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Abstract-The challenges facing the Department of Homeland
Security (DHS) require not only multi-dimensional, but also
multi-scale data analysis. In particular, the ability to seamlessly
move from summary information, such as trends, into detailed
analysis of individual entities, while critical for law enforcement,
typically requires manually transferring information among
multiple tools. Such time-consuming and error prone processes
significantly hamper the analysts' ability to quickly explore data
and identify threats. As part of a DHS Science and Technology
effort, we have been developing and deploying for Immigration
and Customs Enforcement the CubeLink system integrating
information between relational data cubes and link analytical
semantic graphs. In this paper we describe CubeLink in terms
of the underlying components, their integration, and the formal
mapping from multidimensional data analysis into link analysis.
In so doing, we provide a formal basis for one particular form
of automatic schema-ontology mapping from OLAP data cubes
to semantic graphs databases, and point the way towards future
"intelligent" OLAP data cubes equipped with meta-data about
their dimensional typing.

I. INTRODUCTION

Identifying and analyzing relevant information is a critical
skill for any organization. This is especially true in the area
of homeland security, where effectively understanding the
available information has significant national security conse-
quences. The challenges facing the Department of Homeland
Security (DHS) require not only multi-dimensional but also
multi-scale data analysis. Tasks such as reporting, trend anal-
ysis, and resource optimization require the flexible, graphical
display of multiple different ad hoc projections aggregated
over different views and subsets of the data. But tasks such
as pursuing a particular case or finding subtle connections
between suspects require viewing the particular details of
persons and situations together with their connections.

Thus the ability to seamlessly move from summary infor-
mation into detailed analysis of individual entities is critical.
But information technologies appropriate for one kind of use
may not be appropriate for another, forcing analysts whose
needs span paradigms to expend significant time and energy
moving between tools instead of focusing on the analysis.
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This type of analysis traditionally requires: first, examining
summary or trend views using one tool to identify interested
collections; second, manually transferring the selection criteria
into a second tool to identify and extract the individual
entities which comprise the collection; and finally manually
transferring the individual information to a third tool which
is used to determine if a potential threat is real or not. This
time-consuming and error-prone process significantly hampers
analysts' ability to quickly explore the data and identify
threats, and hybrid environments are needed which can address
multiple purposes elegantly and simultaneously.
As part of a Department of Homeland Security (DHS)

Science and Technology (S&T) effort, the Generalized Data-
Driven Analysis and Integration (GDDAI) Project has been
developing and deploying such hybrid data analysis capabil-
ities to DHS Immigration and Customs Enforcement (ICE).
The goal is to provide a seamless integration of analysis
environments, and allow the analyst to focus on understanding
the data instead of the tools.

This paper describes CubeLink, an environment providing
hybrid data analysis by linking two distinct technologies:

. Multidimensional relational data cubes: OnLine Ana-
lytical Processing (OLAP) technologies provide intuitive
and graphical access to the massively complex set of
possible summary views available in large relational
(SQL) structured data repositories.

. Link analysis in semantic graphs: Semantic graph
(SG) technology also provides an intuitive and graphical
method, but now to flexibly explore particular data items
in the context of their breadth of connections.

GDDAI is building a joint environment in which users can
freely operate by first identifying groups of data items of
interest as cells in OLAP cubes, and then viewing the details of
those data items in an SG. While a simple task in principle,
this actually represents a serious technical challenge. While
very successful as individual and distinct technologies, OLAP
and SGs are very different paradigms. And while there is
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active research in the database world in both schema alignment
(between databases) and ontology alignment (between seman-
tic data stores) [3], there are no methods to automatically
link relational data schemata from OLAP environments to the
ontological data typing methods of SGs.

Aside from their radically different display mechanisms,
OLAP cubes implement large, uniform collections of data vec-
tors with a high-dimensional, hierarchically-structured (rollup)
space; while SGs implement a heterogeneous collection of
two-dimensional data vectors as links in a graph. Our approach
consists of:

. Building a mathematical mapping taking each high-
dimensional OLAP vector into a collection of binary SG
links, one for each attribute;

. Mapping scalar variables into data attributes of the SG;

. Finally representing explicit OLAP hierarchies as collec-
tions of distinct links in the SG.

Our environment is being implemented for deployment
within the Compliance and Enforcement Unit (CEU) at
ICE, linking together current capabilities in OLAP through
SQLServer and Oracle-based OLAP cubes on the one
hand, and the currently-deployed Government-Off-The-Shelf
(GOTS) link analysis environment Everest on the other.

In this paper, we present our mathematical mapping from
OLAP "count cubes" to SGs, and the current implementation
using Everest and the ProClarity OLAP client, in the context
of an overview of the two technologies. While we use the
Internet Movie Database (IMDB) (imdb. com) as a model
of the databases used within ICE's sensitive law enforcement
areas, this development provides the formal basis for general
automated schema to ontology alignment for these particular
database forms. Additionally, in equipping our data cubes
with meta-data typing information about their dimensional
structure, we are pointing the way to future intelligent OLAP
applications wherein OLAP cubes can be simply integrated
with other capabilities, such as statistical and geo-temporal
analysis methods also of interest to GDDAI.

II. COUNT-BASED OLAP DATA CUBES
OLAP [2] is a relational database technology providing

users with rapid access to multiple summary, aggregated views
of a single large database. OLAP views databases through
a collection of major foci called dimensions, organized as
possibly hierarchical collections of members. Constructing
the Cartesian product of dimensions allows aggregation of
quantities, called measures, over any collections of records
projected through any subset of dimensions. These OLAP
"data cubes" give flexible, visual reporting interfaces that are
easily and rapidly driven by users.
OLAP arose in the financial arena, where measures are

primarily numerical quantities such as money. But in our law
enforcement applications, measures are typically the numbers
of entities (people, organizations, events) having certain char-
acteristics. Thus our approach rests on a specialized OLAP
architecture we are calling count cubes built around count
star schemata. Dimensions can come in three types:

. Categorical: Members are elements of an arbitrary set
with no structure.

. Scalar: Members are numbers, with possibly artificial
binning.

. Hierarchical: Members are elements within an explicit
hierarchy.

Additionally, any categorical dimension can be an entity
dimension if it lists items of interest, each with a unique entity
id, which possess properties of the other dimensions.

Given a collection of dimensions, the central fact table
consists of a Cartesian product of the primary keys of all
the dimension tables, and thus holding one row for each
combination of dimension values present in the underlying
database. Given this structure, a measure is built consisting of
the number (distinct count) of entities from an entity
dimension possessing the values of the other dimensions.
A portion of the cube star schema for the IMDB is shown

in Fig. 1. The dimensions are:
. Movie: The entity dimension.
. Director: A categorical dimension, holding the name of

the movie's director.
. Budget: A scalar dimension holding the movie's budget

in dollars, binned within $1M intervals.
. Location: A hierarchical dimension with levels of city,

province (state), and country.
Director
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Fig. 1. A portion of a count star schema for the IMDB.

A portion of the fact table is shown in Fig. 2. A view onto
the data cube in ProClarity is shown in Fig. 3, restricted to
the two directors shown and to the years 1970-1985, and with
the location dimension "rolled up" to the Province level.
In our count cube methodology, each cell in the cube holds a
count of the number of movies (entities) with that particular
combination of dimensional values. Since the relation between
movies and locations is one to many, this can result in multiple
entries in the cube for each movie, as there are rows in the
fact table. Thus the grand totals need not be the same as the
sum of the cube values in a row, column, or page.

III. EVEREST LINK ANALYSIS OF ONTOLOGICALLY
STRUCTURED SEMANTIC GRAPHS

SG databases [1] hold relational (predicate) data as a
network of typed nodes connected by directed, typed links.
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Fig. 3. OLAP cube view.

Director
Woody Allen
Woody Allen
Woody Allen
William Friedkin
William Friedkin

Location
New York
California
New Jersey
New York
DC

Budget
$4M
$4M
$10M
$1.8M
$1.8M

Fig. 2. A portion of a fact table.

Nodes maps to entities of interest, while links map to their
relationships and properties. The collection of node and link
types form an ontology, holding the composite typing infor-
mation of the SG.

CubeLink uses the Everest SG tool which supports user-

interactive visualization and sub-graph queries of SG ontolo-
gies and databases. Using Everest graphs, analysts can explore
the SG, find or verify items of interest, and then optionally in-
voke additional tools for further analysis. By blending aspects
of this SG with thematic and contextual analysis capabilities,
analysts are equipped to identify previously hard-to-find and
potentially unexpected relationships.

In order to map a count OLAP cube to an Everest SG, it
will be asserted that there will exist a sufficient ontology for
the count star schema meeting the following conditions:

. Node Types:
1) There is one node type for each entity dimension,

so that each entity maps to an entity node in the
graph, with its identifier being the entity id.

2) There is an attribute of the entity nodes for each
scalar dimension, so that for each scalar dimension,
each entity node has an attribute scalar value which
is the member's value.

3) There is one node type for each categorical dimen-
sion, so that each member may be represented as

a categorical node in the graph, with its identifier
being its value.

4) Finally, there is one node type for each hierarchical
dimension, so that each member at any level in
the hierarchy may be represented as a hierarchical
node in the graph, with its identifier being its value.

. Link Types:
1) There is one link type for each categorical dimen-

sion, so that a categorical link connects an entity
node to the corresponding categorical node.

2) There is one link type for each hierarchical dimen-
sion, so that a hierarchical value link connects an

entity node to the corresponding hierarchical node.
3) There is one additional link type for each hierarchi-

cal dimension, so that a hierarchical structure link
connects one hierarchical node to another according
to the structure of the hierarchical dimension.

Fig. 4 shows a sufficient ontology for our schema, including:
. Nodes:

- Entity node Movie with attribute Budget.
- Categorical node Person for the director.
- Hierarchical node Location within a hierarchy

drilled down to City.
Links:

M ieHas- Categorical link Movie Person.
Filmed In

- Hierarchical value link Movie Location.
- Hierarchical structure link

Has-Part
Location ) Location.

Note that a sufficient ontology is not a necessary ontology,
since Fig. 4 includes node and link types not referenced in
the cube. This is a critical part of the CubeLink methodology,
allowing users to explore in detail relations in the database
which are not available within the summary cubes.

IV. CONTEXTS AND GRAPHS

Along with Everest, CubeLink uses the ProClarity OLAP
client tool. In ProClarity, users are able to perform several
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Fig. 4. A sufficient ontology.

classic OLAP operations such as drill down, drill from one
hierarchy to another, pivot, filter, and summarize by any of the
defined dimension hierarchies. OLAP query tools are typically
best suited for analysis who have an interest in investigating
anomalies and finding trends. When detailed investigation is
needed, the user can right-click on a cell or cells to move into
a detailed link-analysis of those cells contents.

Given a cube accessed in ProClarity, users can specify a
context by identifying:

. Rows: Selection of certain members from certain dimen-
sions along the rows.

. Columns: Selection of certain members from certain
dimensions along the columns.

. Filters: Selection of certain selectional restrictions along
certain dimensions, whether those dimensions are repre-
sented in the rows or columns or not.

Specification of such a context entails the identification of N
distinct entities in the entity dimension. We then construct
the SG, conforming to a sufficient ontology, of those entities
by the following algorithm, providing thereby an adequate
overall methodology for automatically aligning OLAP count
star schema to SGs with sufficient ontologies [3].

. For each of the N entities entailed by the context:
- Insert into the graph one entity node.
- For each scalar dimension in the context, assign the

appropriate scalar value to the entity node.
. For each categorical dimension in the context, whether

on the rows or columns:
- For each of that dimension's members in the context

for which there is a positive measure, insert into the
graph a categorical node with that member's value.

- For each entity node in the graph, insert into the
graph a categorical link connecting the entity to the
corresponding categorical node for that dimension.

. For each hierarchical dimension in the context, whether
on the rows or columns:
- For each of that dimension's members in the context

for which there is a positive measure
* Insert into the graph a hierarchical node with that

member's value.
* If the hierarchical node is not a root of the

hierarchy:
* Insert a hierarchical node for its parent.

Insert a structure link connecting the hierarchi-
cal node to the parent hierarchical node.
Recur.

- For each entity node in the graph, insert a hi-
erarchical value link connecting the entity to the
corresponding hierarchical node for that dimension.

We assume that node and link insertion has UNION se-
mantics, so that duplicate nodes and links are either combined
or not inserted again. Fig. 5 shows the SG generated by the
context specified by the entire cube view shown in Fig. 3. All
links are shown, including all ancestors of all Locations
(in this case Provinces) in virtue of the inheritance of the
hierarchical structure links.

V. IMPLEMENTATION

Implementation begins by parsing IMDB database files
and loading them into an Oracle lOg relational database.
The structure captures many facets of the database, including
movie names, work locations, actor names, budget informa-
tion, famous quotes, ratings, etc. The schema is composed of
46 tables. Some films are well represented with rich detail
while other films may have only basic information captured.
A new OLAP database with a count star schema is then

loaded from these relational structures. Our count star schema
focuses on dimensions having relatively low cardinality and
hierarchal support. Tables are often denormalized and heavily
indexed as part of the transformation into more reporting
friendly structures. The CubeLink star schema used in the
ProClarity examples consists of eleven dimensional hierar-
chies, seen in the upper-left of Fig. 3, and one central fact
table that counts distinct "works".
SQL Server 2005 Analysis Services is used to host the

OLAP cubes. Hierarchies such as Country drilling down to
Province and then to City are defined along with storage,
user access, measure aggregations, and dimension organization
settings. Terminology that the user understands is developed in
an attempt to make the cubes as easy to navigate as possible.

ProClarity 6.3 is used to query the Analysis Services cubes.
The API extensibility of ProClarity is unique and critical
for extending the interface in support of the link analysis
drillthrough. Users can specify a full context, including the
dimensions on the rows and columns axes, any background fil-
ters applied, the measure being aggregated, and the actual val-
ues selected in the data grid. To generate the XML, we wrote
an add-in to ProClarity using the ProClarity Software Develop-
ment Kit 6.3 in C# using Microsoft's .NET framework. This
adds a right-click context menu to the grid control, which
iterates through the dimensions, does some minor data trans-
lation for scalar dimensions, then writes the XML file, and then
launches Everest. Data translations were needed to expand the
ranges in the scalar dimensions from their abbreviated human-
readable formats like "$30-40M" to a machine-readable format
that expresses 30000000 <= value < 40000000.

Utilizing Everest's Relational Mapping capability, we
mapped the IMDB schema to an ontology, creating a SG
queriable by Everest. A metadata mapping file is required for
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Fig. 5. Semantic graph.

Everest to know how count star schema dimensions map to on-

tology nodes. When Everest receives an XML formatted file, it
begins building a set of graph pattern queries using the OLAP
mapping metadata file to look up the types of dimensions and
ontological concepts used by the cube selection query. Patterns
are issued against the underlying persistence store returning
all instances of subgraph pattern matches. Further analysis
can then be performed on the resulting subgraphs to further
analyze the entities backing the datacube selections.

VI. MATHEMATICAL FORMULATION

We conclude with a formal sepecification for the mapping
from a count star schema with a single entity dimension to a

nSG with a sufficient ontology.
Assume N (non-entity) dimensions X :{Xt}7 f. Each

dimension is a set of attribute values Xi {x}xi 1 X,
so that IXtl = Mt. Each dimension entails a set of members
Pi D Xi which live in a partially ordered set Pi := Kpi, <).
For two members pi,p C Pt, we say pj C p2 to mean that
pj < pi and pj is an immediate child of pi. We denote that
an attribute value xt C Xi belongs to a member pt C Pt as

xt C pi if xt < pi (recalling that Vxt C Xt, 3pi C pt,x=
p t).

In our example, we have X

{Director, Budget, Location}, N 3, so that we have
three example variables prototypical of their classes:

. Categorical Variable:
X1 = Director = {Directori,,.. , Directormi }. X1 has
no hierarchy, so Pl = X1, and < is empty.

. Scalar Variable:
X2 Budget = {$1M, $2M, .. ., $25M}, M2 = 25.
p2 {[X, y): X < y C X2 } is the set of all (half-open)
intervals on X2, e.g. [$3M, $5M) C p2, and < is

interval inclusion. Note that points like [$3M, $3M] are

in p2, and we have that $3M C [$3M, $5M).
. Hierarchical Variable: X3 is location, a list of lots of

cities, so that M3 is large. So

P3 = X3 U {provinces} U {countries},

and < is defined explicitly by the map, so that e.g. New
York City (the member) < New York State < USA, and
also New York City (the attribute value) C New York
State.

So now think of two distinct schemata:
N

. Data Schema: X X Xt. This is the schema of the
i=l

database, where the data records live, and each x C X
is called a slot. In our example,
(Woody Allen, $4M, New York City) is a slot.

N

. OLAP Schema: P: X Pt. This is the "frame" of
i=l

the cube, the rows and columns in a view, and each
p C P is called a cell. In our example,
(Woody Allen, [$3M, $5M), New York State) is a cell.

For a slot x C X and cell p C P denote
x C p :=VI < i < N, Xi C Pi, where xi, Pi are the i'th
component of the x, p vectors respectively, and of course

(Woody Allen, $4M, New York City) C
(Woody Allen, [$3M, $5M], New York State)
Now introduce a set of records of interest Z (e.g. people),
forming the entity dimension, and two functions:

Attribute Function: A function f: Z -÷ X mapping
each record to its slot (multidimensional attributes) in
the data schema.

. Drillthrough Function: A function d: P 2z
mapping each cell in the OLAP schema to the set of
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records in that cell:

d(p) = {z e Z: f(z) e p}

Measure Function: A function m: Z -÷ IR mapping
each record to a measure. Note that in the case of count
cubes specifically, m_ 1.
Rollup Function: A function r: P -÷ IR mapping each
cell in the OLAP schema to the aggregates of the
measures:

r(p) ED mm(z)
zEd(p)

where D is your favorite aggregation function, e.g. sum,
average, max. In this case, r is distinct count.

We need only three more concepts:
Projections: The full set of dimensions X and the full
OLAP schema P represents the complete set of all
available information. Let K C {1, 2, .. ., N} be a
projector, which restricts our view to just the
dimensions indexed by the i C K. This gives us a
number of additional mathematical objects:

X { K := {X}X%K
X{K:= X Xt, x{K EX{K

iCK

P K: X pF, p {K e P{ K
iCK

f K:Z-,X {K, d{K:P KK ,2z,
(d I K)(p I K) = {z C Z: (f I K)(z) C p I K}

r I K: P I K- R, r(p I K):=
ZG(djK)(ptK)

. Filters: Y C Z be a filter, which restricts our view to
just the records in Y. This gives us more objects:

dy:P- )2y, dy(p)= {yCY:f(y)Cp}

ry:P -IR, ry(p) : e m(y)
yEdy (p)

. Views: Given a projector K and filter Y, then we have
X I K, X I K, P I K as above, and in addition now:

dy I K: P I K ,- 2Y, ry I K: P I K- IR,
dy(p I K) = {y C Y: f (y) C p I K}:

ry(p t K):- e m(y)
yG(dy tK)(ptK)

We now map these elements to components of an ontology.
. Nodes: We have the following node types V:

- Records z C Z, identified by their unique field
combinations

- Attribute values x C X of a categorical variable
- Members p C P of a hierarchical variable

. Attributes: Attribute values x C X of a scalar variable

. Links: We have the following link types E:

Has Director
- Record attribute z H Drt
- Record hierarchical value z FilmedpIn

Has Part
- Hierarchical values P1 - P2

We then have the following procedure for addin invocation:
. The user identifies a view by specifying a set of

variables K and a set of filtered records Y
. The user identifies a collection of cells
Q = {q} C P{ K in that view

. The system creates the first set of nodes V1 as the
collection of data records corresponding to those cells

V1: U (dy tK)(q) y{y Y: Eqe Q, f(y) e q}
qEQ

. The system creates the second set of nodes V2 as the
collection of categorical attributes values

V2 := {fl(V) :vVV}

where fi (v) is the first component of f(v), that is, the
eye color x1 of the record v.

. The system creates the first set of links E1 from records
to their categorical attribute values

E { Has-Directorf( V C Vi}

. The system creates the third set of nodes V3 as the
collection of hierarchical attribute values

V3 := {p33 f3(v) :vC V,p3 CP3}

. The system creates the second set of links E2 from
records to their hierarchical attribute values

E: { Has-Location f3(V)CvV3}

. The system creates the third set of links E3 from
hierarchical attribute members to their ancestors via the
recursive definition

E { ~~Has Part C dF3 {Pt a 2 : Pt:P P2 and

/ C V 3 Has Part
yI V3 or P E

. The system creates the graph as
(V,E) = (VI U V2U V3,E1U E2U E3).
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