, 10]. More
recently, progress is being made on methods similar to
ours, including some use of information-theoretical mea-
sures [7, 12]; and in temporal analysis [11], including flow
streams with full time-interval overlap among ssh sessions
[2], and flow collections occurring within a certain “en-
counter” tolerance [8].

These results apply both simple descriptive statistics, and
some descriptive analysis using our two additional novel ap-
proaches, against simulated test data. As such, in addition
to highlighting the potential significance against real data,
they reveal aspects and even artifacts of the simulation it-
self. This is appropriate for the current stage of develop-
ment, and indicates the promise for this approach.

2 NetFlow Graphs

Table 1 shows a typical data schema for IPFLOW records.1

In addition to source and destination IP address and port,
the number of packets and bytes comprising the flow, start
and stop time, transport protocol (e.g. TCP vs. UDP), and
other flags are included. This schema is naturally repre-
sented as a directed multigraph with a sample edge shown
in Fig. 1, with the following characteristics:

• There is a combinatorial structure on node IDs, each
a vector of the four octets of the IP address, together
with the port ID. We call these “IPPs”.

• # packets and # bytes as quantitative edge attributes.

• An interval attribute for start and stop times.

• A categorical attribute for transport protocol.
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Field Type Description

EPOCH TIME NUMERIC Flow start time in
epoch milliseconds

PROTOCOL SMALLINT Transport protocol
SRCADDR VARCHAR(15) Source IP address
DSTADDR VARCHAR(15) Destination IP ad-

dress
SRCPORT INTEGER Source Port
DSTPORT INTEGER Destination Port
MORE FRAGMENTS SMALLINT Indicates more frag-

ments
CONT FRAGMENTS SMALLINT Continuation frag-

ments
DURATION NUMERIC Duration in seconds
SRC PAYLOAD BIGINT Source payload bytes
DST PAYLOAD BIGINT Destination payload

bytes
SRC TOTAL BYTES BIGINT Source total bytes
DST TOTAL BYTES BIGINT Destination total

bytes
SRC PACKETS SMALLINT Source packet count
DST PACKETS SMALLINT Destination packet

count
RECORDFORCEOUT SMALLINT Record force out

Table 1: Spec for input data set.

100.110.120.130:80

200.210.220.230:8080

P=5, B=3K, t=[2,5], TCP

Figure 1: Link in a NetFlow multigraph: nodes are IP:Port,
P=# packets, B=# bytes, t=time interval. Transport pro-
tocol also shown.

Nodes in NetFlow graphs are most naturally IPPs, which
are 〈IP, Port〉 pairs. They thus have two parallel decompo-
sitions, or projections (a la “graph cubes”, see [13]) into two
sub-graphs, one among IPs, and one among ports. Fig. 2
shows a simplified example where IPs have only two octets,
and edges are adorned with a single integer size. Each of
the IP and port projections are smaller contractions of the
original, and each contracted edge records the number of
original edges in red and the aggregated size in black.

Figure 2: A simplified NetFlow graph and its IP and port
projections.

1We are limiting our work to IPv4 but consider support for IPv6
within reach of our techniques.

3 VAST Challenge Data Set

Our test data set is from the VAST challenge from the an-
nual Visual Analytics Science and Technology (VAST) con-
ference.2 One of the 2013 challenges was called “Big Mar-
keting Situational Awareness”, and focused on cyber secu-
rity, representing unusual happenings on the computer net-
work of a simulated marketing company. Participants were
provided simulated NetFlow traffic, combined with IPS and
BigBrother health monitoring, and were challenged to pro-
vide visualizations for situational awareness.

While used for VAST, the test data were actually created
at our laboratory on a testbed with a collection of machines
on an isolated network. Virtualization was used extensively,
but not exclusively. The workstations of the Big Marketing
sites were all simulated through custom software support-
ing behavioral rules to govern normal activities, as during
business hours.

Fig. 3 shows the overall architecture. IPs with the 10. pre-
fix are external to Big Marketing (BM), while those with
172. prefix are internal. BM is further divided into three
internal sites with prefixes 172.10., 172.20., and 172.30.
The overall scenario mostly simulates web servers, including
both servers and workstations both internal and external.
Fig. 4 shows the timeline for the simulated “ground truth”
attacks, including a range of DOS attacks, port scans, and
exfiltration events.

Figure 3: VAST challenge.

4 Basic NetFlow Analysis

Table 2 shows fundamental statistics about the VAST Net-
Flow multigraph, including the base IPP graph and the IP
and port projections. There are 96.3M flows, divided over
10.1M IPPs, but only 1,440 IPs and (of course) 65,536 ports.
“Leaves” and “roots” (aka “sources” and “sinks”) have no
children (resp. parents), as shown in Fig. 2 as square and
round nodes. This yields only 1.25M internal IPP nodes,
while retaining 1,329 internal IPs.

2http://vacommunity.org/VAST+Challenge+2013
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Figure 4: Simulated attacks and other activity in the BM
scenario.

IP IPP Port

Nodes 1,440 10.1M 65,536

Flows/node 48,192 6.89 1,059

Leaves 16 1.1% 1.28M 12.7% 1,035 1.6%

Roots 95 6.6% 7.53M 74.8% - 0.0%

Internals 1,329 92.3% 1.25M 12.4% 64,501 98.4%

Density 1.57% 0.0000646% 0.023%

Table 2: VAST NetFlow basic statistics.

The NetFlow structure is relatively simple, and yet com-
pletely characterizing the potentially multi-variate statisti-
cal relationships between the components of flows, IPPs,
IPs, ports, start times, finish times, durations, sizes, and
protocols is still a daunting exercise. Yet before involving
our novel methods, we can glean specific insights about the
BM scenario from some of this initial analysis.

Fig. 5 shows # flows in vs. out for each IP. The multi-
colored point collection in the upper right below the diago-
nal are BMs primary servers (e.g. 172.30.0.4, 172.20.0.15),
showing massive flows, but more in than out, since web
requests initiate from the ultimate receiver. Yet the blue
points in the upper center are above the diagonal, also in-
dicating massive flows, but more out than in. These are
virtually all external attackers, showing their denial of ser-
vice (DOS) attack activity.

Fig. 6 shows the same statistics for the port projection of
the NetFlow graph, colored by ephemeral vs. non-ephemeral
ports. Note the extreme outlier of port 80 in this log-log
plot. This highlights the synthetic nature of this data being
primarily focused on the generation of web traffic for a set
of marketing companies. Real world data would be repre-
sented by different compositional features not represented in
this data set. For our purposes, we are able to distinguish
intent and usage of the network utilizing typical analysis
of NetFlow information. Other ports which are prominent
within the simulated BM environment include 25 (SMTP),
123 (NTP Network Time Protocol), 137 (NETBIOS Name
Service), and 138 (NETBIOS Datagram Service).

Fig. 7 highlights a malicious attack on April 6 involving
exfiltration of data leaving the organization destined for at-
tacker 10.7.5.5, showing the details surrounding the aggre-
gate communications per destination IP. Outgoing payload
is on the horizontal, # flows on the vertical, and points are
sized by incoming payload. When drilled down to the de-
tailed data, this volume was transmitted during one flow
making it an extreme outlier.

Figure 5: # flows in vs. out by IP, color coded by group.

Figure 6: # flows in vs. out by IP, color coded by port type.
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Figure 7: Outbound payload vs. # flows in, points sized by
incoming payload.

5 Labeled Degree Distributions

Beyond the basic NetFlow graph statistics, we are inter-
ested in assessing the relations among NetFlow components:
which IPs, ports, and their combinations have interesting,
significant, or unusual relationships with each other? Does
one IP talk to many, few? Among those, are they grouped
or spread out?

In graph analysis, degree distributions are a standard
measure, counting the number of incoming and outgoing
edges over a set of nodes. We extend these methods to la-
beled degree distributions by additionally counting how those
edges are distributed over a set of labels, for example the
incoming or outgoing IPs or ports.

Fig. 8 illustrates an example for N = 10 flows. On the
left, they’re distributed into m = 5 IPs, with six flows in
one IP and one in each of four other IPs. We notate this as
a sorted count vector ~C = 〈Cl〉

m

i=1 = 〈6, 1, 1, 1, 1〉 of length
m = 5. On the far right we show the case where those same
10 flows are distributed as 〈6, 4〉 over m = 2 IPs, while in
the center it’s 〈2, 2, 2, 2, 2〉 distributed uniformly over again
m = 5 IPs. In all cases

∑m

i=1 Ci = 10, our number of flows.

Figure 8: Three count vectors differently distributing N =
10 flows over IPs. From left to right κ = 0.70, G = 0.76,
then κ = 0.70, G = 1, and finally κ = 0.30, G = 0.97.

Mathematically, our count vectors are partitions of the

integer N = 10, whose properties we can measure by intro-
ducing two quantities. The dispersion

κ(~C) : =
log2(m)

log2(N)

measures the amount of coverage the N flows has over the
m IPs. When κ(~C) = 0 then there is only m = 1 IP, while

when κ(~C) = 1 then there a maximal m = N number of
IPs. But, given that N flows group into m IPs, they can do
so either smoothly of “lumpily”. The smoothness

G(~C) : =
H(f(~C))

log2(m)
=

−
∑m

l=1
Cl

N
log2

(

Cl

N

)

log2(m)

is a group-relative entropy, with G(~C) = 0 when all flows

go to m = 1 IP, while G(~C) = 1 when flows are distributed
uniformly over any number m of IPs. Different values of
κ, G are seen in Fig. 8. While κ = 0 ↔ G = 0 and κ = 1 ↔
G = 1, otherwise these measures are relatively independent.

These measures are useful in characterizing attacks and
other simulation activity in the VAST NetFlow multigraph.
Fig. 9 shows the dispersion and smoothness of outgoing
flows over IPs, with coloring by group, and size showing
the # of flows outbound. We can observe a number of sig-
nificant features called out in the figure:

Figure 9: Dispersion (ODISP=κ and smoothness
(OSMOOTH=G) of outgoing flows over IPs.

• BM’s servers are somewhat visible by size, e.g.
172.30.0.4.

• The group in the far upper right (e.g. 10.0.0.5) are ex-
ternal servers in the simulated internet environment.
Their maximal κ and G values, coupled with small
flows, would indicate flows initiated from the servers
back to the internal workstations, one per workstation.
In fact, this analysis reveals an artifact of the simu-
lation related to reversed time orders on flows, which
would not otherwise be identified.
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• But most significantly are the external IPs called out
on the left side. The group in the far upper left (e.g.
10.200.20.2) has high smoothness, 10.15.7.85 moder-
ate, and 10.6.6.6 low. But these all have both a high
number of flows and a low dispersion. These are, in
fact, all attackers, and this signature seems to typify
their activity, hitting a small number of targets (low
dispersion) relative to the large number flows. But
these attacks are distinguished by their smoothness:
the lowest IP 10.6.6.6 attacks a single IP disporpor-
tionately, while the 10.200.20.2 participates in multi-
ple attacks relatively evenly, although still vastly fewer
than the millions of flows, so retaining a small disper-
sion. 10.15.7.85 is an intermediate case.

Fig. 10 shows the dispersion of input flows against the
number of input flows for a particular day of a DOS attack.
The attack against the three nodes at the top is clearly vis-
ible, with a massive number of incoming flows (log plot).
But in addition to the large number of flows, the small dis-
persion indicates that they come from a small number of
IPs, a signature of a DOS attack.

Figure 10: Dispersion (DISP IN=κ) against # flows in by
IP for a single day.

6 Time Interval Analysis

Our second novel approach to NetFlow traffic analyais is
in the use of interval orders [4] and interval analysis to un-
derstand the temporal relationships between events. Let
x̄ = [x∗, x

∗], ȳ = [y∗, y
∗] be the time intervals for two Net-

Flows, so that x∗−x∗ and y∗−y∗ are their durations. We
can also measure their separation ‖x̄, ȳ‖, not as a single
number, but rather also as an interval between the minimal
and maximal distance possible between any two points in
either interval. x̄ and ȳ always sit in one of three basic re-
lationships x̄ ≤ ȳ,3 which also determine how to calculate
their separations (see Fig. 11):
Disjoint: We say x̄ ≤S ȳ when x∗ < x∗ < y∗ < y∗. Then

the separation ranges from α∗ = y∗−x∗ to α∗ = y∗−x∗.

3For simplicity, we assume that no two of the four endpoints in-
volved are ever equal. Note also that there are in total six relation-
ships, when also including the reverse x̄ ≥ ȳ of the three shown.

Figure 11: The three possible relationships between two
intervals, and their minimum and maximum separation.
(Left) Disjoint, x̄ ≤S ȳ; (Center) Properly overlapping from
the left, x̄ ◦≤ ȳ; (Right) Contained, x̄ ⊆ ȳ.

Properly Overlapping From the Left: We say x̄ ◦≤ ȳ

when x∗ < y∗ < x∗ < y∗. Then the separation ranges
from 0 to α∗ = y∗ − x∗.

Contained: We say x̄ ⊆ ȳ when y∗ < x∗ < x∗ < y∗.
Separation ranges from 0 to the maximum of α∗ =
y∗ − x∗ and −α∗ = x∗ − y∗.

Fig. 12 shows a time line for one of the simulated attacks
in the VAST NetFlow database occurring between 6 AM
and 8 AM. In this case, a single external server 10.0.0.8
(blue) is DOS attacked by a collection of botnet-infected
internal workstations (other colors). The top two graphs
show the spikes in the number of flows incoming to the
victim and outgoing from the attackers. The bottom two
graphs show the durations of the flows coming from the
attackers and their maximum separation.

Figure 12: Time intervals of a DOS attack on 10.0.0.8.
(Top) # incoming flows. (Top Center) # outgoing flows.
(Bottom Center) Outgoing average duration. (Bottom) Av-
erage maximum time separation between outgoing flows.

Notice how attacker activity is generaly synchronized:
other than the top plot, the lines of multiple infected work-
stations overlay each other. But also note a marked decrease
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in the durations as the attack commences, and simultane-
ously a marked decrease in their average pairwise maximum
separation, as shown qualitatively in Fig. 13. If these outgo-
ing flows were unrelated, then simply reducing their widths
may or may not change their separations, and vice versa.
But the combination of decreasing duration and separation
shows the increasingly coordinated nature of the attack: the
botnet infection triggered the same processes in the infected
workstations, leading to an even more synchronized attack.

Figure 13: Qualitative representation of widths and separa-
tions of NetFlow time intervals of attackers. (Left) Before
attack. (Center) If only durations were reduced, separa-
tions may increase. (Right) During attack: both durations
and separations reduced, showing increased synchrony.

7 Computational Environment

We processed the VAST NetFlow data set in an environ-
ment built around a high performance Netezza TwinFin
parallel SQL databases appliance, a unique asymmetric
massively parallel processing (AMPPTM) architecture that
combines open, blade-based servers and disk storage with
data filtering using FPGAs. The Netezza allowed us to
distribute flow data across all of the disks in the storage ar-
ray, providing better query performance than a traditional
relational database management system. This was comple-
mented with SQL code, R, and the Tableau tool for ex-
ploratory data analysis.

8 Conclusion

As noted above, this paper presents our first results for these
methods against simulated test data sets, revealing aspects
of the simulated behaviors and features of the simulation it-
self. We are proceeding to build out both the mathematical,
engineering, and application capability of this technology in
a number of ways:

• Extensions to graph theoretical representations of cy-
ber systems, other than NetFlow, at other scalar levels.

• Further mathematical and engineering development for
both interval calculations and other approaches to com-
binatoric information theoretical measures.

• Examining data reduction methods, including more se-
vere graph cube projections and Metcalf’s encounter
graph representations [8].

• Bringing these methods to bear on real data sets from
operational situations.

• Deploying these measures to be used as features to be
combined with others in machine learning applications.
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