
PNNL-24142

Prepared for the U.S. Department of Energy
under Contract DE-AC05-76RL01830

Measuring Semantic Dispersion in Zymurgy

Cliff A. Joslyn
David J. Haglin
Emilie A. Hogan
Alejandro Heredia-Langner
Patrick R. Paulson
Amanda M. White

May 2011

PNNL-24142

Measuring Semantic Dispersion in
Zymurgy

Cliff A. Joslyn
David J. Haglin
Emilie A. Hogan
Alejandro Heredia-Langner
Patrick R. Paulson
Amanda M. White

May 2011

Prepared for
the U.S. Department of Energy
under Contract DE-AC05-76RL01830

Pacific Northwest National Laboratory
Richland, Washington 99352

Measuring Semantic Dispersion in Zymurgy

Cliff A. Joslyn, David J. Haglin, Emilie Hogan, Alejandro Heredia-Langner,

Patrick R. Paulson, Amanda M. White

May, 2011

Contents

1 Executive Summary 1

2 Background 2

3 Experimental Setup 3

4 Decision Tree Models 5

5 Classification Results 8

6 Metrics: Discussion and Pragmatics 12

6.1 Examples . 12

6.2 Order Metrics . 13

6.3 Minimum Undirected Path Length Metric . 13

6.4 Computational Considerations . 16

6.5 Accuracy Considerations . 16

7 Towards Scoring 17

7.1 Definitions . 17

7.2 Problems . 19

7.3 Process . 19

1 Executive Summary

We seek to develop a robust measure of the semantic extent of sets of Omega ontology nodes derived
from Zymurgy analysis of input documents. The Omega 2 knowledge system [9] has a complex

semantic architecture involving multiple ontological graphs structured as both hierarchical and non-
hierarchical link types. Previously we have developed analytical techniques against the hierarchical
portion of the Omega ontology [6], and a dispersion measure based on order metrics [5].

Here we describe a non-linear, decision tree classifier which uses the order metric statistics to
distinguish Zymurgy output of real documents from artificial documents and random Omega node

2

sets [3]. Classification trees were applied separately to two sets of 76 Omega node sets, including
Zymyurgy output from real and artificial documents, and entirely random nodes.

In many cases, average classification rates in cross-validation tests correspond to more than 70%
of the documents being correctly identified. In general, average misclassification rates when using

cross-validation remain under 40%. 10-fold crossvalidation was used to see if the same set of
classification variables could be found to be best in separate tests. Even though the very best
classification results for each set of 76 documents is not obtained using the exact same group of

classification variables, there are many options that produce good results.

We discuss the relative values of different metrics, including experimental order theoretical metrics

and more standard minimum path-based methods. While minpath is not recommended for many
reasons, the extra computational burden of the upper order metric over the lower order metric is

justified on the grounds of greater accuracy.

We conclude with a preliminary discussion about scoring methodology.

2 Background

As described previously [6], our work uses the Omega 2 ontology [9]. The Zymurgy system incor-
porates Omega 2 to create subsets Q ⊆ P of Omega 2 nodes, together with their Zymurgy scores,

which characterize a given input document. Our driving question has been, given such a ranked
set Q ⊆ P , what is its dispersion, or coverage, within Omega?

We address this in the following technical approach:

• Based on our prior analysis [6], we address Omega 2 primarily in its context as a class

hierarchy. We represent this as an ordered set P = 〈P,≤〉 of 121K nodes a ∈ P arranged over
29 gross levels.1

• We establish multiple metrics d : P 2 → R
+ on P to measure distances d(a, b) ∈ R

+ between

concepts a, b ∈ P . These are justified and discussed in detail elsewhere [5, 8], but include the
following:

Upper Order Distance: Measures the amount of the ontology above the two nodes a, b,

relative to the amount of the ontology above each one separately:

d∗(a, b) = | ↑ a| + | ↑ b| − 2| ↑ a ∩ ↑ b|,

where for a ∈ P, ↑ a : = {b ≥ a} is its “up-set”.

Lower Order Distance: Measures the amount of the ontology below the two nodes a, b,
relative to the amount of the ontology below each one separately:

d∗(a, b) = | ↓ a| + | ↓ b| − 2| ↓ a ∩ ↓ b|,

where for a ∈ P, ↓ a : = {b ≤ a} is its “down-set”.

Undirected Minimum Path: dp(a, b) is the minimum path length between a and b in P ,

where we take P as an undirected graph.

1We have noted elsewhere [4] that partial orders naturally admit to descriptions in terms of interval-valued levels,
as we reported for Omega [6].

3

• For a metric d and any subset of nodes Q ⊆ P , we can define its dispersion Dd(Q) as the
measure of the average distance d amongst all the nodes in the set. Formally we have

Dd(Q) : =
∑

a,b∈Q

d(a, b), D̂d(Q) : =
Dd(Q)

m2 − m
(1)

in both normalized and unnormalized form, respectively, where m = |Q| is the total number

of nodes in the set. The unnormalized form Dd(Q) ranges in [0, m2−m], while the normalized
form D̂d(Q) is relative to the size of the input set, and thus ranges in [0, 1].

• Given a metric d, define the segment [1] [[a, b]]d as the set of all nodes which are “between”
them in the metric sense:

[[a, b]]d : = {c ∈ P : d(a, b) = d(a, c) + d(c, b)}.

Note that only when the minimum path length metric dp is used does this translate into what

we mean by “between” in the ordinary sense of looking at a diagram of the ontology.

• Convexity is the idea that any nodes between other nodes in a collection Q ⊆ P are also

in that collection, so that a subset of nodes Q ⊆ P is convex if ∀a, b ∈ Q, [[a, b]] ⊆ Q. For a
metric d, we can then define Cd(Q), the convex hull of Q, by letting Cd(Q) be the function

Kd(Q) =
⋃

a,b∈Q

[[a, b]]d

when iterated to convergence [5].

So finally, assume a given input set of Omega nodes Q and a metric d. We will deal with its
normalized dispersion

D̂d(Q),

and call that its normalized hollow dispersion. This is in contrast to when we consider the
convex hull Cd(Q) of the node set, in which case we will refer to the dispersion

D̂d(Cd(Q))

as its normalized solid dispersion.

Concepts around these metrics can be difficult to understand at first. See further discussion and

examples below in Sec. 6.

3 Experimental Setup

Our experimental design is shown in Fig. 1, and now described here.

• A set of 135 input documents were identified by the sponsor, from a set of documents
collected by the Linguistic Data Consortium.2 Each file pertains to exactly one topic; while

we keep track of topcis, this notion is not used in our analysis of concept dispersion.

2http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC2005T16

4

Input

Documents

Omega 2

Z
y

m
u

rg
y

 Zymurgy

Concept

Sets

T

TaxPac

Artificial

Documents

Random

Concept

Sets

R

Artificial

Concept

Sets

A

Random

Selection

Artificial Document

Construction

Classifier
Order

Metrics

Figure 1: Experimental architecture.

• These are then run through Zymurgy to produce scored Zymurgy concept sets D.

• Additionally, we have an artificial document construction mechanism which creates ar-

tificial documents. To create the artificial documents, the average length of all the files
in the 10_TOPCS list was calculated along with the standard deviation in paragraph lengths.

Each paragraph of these files was added to a collection of paragraphs, and then 50 synthetic
documents were generated and assigned random topics, with size and number of paragraphs

drawn from the same distribution as the input documents. These artificial documents are
also run through Zymurgy to produce artificial concept sets A.

• We also have a random selection process to produce completely random concept sets R.
Each concept set has 10 concepts selected randomly from concepts occurring in documents
producing at least 10 concepts. The i’th concept in a random set is then the i’th concept of

some randomly selected source concept list, using a uniform distribution.

• All three kinds of concept sets are fed into our Taxonomy Package (TaxPac) [7], where

statistics shown in Table 1 are calculated. One additional variable is used, namely the number
of concepts used in the set, which is m above in (1). Zymurgy typically return many concepts

per document, weighted by significance, so that m ranges in {10, 11, . . . , 582} for one set
of documents. For many reasons, including tractability and significance, we selected for

m ∈ {2, 3, . . . , 10}.

• Finally, we build statistical classifiers on the output metric variables to distinguish real concept
sets D from random R and artificial A.

We performed two runs of 76 selected real input documents, each paired with 10 artificial documents
and 15 random node sets, yielding 25 total non-real node sets, or 32.9%, per set. Figs. 2 and 3 show

scatter plots of the decision variables, with points color-coded according to class membership for

5

Symbol Statistic Formula

nlch Size of lower convex hull |Cd∗(Q)|
lsdn Lower solid dispersion, normalized D̂d∗(Cd∗(Q))

lhdn Lower hollow dispersion, normalized D̂d∗(Q)
nuch Size of upper convex hull |Cd∗(Q)|
usdn Upper solid dispersion, normalized D̂d∗(Cd∗(Q))

uhdn Upper hollow dispersion, normalized D̂d∗(Q)

nc Number of concepts m

Table 1: Order statistics calculated for each concept set Q.

the two sets. It is clear that some of these variables are highly correlated, indicating that not all of

them provide independent information. Also, it is clear that some of the variables included in the
Figures are highly clustered around a single value (usdn, for example) with relatively few outlying

observations present. In general, it does not appear that the distribution of points between the two
sets of 76 documents differ in significant ways with the exception of a few outliers.

4 Decision Tree Models

Based on these results, we turned to non-linear classification systems, in particular a decision

tree or classification tree [10] to predict document identity for either real documents D, or the
combined category that includes generated (or synthetic) documents and randomly generated ones

N = A∪R. Classification trees are predictive models that seek to determine the value or identity of
a target item using a series of simple binary decisions. Classification trees are made up of branching

nodes, where a decision is made, and leaves, which indicate the value assigned to the target. In this
analysis, a branching node splits based on the value of one of the descriptor variables. Classification

is carried out by following the branches of the tree in an ’if - then’ pattern. Fig. 4 shown an example
using the single decision variable nuch for the case where nc = 2.

Fig. 4 indicates that the first split is carried out by asking if the value of nuch in a target document

is less than 17, if this is true, then the document is classified as real D. Otherwise, the rightmost
node in Fig. 4 is reached where the value of nuch for the target document is checked again. At

this node, if nuch is greater than 988 the document is classified as real; otherwise the next node is
reached. The process described can be followed for any other document until a leaf (and a class) is
reached.

Classification trees can grow to unruly (and not practically informative) sizes and are constructed
using a greedy algorithm with no guarantee of global optimality. Independent starts and cross-

validations were used to ensure robustness and help avoid locally optimal solutions.

Because it is not known beforehand which variables will result in the most accurate classification
of documents for the range of nc values from 2 to 10, all possible combinations of the six descriptor

variables of interest were used for every value of nc available. This means that a classification
tree is created using each one of the six descriptor variables at a time, then every combination of

two descriptor variables at a time and so on until all six descriptor variables are used in a model
simultaneously. The process of using multiple combinations of descriptor variables ensures that the

problem space is explored thoroughly and helps avoid convergence to a suboptimal solution.

6

Figure 2: Scatter plot from first run of 76 documents.

7

Figure 3: Scatter plot from second run of 76 documents.

Figure 4: Classification tree for the Example where only the nuch variable was employed and nc =
2.

8

Performance evaluation of the classification trees was carried out using 100 independently started
10-fold cross-validation runs for each of the 63 models under consideration. A 10-fold cross-

validation, divides the dataset into 10 mutually exclusive subsets with roughly the same size and
same composition. Then, each subset is used to test the classification tree obtained using the rest

of the data to build the model. The number of incorrectly classified documents in each test set
and every cross-validation can be used to obtain an error rate. In an effort to estimate actual

average performance for these models, mean error rates over the 10-fold partitions and the 100
independent starts are reported. All classifications trees shown in this document were fitted using

Matlab (2007).

Error rates (number of misclassified documents divided by the total number considered) produced
by classification trees can depend on the proportion of documents of each type that are available

(a tree will seek to correctly classify most of the documents of a category that dominates a given
training set). This leads to the question of how to correctly interpret results from a classification

tree.

To investigate this question, it is of interest to determine if the classification models created using
the six descriptor variables and decision trees are better than a classification method that assigns

document category simply as a function of the proportion of each class of document in the popula-
tion. This simple, or naive, classification approach based on population proportions can be thought

of as a lower bound on performance, since it requires practically no effort to implement and it does
not make use of any other characteristic of the data in order to make a classification.

To measure the effect that the classification trees have compared to the naive classifier, we use the

formulation of lift rate

L = 100

(

E − M

E

)

,

where E is the expected error rate for the naive classifier and M is the measured error rate obtained

with a given classification tree. L is maximized at L = 100 when M = 0, indicating a perfect
classifier. L = 0 indicates no lift, that is, the classifier did no better than random. Finally, L is

minimized at L = 100(1− 1
E) < 0 when M = 1. In our real runs, we determined that the expected

error rate overall is E = 0.5, while for the class of real documents D we have E = 0.329, and for

the class of non-real node sets N we have E = 0.671.

5 Classification Results

Complete classification results are very lengthy, as many models were run:

• For each of the two document sets;

• For each of the sets of node sets D (real node sets), N (non-real node sets), and D ∪ N (all

node sets).

• For each number of variables m ∈ {2, 3, . . . , 10};

• For each model, namely each non-empty subset of the six decision variables, or 26 − 1 = 63
models.

The lift rates for all of the resulting 2 × 3 × 9 × 63 = 3, 402 models are shown in Fig. 5, and are

documented completely elsewhere [3]. However, we can summarize the results as follows.

9

Figure 5: Lift rates for all classifiers.

m 2 3 4 5 6 7 8 9 10 Overall

Min -20.05 -15.10 -9.38 -20.13 -27.14 -23.03 -29.77 -22.85 -36.98 -36.98

Mean 20.64 21.10 17.54 15.28 24.76 18.65 21.56 13.48 17.21 18.91

Max 56.96 56.67 47.32 47.37 62.92 42.34 45.71 41.58 48.62 62.92

Std 14.35 13.62 9.75 12.55 16.12 10.69 12.04 12.86 13.56 13.37

Table 2: Lift rates for m ∈ {2, 3, . . . , 10} and overall.

For only 280 of the 3,402 classifiers, or 8.2%, are the lift rates negative. This indicates that the
classification trees provide superior average performance to the nave classifier and validates the

usefulness of classification trees for this particular problem.

Minimum, mean, maximum, and standard deviations of lift rates for m ∈ {2, 3, . . . , 10} and overall
are shown in Table 2, and then graphically in Fig. 6.

While mean lift rate is 18.8%, L is above 20% for most models, and there is a dramatic group
for the 28 classifiers with L ≥ 50. Table 3 shows the distribution of these classifiers by m and
the number of variables in their models. m = 2, 3, especially for only 1 or 2 variables, are easily

discounted. This leaves a strong result to favor m = 6, including the counts for the number of
times the decision variables appear.

The models for those 14 classifiers with L ≥ 50 and m = 6 are shown in Table 4. Fig. 7 then shows
these models using a concept lattice representation [2] of the logical dependencies amongst the
variables. The clear conclusion is that the key variables are usdn and nlch, that is, the normalized

upper solid dispersion D̂d∗(Cd∗(Q)) and the size of the lower convex hull |Cd∗(Q)|.

10

Figure 6: Min, mean, max, and standard deviation of lift rates by m.

m # Variables Count

2 1 4
2 2 1

2 3 1
3 3 1

3 4 3
3 5 3

3 6 1
6 3 1

6 4 5
6 5 6
6 6 2

Table 3: Count of the number of classifiers by number of concepts and decision variables for the
top 28 classifiers with L ≥ 50.

11

L nlch lsdn nuch usdn lhdn uhdn

62.92
√ √ √ √

60.00
√ √ √ √ √

59.11
√ √ √ √

58.27
√ √ √ √

57.92
√ √ √ √ √

56.16
√ √ √ √

55.89
√ √ √ √ √

55.83
√ √ √ √ √

55.29
√ √ √ √ √ √

55.26
√ √ √ √ √

52.82
√ √ √ √ √ √

52.76
√ √ √ √ √

52.13
√ √ √

50.05
√ √ √ √

TOTAL 14 12 9 14 6 10

Table 4: Models and lift rates for all classifiers with L ≥ 50, m > 3.

Figure 7: Concept lattice representation of the dependencies amongst the variables in the top 28

classifiers

12

d∗(·, ·) d∗(·, ·) dp(·, ·)
Mammal, Bird 2 6 2
Dog, Cat 2 2 2

Dog, Eagle 4 2 4
Dog, Platypus 3 2 2

Table 5: Metrics for select pairs.

6 Metrics: Discussion and Pragmatics

As remarked above, our methods are dependent on the various metrics, including the upper d∗,

lower d∗, and minimum path length dp. This can affect accuracy, interpretability, and (significantly)
computational performance. Additionally, properly understanding and interpreting especially the
new metrics can be a challenge.

While the undirected minimum path length dp is used commonly in ontology applications, some-
times in a weighted form, it is generally inadequate for a number of reasons. Additionally, the

nature of real ontologies as upper-rooted, and very widely downward branching, means that the
structure and distribution of the upper and lower distances d∗, d∗ can vary dramatically.

Here we discuss these issues in more depth, including examples and illustrations. We will conclude

that as a general matter, for both accuracy, interpretability, and computational performance rea-
sons, we need to use combinations of upper and lower distance d∗, d∗, while excluding minpath

distance dp.

6.1 Examples

First we illustrate and consider the nature of each of these metrics. Fig. 8 shows a simple ontology
fragment, including some slight multiple inheritance. Table 5 shows the distances between these

nodes according to all three metrics.

Animal

Mammal Bird

Dog Cat Robin EaglePlatypus

Figure 8: Ontology fragment for illustration.

As an illustrartion within Omega, Fig. 9 shows the top 5 Zymurgy scoring Omega concepts for
document 15. The nodes are adorned with their interval ranks, indicating their position midway

in the structure. Fig. 10 shows its upper convex hull Cd∗(Q), and Fig. 11 shows its lower convex
hull Cd∗(Q).

Finally, Fig. 12 shows the segments [[B, E]]d, [[B, G]]d, and [[E, G]]d for the Boolean 3-cube, using

13

[6,25]

[5,24]

[7,28]

[8,27]

[9,28]

Figure 9: Top 5 concepts for document 15.

the upper distance d∗ on the left, and the minpath distance dp on the right. In each case the convex
hull Cd({B, E, G}) is the union of these segments.

6.2 Order Metrics

First, the upper and lower distances measure significantly different properties. While the upper

distance d∗ cannot distinguish the pairs 〈Mammal, Bird〉 and 〈Dog, Cat〉 in Fig. 8, the lower dis-
tance d∗ indicates that 〈Mammal, Bird〉 are further apart than 〈Dog, Cat〉, which is semantically

appropriate. However, the lower distance d∗ is also not sufficient by itself, since it cannot distin-
guish leaves. In particular, it says that 〈Dog, Cat〉 and 〈Dog, Eagle〉 are the same distance, which

is clearly inadequate.

Note the dramatic difference between the upper and lower hulls shown in Figs. 10–11. This is due
to the vastly downward-branching nature of Omega, and indeed of most commonly used ontologies.

Consequently the upper segments and hulls are orders of magnitude larger than the lowers, as
shown in the nuch × nlch scatter plots in Figs. 2 and 3.

Since the upper and lower metrics are qualitatively different, but neither is sufficient alone, as a

general matter, it may be preferable to use them in combination, and we have begun to examine
this. On the other hand, if we were able to rely only on the lowers, this would be computational

preferable. See further discussion below.

6.3 Minimum Undirected Path Length Metric

Consider now the minimum undirected path length (minpath) distance dp. For the pairs 〈Mammal, Bird〉,
〈Dog, Cat〉, and 〈Dog, Eagle〉, the upper and minpath distances are equal. This is always the case

when P is a tree, and while in this case P is not a tree, still the multiple inheritance is not in-
volved for these particular pairs. But note in particular that this is not the case for the pair

〈Dog, Platypus〉, where the multiple inheritance occurs.

dp is inadequate in that like d∗ it also cannot distinguish the pairs 〈Mammal, Bird〉 and 〈Dog, Cat〉.
In fact, it is generally inadequate in that it simply has fewer distinguishing values. When our

hierarchy P is bounded, then either d∗ or d∗ can distinguish N − 1 values, for N = |P | is the total
number of nodes. But dp lives in a much smaller range, approaching N only when P approaches a

14

Figure 10: Upper convex hull Cd∗(Q).

15

Figure 11: Lower convex hull Cd∗(Q).

16

Figure 12: (Left) Segments in the Boolean 3-cube for upper distance d∗. (Right) Segments in the

Boolean 3-cube for minpath distance dp.

single linearly-ordered chain.

This is shown in the Table 5. It is also apparent in Fig. 12, where in each case the convex hull

Cd({B, E, G}) is the union of these segments. Note how the upper segments naturally focus on the
upward-branching properties, and in particular the segment [[B, G]]d∗ = {A, B, C, D, G} identifies
a non-trivial set above the nodes in question. But the minpath segment [[B, G]]dp

is the entire

structure P , since these are opposite pairs in the lattice. Again, minpath dp is simply insufficiently
distinguishing.

6.4 Computational Considerations

Computational performance varies dramatically for d∗, d∗, and dp. First, we conjecture that both

upper and lower segments are included within minpath segments, or formally

[[a, b]]d∗ ⊆ [[a, b]]dp
, [[a, b]]d∗ ⊆ [[a, b]]dp

.

The question is how much bigger, and we have evidence that it is much bigger, so that

|Cd∗(a, b)| � |Cdp
(a, b)|, |Cd∗(a, b)| � |Cdp

(a, b)|.

In fact, we have calculated minpath hulls sizes and computational times which are three orders
of magniture larger in a medium-sized (∼ 4K) ontology. As a general matter, we believe that
minpath hulls approach the size of the whole ontology. In particular, minpath hulls are not currently

calculable on Omega.

Fig. 13 shows computational times for upper and lower convex hulls on our research platform, a

64 bit Linux server with 48 GB RAM, 16 TB disk, and two quad core 2.8 GHz processors. On a
standard desktop, we observed run times about ten times longer.

6.5 Accuracy Considerations

So for computational reasons alone, we would wish to use only the lower order metric distance dl∗.
The question then becomes how this would affect overall classification accuracy.

Table 6 shows minimum, mean, maximum, and standard deviations of lift rates segregated by class

of models. The far left column shows results for all models which include both upper and lower

17

Figure 13: Lower vs. upper convex hull computational times.

Uppers and lowers All Just uppers Just lowers

Min -24.95 -36.98 -26.92 -36.98
Mean 19.59 18.35 14.81 13.23

Max 62.92 62.92 44.68 48.62
Std 12.26 13.13 14.48 15.51

Table 6: Lift rates for: (left) all models which include both upper and lower variables; (center left)

all models; (center right) all models including only upper variables; (right) all models including
only lower variables.

variables (i.e. including at least one of nuch, usdn and uhdn and also one of nlch, lsdn and lhdn).
Next to the right are all models all all forms. The next two columns show all models including only

upper and lower variables. These are then again shown graphically in Fig. 14.

The clear conclusion is that for accuracy reasons, upper and lower distances should be used in
combination. This is also born out by the arguments in Sec. 6.2 above, and the results shown in

Table 4, which greatly favored the variable pair usdn and nlch.

7 Towards Scoring

We conclude this draft with a very drafty discussion of the desire to move from a binary classifier

to actually producing a numerical score indicating to what extent a given node set can be clearly
seen to be in the real set D, the non-real set N , or perhaps less confidently in between.

7.1 Definitions

We assume that a decision tree has been formed and we can identify the l leaves of the tree uniquely

as {t1, t2, . . . , tl}. We have n instances I = {I1, . . . , In}, each of which is known to be in one of k

18

Figure 14: Lift rates for models by upper vs. lower.

classes: {c1, . . . , ck}. Let C(Ii) = cj denote that instance Ii is known to be in class cj.

Given one instance I ∈ I, exactly one of the tree leaves will be “triggered” by satisfying conditions

described by the non-leaf nodes of the decision tree. Call this leaf node L(I).

Given a particular leaf node ti, let Iti = {I | L(I) = ti}. Let |Iti| denote the number of instances
that trigger leaf node ti. Note that

∑

1≤i≤l |Iti | = n.

Given a particular leaf node ti, let CL(ti) = cj denote that tree leaf ti asserts all instances in Iti are

in class cj. Note that some of the Iti instances may be “correct” in that they are known to be in
class CT (ti). Let CIti = {I | I ∈ Iti and C(I) = CL(ti)} be the set of correct instances triggering

leaf node ti.

An obvious and simple method of assigning a confidence score for decisions by the tree is to say

that for a given instance I ∈ I, conf(I) = |CL(L(I))|
|IL(I)|

. That is, the confidence is the proportion of

all of the instances triggering a specific leaf that are correct relative to all of them that trigger the
leaf. Note that each leaf has a computable confidence score. Thus, two instances in the same class

may have different confidence scores.

Given a particular leaf node t, we call the conditions that trigger this node x, the number of correct
instances TP , and the number of incorrect instances FP (for true positives and false positives,

respectively). Note that TP = |CIt| and FP = TP − |It|. We can assign a probability estimate)
or confidence score as:

P (y|x) = TP/(TP + FP) (2)

where y is the outcome that an instance is correct. So, P (Y |x) is the outcome that an instance
is correct given that it triggers leaf node t. Let 〈TP, FP 〉 denote a scenario for a leaf. So we can

compute confidence by applying equation 2 to 〈TP, FP 〉.

19

7.2 Problems

It is generally accepted that the approach to confidence using equation 2 is not a good representative.
Indeed, 〈5, 0〉 and 〈500, 0〉 suggest different levels of confidence, yet equation 2 says they are the
same. There are many known strategies of correcting this deficiency. One such strategy is to apply

a Laplacian smoothing technique

P (y|x) = (TP + 1)/(TP + FP + C) (3)

where C is a prior probability of 1/C for each class.

When a dataset has an extreme imbalance among its class membership—such as 98% of the in-
stances in class one and 2% of its instances in class 2—this Laplacian smoothing may not be enough.

We need to weight estimates toward the minority class. We let m be a tunable parameter for the
amount of weighting toward the minority class. Let b denote the base rate of the majority class.

Then we can use
P (y|x) = (TP + bm)/(TP + FP + m) (4)

to reflect a confidence. It has been shown that for a fixed b, picking m so that bm = 10 works well.

7.3 Process

Given a decision tree T built from a training set Ir and a test set Is, we can build a scoring function

using either the instance set Ir or Is, although we would expect a more accurate (less likely to be
over-fit) scoring from the latter set.

References

[1] Bandelt, HJ: (1992) “Centroids and Medians of Finite Metric Spaces”, J. Graph Theory, v. 16:4,
pp. 305-317

[2] Ganter, Bernhard; Stumme, Gerd; and Wille, Rudolf, eds.: (2005) Formal Concept Analysis: Founda-
tions and Applications, Springer-Verlag

[3] Heredia-Langner, Alejandro; Joslyn, CA; White, Amanda M; and Paulson, PP et al.: (2011) “Analysis
of Zymurgy Dispersion Experiment”, PNNL Technical Report

[4] Joslyn, Cliff: (2004) “Poset Ontologies and Concept Lattices as Semantic Hierarchies”, in: Conceptual
Structures at Work, Lecture Notes in Artificial Intelligence, v. 3127, ed. Wolff, Pfeiffer and Delugach,
pp. 287-302, Springer-Verlag, Berlin, ftp://ftp.c3.lanl.gov/pub/users/joslyn/iccs04.pdf

[5] Joslyn, Cliff and Hogan, Emilie: (2010) “Order Metrics for Semantic Knowledge Systems”, in: 5th Int.
Conf. on Hybrid Artificial Intelligence System (HAIS 2010), Lecture Notes in Artificial Intelligence,
v. 6077, ed. ES Corchado Rogriguez et al., pp. 399-409, Springer-Verlag, Berlin

[6] Joslyn, Cliff and Paulson, Patrick: (2009) “Hierarchical Anlysis of the Omega Ontology”, PNNL Tech-
nical Report PNNL-19041

[7] Joslyn, Cliff and White, Amanda: (2009) “Taxonomy Package (TaxPac): An Experimental Mathemat-
ics Environment for Knowledge Systems Analysis”, PNNL Technical Report PNWD-4084

[8] Orum, Chris and Joslyn, Cliff A: (2009) Valuations and Metrics on Partially Ordered Sets, in: Discrete
Mathematics, http://arxiv.org/abs/0903.2679v1, submitted

[9] Philpot, Andrew; Hovy, Eduard; and Pantel, Patrick: (2005) “The Omega Ontology”, in: Proc. Ontolex
2005 - Ontologies and Lexical Resources, http://www.aclweb.org/anthology-new/I/I05/I05-7009.pdf

[10] Quinlan, J.R.: (1986) “Induction of decision trees”, Machine learning, v. 1:1, pp. 81-106

