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Abstract

We describe a perspective on user-guided knowledge
discovery techniques in large data spaces based on
combinatorial algorithms rooted in order theory. In
general, we propose pursuing a class of methods based
on casting databases as ordered combinatorial data
objects equipped both with inherent semantics and
appropriate quantitative measures to support user-
guided discovery tasks such as search, retrieval, dis-
covery, anomaly detection, and linkage, with applica-
tions in intelligence analysis, homeland defense, com-
putational biology, and law enforcement.

Motivation

Consider the following collection of tasks in the ex-
ploitation of information resources and databases,
typically called Knowledge Discovery in Databases
(KDD) [12, 32]:

• Helping guide users to find meaningful connec-
tions in databases containing not just thousands
or millions of records (rows), but hundreds of dif-
ferent kinds of information (columns) being kept
track of in each record.

• Enabling search and retrieval from databases on
the basis of the semantics and meaning of the
information in the request, rather than (just) ex-
plicit textual matching.

• Allowing categorization and navigation in large
taxonomic catalogs available in biology, astro-
physics, law enforcement, national defense, and
homeland security.
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• Linking multiple existing ontologies and knowl-
edge bases according to their shared semantics.

• Identifying causal and structural connections
among agents in complex interacting networks.

• Finding anomalous connections in relational and
transactional data.

For many years, these tasks have concerned re-
searchers in the knowledge-based sciences such as bi-
ology and other areas requiring knowledge exploita-
tion such as homeland defense, intelligence analysis,
and marketing. And while many have approached
these tasks in many different ways, they are typically
grounded in multi-dimensional statistical and ma-
chine learning approaches, and generally ignore how
these high-dimensional, relational knowledge spaces
either are natively, or admit to descriptions in terms
of, large, finite, discrete structures with a decidedly
ordered nature.

We assert the significance of combinatorial order the-
ory for KDD, and in Order Theoretical Knowl-
edge Discovery (OTKD) have identified a collec-
tion of both particular mathematical techniques and
an overall problem-solving paradigm which we believe
can be instrumental in making progress in many of
these areas simultaneously. We aim to bring com-
binatorial and order theoretical approaches to KDD,
thereby seeking conceptual and mathematical unifi-
cation to fill the gap between discrete mathematics
and data mining.

One can ask “why now”, what is it about the cur-
rent situation which suggests such a move? First,
recent years have seen the emergence of new kinds of
data objects (such as large taxonomic ontologies like
the Gene Ontology (GO) [1] and the UMLS Meta-
Thesaurus [3]) as useful, interactive databases, rather
than laboratory experiments. And new mathematical
techniques such as concept lattices [13] are available
to provide order theoretical representations of rela-
tional data objects.
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Order theory [33], lattice theory [7], matroid theory
[40], Sperner theory [11], and related areas comprise
a robust area of discrete mathematics. But while
these mathematical techniques offer significant meth-
ods for KDD, as theories they focus on mathemati-
cal objects which have far more regularity and ele-
gance than typically available in “messy”, real-world
databases, and there is a corresponding lack of devel-
opments of the necessary combinatorial algorithms.
Conversely, while ordered structures abound in KDD,
which some exceptions [27] they are not generally ap-
proached from a strong mathematical basis.

Remarkable progress has been made recently in the
application of discrete mathematical techniques, pri-
marily in graph and network theory, to a wide range
of challenging problems in complex systems [30]. But
these have not had direct applicability in KDD, nor
have they focused on ordered combinatorial struc-
tures: ordered structures are not networks!

Combinatorial Data Objects

Central to OTKD is the representation of databases
and data objects as large, finite ordered, structures
we call combinatorial data objects (CDOs). Note
that CDOs can originate from quite different sources:

Native: Built explicitly by hand, and thus of mod-
erate size (≤ 106 nodes), typically used to model
conceptual spaces. Examples include:

• Taxonomic structures underlying ontologies
[1] cast as collections of partially ordered
sets (multi-posets) [23];

• Verb typing hierarchies in computational
linguistics [8];

• Object-oriented typing hierarchies and
other meta-modeling objects [3, 27] cast as
Directed Acyclic Graphs (DAGs), and thus
as posets; and

• Higher-order conceptual structures such
as semantic networks [37] and conceptual
graphs [35] cast as lattices of directed hy-
pergraphs [16].

Derived: Automatically induced from analysis of
other data objects, and can be very large. Ex-
amples include:

• Concept lattices derived from binary rela-
tional tables [13];

• Lattices of reconstruction hypotheses of re-
lational databases cast as irredundant cov-
ers of a space of variables [25];

• Lattices of hypothetical causal “masks”
over temporal or otherwise linearly ordered
data streams [25];

• Graphoid structures of Bayesian belief net-
works [4, 36];

• The partition poset to represent the block
structure of distributions of projected data-
base vectors [2, 20, 21]; and

• Cubic and Boolean lattices to represent join
spaces and projections of a given database
[6].

Equipped with Semantics

These ordered structures derive their native seman-
tics from their source databases, and perhaps addi-
tional semantics from the context of their combina-
torial relations.

• Semantics can be available at the level of the
nodes of the CDO, or at the level of the links
(relations) between them.

• Link type semantics typically involve the se-
mantic categories familiar to us from knowledge
representation, for example, inclusion, implica-
tion, subsumption (generalization, inheritance,
abstraction, or “is-a” links), composition (con-
tainment or “has-part” links), negation; or could
be ad-hoc to a particular source database.

• Typically, semantics are related to the properties
of the source data types as relational objects (for
example, scalar, vector, or tensor-valued; cate-
gorical, ordinal, or real-valued), or the units of
measure present.

• Even more significantly, native semantics are
typically represented by or derived from tex-
tual annotations, either from free text sources,
or from meta-data, keywords, categorizations, or
other semantic tags.

Equipped With Quantitative Measures

Since we use CDOs to represent databases, we seek
quantitative measures to help guide users to areas of
interest. Examples include:
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Combinatorial Measures: A novel set of ques-
tions arise when considering databases as com-
binatorial objects. Specifically, given large, real-
world, and decidedly “messy” combinatorial ob-
jects, how can we measure their quantitative
properties as a whole, and then the properties
of portions of the CDO and between multiple
portions of a CDO. Examples include:

• Generalized concepts of rank as vertical
“level” within a CDO.

• Generalized concepts of distances between
pairs of nodes or collections of nodes within
a CDO.

Statistical Measures: These are the class of quan-
titative measures most currently developed.
They are primarily related to classical statistical
measures, and are thus information-theoretical
entropies of one form or another, or are similar
measures within a broader generalized informa-
tion theory [19, 24, 26]. Examples include:

• Conditional entropies of graphical models
[?] and reconstruction hypotheses [25].

• Relative entropies in poset partitions [20,
21].

Tasks

These statistics, preferably when used together, allow
users to perform various operations with, within, and
among CDOs, for example:

User-Guided Discovery: Computer-assisted nav-
igation with and maneuvering within complex
CDOs, including search and retrieval, catego-
rization, and anomaly detection.

Construction: Abduction and induction of con-
ceptual structures such as ontologies and tax-
onomies from data.

Interoperability: The ability to merge, match,
compare, and link multiple CDOs in order to
establish interoperability amongst their target
databases.

Examples

Examples of some existing methods, techniques, and
applications within our broad perspective in OTKD
include:

Multi-Dimensional Link Analysis (MDLA):
Network representations of relational data as
binary graphical links are typically limited to
a single kind of connection (semantic relation,
link type). High dimensional data requires
the use of multiple link types [28, 37] (see
Fig. 1), and Multi-Dimensional Link Analysis
(MDLA) exploits the representation of pro-
jections of high-dimensional spaces as points
in a Boolean or cubic lattice; “views” of a
database as projected relational subsets; and
“chaining” operations as steps between views
in a knowledge discovery “trajectory” in these
ordered structures [17]. Joslyn and Mniszewski
[20, 21] are exploring the use of the partition
poset [2] to represent the extension of views by
a single dimension; and informational measures
in the partition poset (Fig. 2) to provide guides
to users to explore possible extensions. Pro-
totype implementations and demonstration of
these techniques has been made in information
analysis of terrorist networks [21, 39].
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Figure 1: Labeled network representations of multi-
dimensional relational data.

Anomaly Detection in Concept Lattices:
Formal concept analysis [10, 13] is an in-
creasingly exciting technology for representing
relational data (e.g. as shown in Fig. 3 [21])
using ordered structures (Fig. 4 [21]). The use
of FCAs for information analysis of terrorist
networks has been demonstrated [21, 39], and
Joslyn has proposed [18] extending rank and
distance measures in concept lattices to provide
a mechanism for anomaly detection in relational
data.

Reconstructibility Analysis: Klir [25] and others
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Figure 2: Measures in the partition poset (n = 8) for
link analytical chaining [20].
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Figure 3: A simple data relation [21].
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Figure 4: Concept lattice representation of Fig. 3 [21].

[5] have proposed the lattice of irredundant cov-
ers of a set (see Fig. 5) to represent the possi-
ble relations between the parts, cast as relational
projections, and the whole of a system of inter-
est. They use search optimized by conditional in-
formation (entropy) measures on these covers to
identify reconstruction hypotheses of relational
databases and thus induce causal and structural
models. This is somewhat in the spirit of hier-
archical log-linear modeling [29] and projection
pursuit [31] methodologies, and holds promise as
an MDLA technique.

abc

ab/ac ab/bc ac/bc

ab/c ac/b bc/a

a/b/c

Figure 5: The lattice of irredundant covers for n = 3.

Mask Analysis: Mask analysis [25] is a similar
technique to reconstructibility analysis where in-
stead of structural relations, generated models
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predict temporal dependencies of output on in-
put variables.

Graphical Model Identification: In the same
spirit, conditional independence structures
among collections of variables can be repre-
sented as lattices of graphoids [4, 36], and
conditional entropy measures used to search for
admissible and optimal Bayes net models [?].

Categorization in Poset Ontologies: Joslyn et
al. [22, 23] are considering the mathematical
properties of large ontologies, such as the GO,
cast as multi-posets. They have developed
methods to categorize large gene lists, anno-
tated into the GO, using quantitative scores
based on pseudo-distances between comparable
nodes (see Fig. 6 [22]), and are extending these
ideas to other rank-based measures of distance
between general pairs on nodes in posets [18].

GO:0003673 : Gene Ontology

GO:0008150 : biological process 26 8

 GO:0008151 :
cell growth and/or maintenance: 20 7, 97%

 GO:0008152 : metabolism: 8 6, 97%

   GO:0006139 : nucleobase,
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nucleic acid metabolism:  7 5, 54%

has-part

GO:0009058 :
biosynthesis: 68, 41%

 GO:0009059 :
macromolecule
biosynthesis:

32, 41%

 GO:0006412 :
protein biosynthesis:

14, 41%

GO:0006497 :
protein lipidation: 1 1, 41%

 GO:0019538 :
protein metabolism: 11, 41%

GO:0042157 :
lipoprotein metabolism: 14, 41%

 GO:0042158 :
lipoprotein biosynthesis; 6 4, 41%

GO:0006464 :
protein modification: 3 3, 41%

GO:0005575 :
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GO:0003674 :
molecular function

has-part
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GO:0016070 :
RNA metabolism: 2 2, 54%

GO:0006396 :
RNA processing :
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GO:0006401 :
RNA catabolism:

16, 10%

GO:0006397 :
mRNA processing:

13, 15%

GO:0008380 :
RNA splicing:

10, 18%

 GO:0006371 :
mRNA splicing : 5, 15%

GO:0006402 :
mRNA catabolism:

17, 5%

Figure 6: Scores in a poset ontology as used in the
POSet Ontology Categorizer (POSOC) [23].

Ontology Comparison and Interoperability:
To assist in automatic and semi-automatic link-
age of multiple knowledge structures, Joslyn [18]
has proposed the use of order-preserving maps
between multiple poset ontologies (for example
the GO and the Enzyme Commission database
[9]) and the induction of semantic similarities
on the basis of structural intersections and
rotations between poset ontologies (Fig. 7).

Text and Ontology Interaction: Verspoor et al.
[38] are experimenting with the interaction be-
tween ontological and lexical information as du-
ally ordered structures, deriving networks of
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Figure 7: Construction of order-preserving maps be-
tween poset ontologies [18].

lexical semantic relations as primarily shallow
forests from poset ontologies (Fig. 8). The goal is
to improve relation extraction from text, for ex-
ample using subsumptive templates, by exploit-
ing the rich semantic relations present in lexi-
cally equipped ontological structures.

Mathematical Treatment of Conceptual Graphs:
Where the kinds of ontologies discussed above
tend to be simple taxonomies (posets) equipped
with additional inferential mechanisms, more
complex knowledge objects like semantic net-
works and conceptual graphs (CGs) [35] have
a richer mathematical structure as lattices of
hypergraphs [16]. Some have considered the
relation of CGs to other structures such as
concept lattices [41], and there are tremendous
opportunities to bring a stronger mathematical
treatment to knowledge bases represented on
such a basis.

Structures of Random Sets: Finally, nonclassi-
cal information theories are becoming critical
technologies for uncertainty quantification in de-
cision support, characterizing knowledge bases,
and engineering modeling [19]. An emerging uni-
fying paradigm in generalized information theory
arises consistently with OTKD: that of statis-
tical measures on ordered combinatorial struc-
tures, specifically generalized probability distri-
butions on lattices [34]. Random sets, which
motivate Dempster-Shafer and possibility the-
ories, and generalize to imprecise probabilities
[14], are the case of a probability distribution on
the power set (see Fig. 9). When the power set is
cast as a Boolean lattice, the properties of finite
random sets can be characterized completely by
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Figure 8: Ordered lexical semantic networks derived from phrasally labeled poset ontologies [38].

the topological relations among classes of sets
(see Fig. 10) [15].
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Figure 9: A random set.

Combinatorial Challenges

Not only does order theory promise to provide KDD
with a set of critical tools, so KDD is challenging
order theory to consider a number of new questions.
In general, we can recognize a number of issues we
are pursuing here:

• Measures of distance between poset nodes; gen-
eralization of poset rank to an interval-valued
concept [18].

• Mapping Boolean to cubic lattice to represent re-
lational spaces; casting relational join as an op-
eration in a cubic lattice.
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Figure 10: Topologies of classes of random sets.
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• Efficient algorithms to calculate poset width.

• The role of matroid theory, ordered matroids,
and rank in matroids.

• Extensions of concept lattices to higher dimen-
sions.
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[33] Schröder, Bernd SW: (2003) Ordered Sets,
Birkhauser, Boston

[34] Smets, Philippe: (2002) Matrix
Calculations for Belief Functions,
http://iridia.ulb.ac.be/ psmets/MatrixRepresentation.pdf

[35] Sowa, John F: (2000) Knowledge Representation:
Logical, Philosophical, and Computational Founda-
tions, Brooks/Cole, Pacific Grove

[36] Studeny, Milan: (1994) “Structural Semigraphoids”,
Int. J. General Systems, v. 22:2, pp. 207-217

[37] Thomason, Richmond H and Touretzky, David
S: (1991) “Inheritance Theory and Networks with
Roles”, in: Principles of Semantic Networks, ed. JF
Sowa, pp. 231-266, Morgan Kauffman, San Mateo
CA

[38] Verspoor, Karin; Joslyn, Cliff; and Papcun, George:
(2003) “Gene Ontology as a Source of Lexical Se-
mantic Knowledge for a Biological Natural Lan-
guage Processing Application”, in: Workshop on
Text Analysis and Search for Bioinformatics (SIGIR
03)

[39] Voss, Susan and Joslyn, Cliff: (2002) “Ad-
vanced Knowledge Integration in Assess-
ing Terrorist Threats”, LAUR 02-7867,
ftp://ftp.c3.lanl.gov/pub/users/joslyn/knowint.pdf

[40] White, Neil and Rota, CG, eds.: (1986) Theory of
Matroids, Cambridge UP

[41] Wille, Rudolf: (1997) “Conceptual Graphs and For-
mal Concept Analysis”, in: Lecture Notes in Artifi-
cial Intelligence, v. 1257, pp. 290-303


