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Abstmct- We are interested in improving risk and relia- 
bility analysis of complex systems where our knowledge of 
system performance is provided by large simulation codes, 
and where moreover input parameters are known only im- 
precisely. Such imprecision lends itself to interval represen- 
tations of parameter values, and thence to quantifying our 
uncertinay through Dempster-Shafer or Probability Bounds 
representations on the input space. In this context, the sim- 
ulation code acts as a large “black box” function f, trans- 
forming one input Dempster-Shafer structure on the line 
(also known as a random interval A) into an output random 
interval f(d). Our quantification of output uncertainty is 
then based on this output random interval. If some proper- 
ties o f f  (perhaps monotonicity or other analytical proper- 
ties) are known, then some information about f(d) can be 
determined. But when f is a pure black box, we must resort 
to sampling approaches. In this paper, we present the basic 
formalism of a Monte Carlo approach to sampling a func- 
tionally propagated general random set, as opposed to a ran- 
dom interval. We show that the results of straightforward 
formal definitions are mathematically coherent, in the sense 
that bounding and convergence properties are achieved. 

Keywords- Random sets, Dempster-Shafer theory, Monte 
Carlo sampling. 

I. INTRODUCTION 
We are interested in improving the risk and reliability 

analyses available for a certain class of technical systems.’ 
These systems, such as nuclear facilities, are characterized 
by a high complexity such that our knowledge of their 
behavior is available primarily through large simulation 
codes. Moreover, many of their input parameters may be 
known only imprecisely. 

Such imprecision lends itself to interval representations 
of parameter values, and thence to quantifying our uncerti- 
nay through Dempster-Shafer (random set) representations 
on the input space [20]. In this context, the simulation code 
acts as a large “black box” function, transforming an input 
random interval (Desmpter-Shafer structure on the line) 
into another. Our quantification of output uncertainty is 
then based on this output random interval. 

If some properties of the black box function (perhaps 
monotonicity, global bounds, or some other analytical 
properties) are known, then some information about the 
output random interval can be determined [l], [15], [21], 
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[22]. But when the function is a pure black box, we must 
resort to sampling approaches. 

Monte Carlo sampling has been used extensively in 
Dempster-Shafer theory. But to our knowledge i t  has been 
limited to situations where the computational complexity 
of random set structure resulted in sampling approaches 
being required for estimating the statistical properties of 
individual random sets or combinations of random sets, for 
example their individual expectations [5], [16], their Demp 
ster combinations [14], or more simply just their belief and 
plausibility measures [18]. 

In this paper we first outline the basic formalism of our 
approach to the use of Monte Carlo sampling to  approxi- 
mate the belief and plausibility measures of a random set 
propagated through a functional black box. We then show 
a bounding theorem which states that the resulting Sam- 
ple plausibility cannot overestimate the true output beliefs 
and plausibilities; and a convergence property stating that, 
given reasonable preconditions, both the sample plausibilty 
and belief converge to their true values in the limit of infinte 
samples. 

11. PROBLEM IIESCRIPTION 

A .  Notation and Preliminaries 
Let X := JRp,Y := lRq, and let D ( X )  := {A} C_ 

P ( X ) , D ( Y )  := { B }  C P ( Y ) ,  where P ( X )  is the power 
set of X,  be U-fields of nonempty, closed subsets of X 
and Y respectively. D ( X )  and D(Y) are thereby closed 
under complementation and countable union and inter- 
section [2]. Generally, let A C X , B  C_ Y mean that 
A E D ( X ) ,  B E D(Y). 

For two sets AI, A,, denote .41 o A2 := A1 n A, # 0, read 
as “A1 intersects A,)’; and AI I A, := AI n A, = 0, read 
as “A1 and A2 are disjoint”. 

Let f :  X H Y be a function measurable in D ( Y )  in that 

VA E D ( X ) ,  .f(A) E D(Y) 

VB E D ( Y ) ,  f-’l(B) f D ( X ) .  (1) 
Consider a class CX := {Aj} C_ P ( X )  on X ,  and define the 
induced class C y  = ~ ( C X )  := {f(Aj)} = { B k }  C_ P(Y) on 
Y ,  where f ( A )  := {f(z) : z E ,4}. 

Usually f takes a distinct input element A,  E Cx to a dis- 
tinct output element f(Aj) E C y .  However, it may be the 
case that 3A1, A,  E CX, f(A1) = f(Az) = Bk. Thus gen- 
erally 5 ICxI, and f partitions Cx via an equivalence 
relation denoted N ,  where A1 N A, := f (A1) = f(A2). 
Denote each equivalence class on Cx as [Bk] := {A, E Cx : 
f(Aj) = Bk}, and denote the partition CX/ N:= { [Bk]}. 
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The following lemma will be useful below. 
= (-1)””’’ (1 - Plx  (T)) . (9) 

A‘CA Lemma 2 VB c Y,f-’  (B) = f - ’ (B) ,  where (.) is set 
complementation. 
Proof: Vz E X,z E (2’ : f(d) E B }  - 2  $! (2’ : f(d) $! 
B } .  Also, recall that f - ’ (B)  = {z : f(z) E B}.  Therefore 

In this way, each of m x ,  Belx, and Plx  is determined by 
any Of the Others‘ 

Note that we can convolve the elements of the finite ran- 

f-’ (B) = {. # f-’ (B)} = {. $! {.’ : f(d) $! B } }  
{. : f(.) E B }  = f-’(B). = 

We are working with observed data, which generally 
comes in the form of vectors or bags (collections which 
may have duplicates), and not sets (which may not). Thus 
we tend to use vector notation somewhat analogously to 
set notation, where possible hopefully without confusion. 
For example, for a vector Z = (xi) , 1 5 i 5 n of size 
IF1 := n, denote z E 5 := &i,z = xi. For a vector Z, let 
set(F) C X be the set obtained be eliminating duplicates 
from 5, so that Iset(Z)l 5 n .  And let 6 = () be that vector 
such that n = 0. 

B. Random Sets and Dempster-Shafer Evidence Theory 
We begin by laying out the basic notation of random 

set theory [13], [17], which is mathematically isomorphic 
to Dempster-Shafer evidence theory [6] , [7]. 

Definition 3 (Fini te  Random Set)  Assume an evi- 
dence function (basic probability assignment) 
mx:  D ( X )  H [0,1] where mx(0) = 0 and CAEX mx(A) = 
1. Then let SX := {(Aj,mj) : mj > 0) be a finite ran- 
dom subset of X generated by m x ,  where Aj g XI m j  := 
m x ( A j ) ,  and 1 5 j _< N x  := ISXI. Denote the focal set 
FX := { A j  : m j  > 0}, where each A, is a focal element, 
and the suppor t  as 

dom set {(Aj,mj)} to derive the structure ({Aj}, {mj}) = 
(3, m), which is known as a Dempster-Shafer body of 
evidence [7]. In this way random set theory is isomorphic 
to Dempster-Shafer evidence theory [19]. 

C. finctionally Propagated Random Sets 
We consider f as a “black box”, and are intrested in how 

SX is propagated by f to Y .  
Definition 10 (Propagated Random Set)  Let Sy be 
the random set on Y induced by f and SX with focal set 
FY = {f(Aj)} = {Bk} C D(Y),1 I k I NY := 1Fyl 5 
Nx,  evidence function my: D ( Y )  H [0, 1) such that 

(11) 
0 

This definition has also been offered by Dubois and Prade 
[4], and is quite natural. First, it extends the case of stan- 
dard random variables to random sets. Then, it reasonably 
accounts for all the input evidence in virtue of N. 

Proposition 12 VBk E Fy, 

and plausibility and belief Ply , BelY. 

my(&) = mx(Aj). 

Proof: Trivial from (11). I 

comforting. 

A j  E [ B k ]  

The following conservation property is both useful and 

U(S) := U A j .  (4) Theorem 13 V B  C Y, 

A, € 7 ~  Ply(B) = Plx ( f - ’ ( B ) ) ,  Bely(B) = Belx ( j - ’ ( B ) ) .  
Proof: 
B k  o B, then VAj E [Bk], Aj 0 f - ’ (B) .  Therefore 

Consider a set B C Y .  For any Bk E Fy ,  if 

SX has the evidence measures belief and plausibility 
Belx, Plx: P ( n )  H [0,1], where VA 2 X 

Belx(A) = mj, Plx(A) = mj. (5) 
A j C A  AjoA Furthermore, there can be no other Ao 6 (UBkoBIBk]) 

with A0 o f-l(B), since otherwise there would be another We also have VA C X 
Bo = f(A0) with Bo o B. Therefore, in virtue of (12) and 
the fact that [ B k ]  E Fx- N is an equivalence class, we have PlX(A) = - Belx (4 9 Belx(A) = - plX 1 (6) 

Plx (f-’(B)) = mx(Aj) 
(7) Ajof-’(B) Belx(A) 5 Plx(A). 

P1 and Bel are fuzzy measures [23], and are thus monotone 
with mx(Aj)  - - 

A C A’ + (Plx(A) 5 Plx(A’),Belx(A) I Belx(A’)). 
(8) 

We also have the Mobius  t ransform 

mx(A) = (-l)lA-A‘lBelx-(A’) 
A‘CA 
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The belief result follows from (2) and (6): 

Bely(B) = 1 - Ply ( E )  = 1 - Plx  (f-’ (E) )  
= 1 - (1 - Belx (f-’ ( B ) ) )  

= Bel? (f-’ (B)) = Belx(f-’(B)) 

The result is illustrated in Fig. 1, showing all the rela- 
tionships among the various components. 

111. SAMPLING APPROACH 

We wish to characterize Ply and Bely in terms of Sx and 
f .  However, while we assume that we know SX completely, 
we will not know about the general structure of f  , but will 
only know some sample evaluations. 

A .  Observatzons zn Sample 
Assume that input points 2, E X, 1 5 a 5 n, are selected 

without replacement, and the function f evaluated to d e  
termine each ya := f(x,) .  Then let each s, := (zt ,  y,) be an 
observation, and S := {sa} = { (x,, y a ) }  the observation 
record. 

Let x E S denote that x has been observed in S: x E S := 
3 (zaj ya) E S, t = xa, and similarly for y E S. Since f is 
generally many to one, there may be points observed in the 
output which are mapped to by points in the input which 
are themselves not observed: 3y, E S, 32 E X,f(x) = 
y, and x # S. Furthermore, because the x, are selected 
without replacement, the collection of the 2, form a set of 
n distinct points. However, the collection of output points 
ya may contain duplicates, and is thus generally not a set, 
but rather a bag or vector. 

In this way sampled points necessarily may lose crucial 
information concerning the inverse relation f-’. But nev- 
ertheless they are all we have. So we must always clearly 
distinguish pairs (2, f (2)) which are functaonally related in 
f from pairs (z,,f(z,)) E S which have been actually ob- 
served “in sample”. 

Definition 14 (Observations i n  Sample) Denote 

S ( A )  := {x, E S : x, E A} 

as the set of x, values within a subset A X which have 
been observed in S. However, for a subset B C Y ,  the 
c_ollection of observed 31% output values is a vector, denoted 
S ( B )  := (ya E S : y, E B ) .  Define 

f-1 ( S ( B ) )  := {xa : ya E S ( B ) }  

as the inverse in sample of B: the set of input values 
actually observed in correspondence with the output values 

0 
Note that If-’ (s(B)) 1 5 n. Moreover, for a given output 
region B,  fewer input points may be present in its inverse in 
sample than are contained in the actual functional inverse 

S(B)  in the output region B. 

of the output points seen in B. And of course, these are 
always fewer than those in the actual functional inverse of 
the region B as a whole. 

Proposition 15 

7-1 ( s ( B ) )  c f-1 (set ( s ( B ) ) )  c ~ - I ( B )  c X .  
Proof: 
one. The second follows from the fact that S ( B )  

The first relation f6llows from f teeing many to 
B. 

An example is shown in Fig. 2 for Fx = {AI, Az}, A1 2 
{z1,22}, A2 2 ( ~ 3 ~ 2 4 )  and f(z2) = f ( 2 3 ) .  Assume an ob- 
servation record S = ( ( 2 1 ,  y1 = f(z1)) , (22, y2 = f’(z2))). 

Note that (23, f(x3)) has not been observed. Then for B 
as shown, we have S(B) = (yl,y2), and 

P ( S ( B ) )  = {21,52) 

[f-’ (set ( S ( B ) ) )  2 (21, Z2, X3}] 

[f-’(B) 2 {x1,x2,23,24}] x. 
B. Sample Plausibility and Belief 

Since we do not know f , therefore we cannot determine 
the output plausibility or belief directly. But we can pro- 
pose a “sample plausibility” and belief on Y as an  estima- 
tor. 

The sample plausibility is simply the input plausibility 
of those points which are seen in a sample. 

Definition 16 (Sample Plausibility) Given SX and S, 
let Fly: D(Y) H [0, 11, with 

Fly(B) := Plx (f-1 (“(B)) )  , B c Y. 
0 

In words, for a given-region B C Y of the output space, its 
sample plausibility Ply(B) is the plausibility in the input 
random set of the collection of the x values observed in 
association with whichever y were actually observed in B. 

It  is tempting to define the sample belief similarly 
as Belx f-’ S(B)  , but this is troublesome: since 

7-’ ( S ( B ) )  is a finite collection of points in X, there- 

fore there can be no Aj G j‘-l (,!?(€I)), and thus VB C 

X,Belx (f”’ ( $ ( B ) ) )  0. 

’Definition 17 (Sample Belief) Given Sx and S, let 
%ly:D(Y) H (0,1], with 

(- ( -  >I 

Instead, introduce the following from (6): 

G l y ( B )  := 1. - Fly (77). 

0 
It  must be emphasized thai ply and K l y  are actually 

not themselves plausibility and belief measures, but rather 
estimators or approximations of them. 
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Fig. 1. Relationships among the components of (13). 

f ' (set (S(B))) - - - - 

Fig. 2. Example of observations in sample. 

h 

Theorem 18 Fly is not a plausibility measure and Bely 
is not a belief measure. 

Proof: A simple, but extreme, counterexample will suf- 
fice. Consider a B E Y where B o Bk for some Bk, but 
g ( B )  = 8; in other words, there just aren't any sample 
points hitting B. So Fly ( B )  = 0, although Ply(B) > 0. 
NOW since $B)  = s', therefore S(B)  = (y l ,yz , .  . . ,yn), 
that is, the complete sample record. Thus fl' (g (B) )  = 

set ((q, 2 2 ,  . . . ,z,)) + 0, and G l y ( B )  = 1 - Fly (2) 2 0. 
So Fly ( B )  = 0 5 Gly ( B ) ,  violating (7) . Moreover, 
Fly ( B )  = GIy ( B )  only if Fly (B) = 1, which only oc- 
curs if VAj E FY ,3si E S, xi E Aj , which very well might 
not be the case. Therefore p ly  and G l y  cannot be plau- 
sibility and belief measures. 

IV. BOUNDING AND CONVERGENCE 
We first show a weak bounding result on sample plau- 

sibility, and then propose a stronger convergence result in 
the limit of infinite samples. 

A. Bounding 
It is intuitive that any sampling approach would tend to 

underestimate our uncertainty measure: since there will be 
points not observed, there may be focal elements not seen 
in the output, and thus no opportunity to add their masses 
into our estimator. And this does, indeed, prove to be the 
case for the sample plausibility. 

Theorem 19 &(B) 5 Ply(B). 
Proof: From (13) and (16), we need to show that 

PIX (7-1 ("B,)) 5 PIX ( P ( B ) )  

The result then follows from (8) and (15). 
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TABLE I 
EXAMPLE EVIDENCE MEASURE VALUES. 

B 
B’ 
B” 

PIY(B) Fly ( B )  Bely(B) g l Y ( B )  
1.0 0.5 0.8 0.2 
0.3 0.3 0.0 0.5 

h 

However, in general there is no relation between Bely(B) 
and either Bely(B) or even &(B). Consider the example 
in Fig. 3, showing the input random set 

S = {(Ai, 0.3), (A2,o.s) , (&I 0.2)). 

As in Fig. 2, a number of individual points in X are shown, 
and their functional images in Y .  In this case, only z2,z3, 

and 2 4  have been sampled. Also, f(s1) = f(22), SO that 
B2 C B1, whereas A2 I A l .  The resulting evidence mea- 
sures are shown in Tab. I for the two output sets B’ and 
B“ shown. We can see that 

Gly (B’) < Bely(B’), Gly (B”) > Bely(B”), 

g l y  (B’) < ply (B’) , G l y  (B”) > Fly (B”).  

This is a reflection of the sense in which plausibility is 
the “primary” measure in the (Bel, P1) pair, similar to the 
role of the possibility measure II in possibility theory, given 
the existence of the possibility/necessity pair (7, II). 

B. Convergence 
Despite the weak bounding result, there is a stronger 

convergence property: given reasonable assumptions, in the 
limit of an infinite number of sample points, both the sam- 
ple plausibility and belief approach their true values. We 
present the following propostion without proof, which is 
under development for a future publication (12). 

Proposition 20 Assume an input random set SI a func- 
tion f :  X +-+ Y which is measurable in the sense of (1) 
and appropriately continuous, and an observation record S 
with IS1 = n. Furthermore, assume that sampling of input 
regions is such that VA E D(X), in the limit of infinite 
samples A - S ( A )  is of measure zero. Then VB E D ( Y ) ,  

lim Fly ( B )  = Ply(B), lim G l y  ( B )  =i Bely(B). 
n-w n - w  

V. CONCLUSIONS AND FURTHER WORK 
We have demonstrated that Monte Carlo sampling of 

functionally propagated random sets is mathematically co- 
herent, in the sense that the obvious definitions lead to 
appropriate bounds and convergence. However, this is not 
to say that it is necessarily a useful method for the prob- 
lems we are interested in. 

We are currently also working on the following issues, 
which will be detailed in future papers: 

In our real problems, we work exclusively not with gen- 
eral random sets on X ,  but with functions mapping statis- 
tical collections of intervals and probability distributions 

on a moderately high dimensional space [20]. Thus we 
need to  translate these results into the more specialized 
cases first of general random intervals A [3], [4], (81, [9], 
[lo], (111, where X , Y  = IR, and the D ( X ) , D ( Y )  are Bore1 
sets; then to multi-dimensional random hyper-intervals 
where X = lRp again, but D ( X )  are pdimensional hyper- 
rectangles; and finally to  the hybrid case involving both 
random intervals and probability distributions. 

While the convergence result is important, of critical con- 
cern is the rate of convergence. And here we have cause 
for concern, especially given that IFx I grows exponentially 
with p .  We are thus actively considering a number of meth- 
ods to accelerate convergence. Some of these are general- 
izations to the random set case of traditional acceleration 
approaches, including stratified, importance, and sensitiv- 
ity sampling and approaches based on optimization of f .  
But others are unique to the random set approach, as they 
reflect the structural nature OF 3 ~ .  

Related both to the convergence rate and the amount of 
error present in any (probably necessarily severe) under- 
sampling, is the fact that  there are two different compo- 
nents to the underestimation of Ply(B): 
1. That resulting from undersampling of a particular in- 

put focal element A,. 
2. That resulting from f being many-to-one, so that input 

focal elements present in the inverse of B are not touched 
by the inverse in sample: in other words, there may be 
sample pairs (z,,y,) such that there exists other z’ # z, 
such that f(z‘) = yI, but (d, ut) is not in the sample record 
SI as discussed in Sec. 111-A. 
Note that while 1 is present in traditional Monte Carlo 
sampling, 2 is unique to the random set approach. 

Since our problems are mostly in the risk analyzis do- 
main, a true bounding result where some estimator Ply(B) 
was available with Fly(B) 2 Ply (B) would be truly useful. 
If such a measure weie moreover computationally tractible 
and quickly convergent to Ply(B), then the general ap- 
proach of propagating random intervals for risk analysis 
could be considerably more feasible. 

Finally, we have developed substantial experience with 
numerical implementations of the random hyper-interval 
case both for test problems and some simple real problems. 
We will be discussing these results in print, as they reveal 
empirical insights into the nature of these processes. 
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x; 

\ \  m2 = .5 

A3 
m, = .2 

Fig. 3. Example of a propagated random set. 
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