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Abstract
This report documents the program and the results of Dagstuhl Seminar 11371 “Uncertainty
modeling and analysis with intervals – Foundations, tools, applications”, taking place September
11-16, 2011. The major emphasis of the seminar lies on modeling and analyzing uncertainties
and propagating them through application systems by using, for example, interval arithmetic.
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Verification and validation (V&V) assessment of process modeling and simulation is increasing
in importance in various areas of application. They include complex mechatronic and bio-
mechanical tasks with especially strict requirements on numerical accuracy and performance.
However, engineers lack precise knowledge regarding the process and its input data. This
lack of knowledge and the inherent inexactness in measurement make such general V&V
cycle tasks as design of a formal model and definition of relevant parameters and their ranges
difficult to complete.

To assess how reliable a system is, V&V analysts have to deal with uncertainty. There
are two types of uncertainty: aleatory and epistemic.
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are NP-hard and only a formula using exponential number of ordinary linear programs is
known. The second fundamental problem, which is very difficult and still challenging, is
to find a tight enclosure of the optimal solution set. This becomes easy in the case of the
so called basis stability, i.e., there is a basis optimal for each realization of interval data.
Checking basis stability is also a computationally hard problem, but there are quite strong
sufficient conditions that may be utilized. Eventually, we state some open problems.

References
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3.7 Intervals, Orders, and Rank
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Intervals are ordered
Orders have intervals
Orders have ranks
Ranks are intervals

Intervals have order relations defined on them as an important operation. Also, partially
ordered sets (posets) and lattices have intervals within them as important sub-structures. In
traditional interval analysis, the set on which the intervals are drawn is the real numbers, a
special ordered set which is a total order; and the ordering relation used between these real
intervals is the “strong” interval order (one interval being entirely below another), in the
context of an overall Allen’s algebra.

But in our work in semantic databases and ontology management, it is the more general
cases which are demanded. Specifically: 1) the intervals in question are valued in a finite,
bounded, generally partially ordered set; and 2) when real intervals ARE used, the conjugate
endpoint product order and subset orders are far preferable to the standard strong order
(which isn’t even really an ordering relation anyway). The attendant issues have implications
for the foundations of interval analysis which we seek to explore with the group.

Depending on time, structure, and the interests of attendees, we can go into more or less
depth on the following.

We begin by describing our use of large, finite, bounded posets to represent taxonomic
semantic data structures for applications such as ontology clustering and alignment. We
then consider the challenges presented by their layout and display.

Our first challenge, the vertical layout of nodes, we have been working on for a while.
We observe that rank in posets is best considered as being valued on integer intervals. These
integer-valued rank intervals can themselves in turn be ordered (in the endpoint product
order), so that an iterative operation is available. Repeated application serves to identify
a privileged embedding of the poset to a total preorder preferred to reflect the underlying
partial order. We have results about how the height, width, and dimension of the poset
changes in repeated application, and prove that we do achieve a final embedding of the
original poset to a total preorder. In the process, results about measures of gradedness of
posets are also motivated.
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Our second challenge we are just beginning to explore, but we will present some preliminary
ideas for discussion. We seek to simplify the display of large posets (actually lattices in the
first treatment) when only a subset of nodes are specified by a user. A tremendous reduction in
complexity can be available when (poset) intervals among the target nodes are identified which
are disjoint (pairwise or moreso). The underlying mathematical representation suggested
is the graph of the intersection structure of poset intervals, that is, a generalization of an
interval graph to poset intervals. Cliques in this graph determine the number of total meets
and joins which need to be displayed in the reduced visualization, and thus the amount of
compression achievable. But, this approach requires us to have the ordering relation between
pairs of poset intervals, that is, to develop an Allen’s algebra generalized to poset intervals.

3.8 Interval Computations – Introduction and Significant Applications
Ralph Baker Kearfott (Univ. of Louisiana – Lafayette, US)
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In this tutorial, we first outline the historical motivations and early work in interval arithmetic,
then review basic interval arithmetic operations and their properties, including advantages
and pitfalls. We conclude with a variety of examples of successful application of interval
arithmetic.

Historical motivation and work includes
1931 — Classical analysis: Rosaline Cecily Young developed interval arithmetic to handle

analysis of one-sided limits (where lim inf f 6= lim sup f) [15].
1951 — Roundoff error analysis: Paul S. Dwyer developed interval arithmetic in the chapter

on roundoff error analysis in his numerical analysis text [3].
1956 — Calculus of Approximations: Warmus and Steinhaus developed interval arithmetic

to provide a sound theoretical backing to numerical computation [14].
1958 — Automatic error analysis: Teruro Sunaga developed interval arithmetic [11].
1959 — Automatic error analysis: Ray Moore developed interval arithmetic in a report

and dissertation to which most modern work on the subject can be traced [5].

Advantages of interval arithmetic include the ability to quickly compute mathematically
rigorous bounds on roundoff error and on ranges of functions, where computation of the
exact range is NP-hard. Disadvantages are that these bounds may be unusably pessimistic,
unless special algorithms are designed.

Current successful significant applications include the following:
A filter in branch and bound methods in leading commercial software, such as [9] (and

others).
Constraint solving and constraint propagation, as in [8, §14] and numerous other works.
Verified solution of ODEs, as in [1], [4], etc.
Computer-aided proofs, as in [13], [12].
Chemical engineering, as in [10].
PDE problems such as structural analysis with uncertainties [6], [7] or analysis of photonic

crystals [2].
Numerous others.
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