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Abstract

This paper presents a method to induce semantic tax-
onomies by applying the lattice theoretical technology of
Formal Concept Analysis to relations of predicates ex-
tracted from a natural language corpus. Our initial re-
search results are in support of a future overall methodology
for the semi-automatic construction of semantic hierarchies
from term relations extracted from text. We describe our for-
mal method for hierarchy construction, selection and pro-
cessing of a test corpus for extracting verb-noun pairs from
natural language, measurement and filtering of the resulting
verb-noun term matrices for density optimization, and look
at the resulting semantic hierarchies produced by FCA.

1. Introduction

The central mechanisms to represent organized knowl-
edge, and the cores of real-world ontologies, are seman-
tic hierarchies: mathematically ordered typing structures
relating terms or concepts of a domain within seman-
tic relations like subsumption (taxonomic, “is-a”, gener-
ality relations) and composition (meronomic, “has-part”,
part-whole relations). The vast increase of computa-
tional information in science has resulted in a prolifer-
ation of ontologies of increasing size, in areas ranging
from bioscience to the military and intelligence commu-
nities to the World Wide Web. Successful ontologies
like the GO (http://www.geneontology.org) and Wordnet
(http://wordnet.princeton.edu) have grown to be very large,
with over 20K and 150K nodes respectively.

The automated creation and management of large on-
tologies is thus a critical need for the knowledge sciences
[13]. Source information for ontology induction could be
user elicitation, structured data, or other sources, but one
prominent and obvious source is text. Ideally, lexical and
linguistic information can be gleaned from texts in a way

to automatically or semi-automatically determine subsump-
tive and meronomic relations among terms and concepts.

Research in ontology construction from text draws on a
number of strategies. Following the distributional similar-
ity hypothesis [7, 9] terms are semantically similar if they
share linguistic contexts like co-occurrence with the same
terms, or occur in the same syntactic relation to a term. Thus
agglomerative clustering [2] of terms can be accomplished
based on using similarity of term usage vectors capturing
the linguistic contexts of the term. Alternatively, particu-
lar phrasal structures can be identified that stereotypically
distinguish specific from general terms [8], and can be cap-
tured by schemata or templates such as “X, Y, and other Z”
(e.g. “Cats, dogs, and other animals”) [12].

Finally, methods from order and lattice theory [1],
specifically Formal Concept Analysis (FCA) [5, 6], can
be employed to discover inherent relations between objects
described through a set of attributes. FCA is a discrete math
method for representing the set of sub-relations present in
an overall binary relation (say, among lexical terms) in the
context of their hierarchical structure, and thus yields natu-
ral semantic hierarchies from term relations.

While FCA is being increasingly recognized as a canon-
ical tool for representing relational information in hierar-
chical structures and automatically inducing taxonomic on-
tologies from text [3], existing methods are still limited:

• There is no attention to the dependence of the qual-
ity of the induced ontology on the linguistic properties
of the text, e.g. the impact of lexical variation (differ-
ent words expressing similar meanings), or how much
redundancy and data density is required to produce a
non-trivial concept lattice.

• Focus is almost always on relations among words of
the same part of speech, ignoring relations that cross
parts of speech and thus the critical semantic relations
such as constraints on the classes of nouns which are
valid arguments to verbs.
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Dog Goat Horse Sheep
Name

√ √ √
Collar

√ √ √
Milk

√ √ √
Pat

√ √ √

Table 1. A formal context K.

• There is almost exclusive focus on unary predicates
(properties of objects), with higher order n-ary pred-
icates expressing critical semantic relations among
multiple objects collapsed to the simpler form.

Our approach extends the intuition of the distributional
similarity hypothesis to assert a Distributional General-
ity Hypothesis, that semantic generality of terms, as repre-
sented by hierarchical relations among them, can be deter-
mined from the analysis of their shared linguistic contexts.
In particular, to the extent that the more general a term is,
the more contexts it can be used in, then we aim to show
that the distribution of nouns with respect to the verbs they
are arguments of, and vice versa, is an important source of
information about term generality that can be used to con-
struct a semantic hierarchy of relations among terms.

This paper reports on some initial research results sup-
porting a future overall methodology towards the semi-
automatic construction of semantic hierarchies from term
relations extracted from text. Specifically, we describe our
formal method for hierarchy construction, selection and
processing of a test corpus for extracting verb-noun pairs
from natural language, measurement and filtering of the re-
sulting verb-noun term matrices for density optimization,
and finally look at the resulting semantic hierarchies pro-
duced by FCA.

2 Concept Lattices and Semantic Hierarchies

Our method for initial construction of semantic hierar-
chies is based on FCA, which we now very briefly describe,
see [5, 6] for complete details.

FCA casts Boolean matrices as formal contexts K :=
〈G, M, I〉, where G is a finite set of objects, M is a finite
set of attributes of those objects, and I ⊆ G × M is an
incidence relation, so that for g ∈ G, m ∈ M, 〈g, m〉 ∈ I
means that object g has attribute m. An example formal
context K is shown in Table 1.

Given a formal context K, FCA automatically constructs
all possible permutations of rows and columns to iden-
tify “maximal rectangles” of checkboxes, and then orga-
nizes these into a semantic hierarchy, a concept lattice
L = 〈P,≤〉, where P ⊆ 2G × 2M is a set of concepts
generated by I, so that for A ⊆ G, B ⊆ M, 〈A, B〉 ∈

P ⇐⇒ A = {g ∈ G : ∀m ∈ B, 〈g, m〉 ∈ I}
and B = {m ∈ M : ∀g ∈ A, 〈g, m〉 ∈ I}; that is,
each concept is a pairing of all objects A ⊆ G which
have exactly a certain set of properties B ⊆ M , and (im-
portantly) vice versa. The order ≤ on the concepts in P
is then 〈A1, B1〉 ≤ 〈A2, B2〉 iff A1 ⊆ A2. Necessarily
A1 ⊆ A2 ⇐⇒ B1 ⊇ B2 .

Fig. 1 shows the concept lattice L for a formal context K
shown in Table 1. L (also called a “Galois lattice”) repre-
sents all the embedded sub-relations present in the original
relation I, and thus an empirically derived taxonomy, du-
ally cataloging both the collections of objects which have
certain attributes and collections of attributes which hold
for certain objects.

Figure 1. Concept lattice L = 〈P,≤〉 of the for-
mal context K.

For any real matrix AN×M = [ai,j]Ni=1
M
j=1, let ‖A‖ :=∑N

i=1

∑M
j=1 ai,j . Then for a Boolean matrix BN×M with

bi,j ∈ {0, 1}, let D(B) := ‖B‖
NM be the density of B. Then

note the sensitivity of L on the density D(K). For example,
consider square matrices with N = M , and with no non-
empty rows or columns. Then D(K) is minimal at 1/N
if the rows and columns of K can be permuted to make a
diagonal matrix. But the resulting lattice L has no structure,
just a set of disconnected concepts. But if K is full so that
D(K) = 1 is maximal, the lattice has a single node. Thus
we generally desire intermediate densities D(K) to produce
optimal lattices L.

Specific object and attribute semantic hierarchies are im-
plied by a concept lattice. Observe that each object g ∈ G
and attribute m ∈ M has a unique concept node denoted
γ(g), μ(m) respectively. Taken separately, these form dis-
tinct object and attribute hierarchies according to a concep-
tual pre-order [10], where m1 ≤ m2 := μ(m1) ≤ μ(m2),
while dually g1 ≤ g2 := γ(g1) ≥ γ(g2), as shown in Fig. 2
for our example.

3 Method

Parse a corpus to produce a list V = {vi}n
i=1 of verbs

and O = {oj}m
j=1 of nouns. Let ci be the count (num-
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Pat
Collar

Horse Milk

Figure 2. Term hierarchies determined by the
conceptual pre-order of L.

cj 76 52 43 41
ci vi/oj Dog Goat Horse Sheep
82 Buy 26 23 17 16
38 Name 14 19 5
37 Collar 30 4 3
30 Milk 15 7 8
25 Pat 6 10 9

j 1 2 3 4
i vi/oj Dog Goat Horse Sheep
1 Buy 2 3 5 6
2 Name 8 4 14
3 Collar 1 15 16
4 Milk 7 12 11
5 Pat 13 9 10

Table 2. (Top) Noun, verb, and pair counts
cj, ci, and ck. (Bottom) Noun, verb, and pair
ranks j, i, and k.

ber of appearances in the corpus) of vi and cj be the count
of oj . Let V and O be sorted down so that v1 and o1 are
the most frequently occurring, and i and j are the verb and
noun ranks. Further assume that the corpus is also parsed
to produce a list P = {pk}l

k=1, pk = 〈vi, oj〉 of unique
noun-verb pairs appearing. Note that P is a binary relation
P ⊆ V × O, and l ≤ nm. Let ck be the count of the pair
pk, and the pairs P also be sorted down by count producing
the pair ranks k.

There is a mapping k �→ 〈i, j〉, defined as a vector func-
tion f : INl → INn × INm (where for any natural number
n, INn := {1, 2, . . . , n}), so that f(k) := 〈i, j〉. Further say
f1(k) := i, f2(k) := j, so that k, f1(k), and f2(k) are now
the pair, verb, and noun ranks.

As an example, consider Table 2 showing on the top pair
counts for a set of sorted noun and verb counts, and in the
bottom the same information for ranks. We have l = 16 <
(n = 5) × (m = 4) = 20. Table 3 then shows the mapping

k f1(k) = i f2(k) = j
1 3 1
2 1 1
3 1 2
4 2 3
5 1 3
6 1 4
7 4 2
8 2 1
9 5 2

10 5 4
11 4 4
12 4 3
13 5 1
14 2 4
15 3 2
16 3 4

Table 3. Noun and verb ranks as a function of
pair ranks.

k �→ 〈i, j〉.
Any subrelation ρ ⊆ P of the pairs determines a projec-

tion onto the sets of nouns, verbs, and pairs appearing in ρ.
So given such a ρ ⊆ P , let

ν := {i ∈ INn : ∃pk ∈ ρ, f1(k) = i},
μ := {j ∈ INm : ∃pk ∈ ρ, f2(k) = j},

Λ := {k ∈ INl : ∃pk ∈ ρ}
be the sets of indices of the verbs, nouns, and pairs, respec-
tively, appearing in ρ. Casting P and ρ as matrices, then ν
is the set of row indices, μ the column indices.

Let 1 ≤ N∗ ≤ N∗ ≤ n, 1 ≤ M∗ ≤ M∗ ≤ m be
upper and lower cutoffs on the ranks of verbs and nouns
being considered. N ′ := N∗ − N∗ + 1 ≤ N and
M ′ := M∗ − M∗ + 1 ≤ M are the total number of verbs
and nouns respectively, and denote N̄ = [N∗, N∗], M̄ =
[M∗, M∗]. Then construct the count matrix AN′×M ′ with
rows vi′ , 1 ≤ i′ ≤ N ′ for verbs and columns oj′ , 1 ≤ j′ ≤
M ′ for nouns, letting

ai,j :=
{

ck, ∃pk = 〈vi, oj〉
0, � ∃pk = 〈vi, oj〉 .

Note that i′, j′ are the indices in the matrix A constrained
by the selection of N̄, M̄ to reference some absolute ranks
i, j. It follows that

ν = {N∗, N∗ + 1, . . . , N∗ − 1, N∗} ,

μ = {M∗, M∗ + 1, . . . , M∗ − 1, M∗} .
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j′ 1 2 3 4
j 1 2 3 4

i′ i vi/oj Dog Goat Horse Sheep
1 2 Name 8 4 14
2 3 Collar 1 15 16
3 4 Milk 7 12 11
4 5 Pat 13 9 10

Table 4. Rank matrix AN′×M ′ .

The count matrix A generates the Boolean matrix
BN′×M ′ by

bi,j :=
{

1, ai,j �= 0
0, ai,j = 0 .

To ease notation, we will say pk ∈ B to mean that ∃i ∈ ν
and ∃j ∈ μ such that pk = 〈vi, oj〉; that is, for the verb vi

and noun oj , the pair pk = 〈vi, oj〉 appears in the corpus.
To continue our example, let N̄ = [2, 5], M̄ =

[1, 4], so that N ′ = M ′ = 4, yielding A as shown
in Table 4, and B as the formal context K back
in Table 1. We then have D(B) = 75%, Λ =
{1, 4, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16} ⊆ IN16.

As can be seen in Table 4, in this formulation, whereas
the verb indices i and noun indices j are constrained so that
i ∈ ν, j ∈ μ, the pair indices k for which pk ∈ B can
be distributed anywhere in INl, so that Λ ⊆ INl is some
arbitrary subset. One might imagine that the k ∈ Λ are
relatively low and contiguous in INl, with maxk∈Λ ∼ ‖B‖.
In our test corpus, we have seen in practice that this is not
the case at all.

So given a corpus, a relation extraction method, and a
selection of noun and verb ranks N̄ , M̄ , resulting densities
D(B) may or may not be appropriate to generate meaning-
ful concept lattices. To the extent that B is dense, the ranks
k of pairs might be expected to be distributed according to
f1(k)× f2(k), the product of the noun and verb ranks, as is
the case in Table 2. This observation brings us to consider
some filtering methods which constrain Λ to some subset
Λ′ ⊆ Λ related to the products of these ranks:

1. No Restriction: Let Λ′ = Λ.

2. Max Row/Column Rank: Let
Λ′ = {k ≤ max(N∗, M∗)}.

3. Max Row/Column Rank Product: Let
Λ′ = {k ≤ N∗M∗}.

4. Row/Column Rank Product: Let
Λ′ = {k ≤ f1(k)f2(k)}.

5. Row/Column Rank Max Squared: Let
Λ′ = {k ≤ [max(f1(k), f2(k))]2}.

Dog Goat Horse Sheep
Name

√
Collar

√
Milk
Pat

Dog Goat Horse Sheep
Name

√
Collar

√
Milk

√ √ √
Pat

√ √
Dog Goat Horse Sheep

Name
√ √

Collar
√ √

Milk
√ √ √

Pat
√ √ √

Table 5. B produced from Λ filtering methods
2 (top), 4 (center), and 5 (bottom).

6. Max Row/Column Rank Max Squared: Let
Λ′ = {k ≤ [max(N∗, M∗)]2}.

Continuing our example, only methods 2, 4, and 5 above
produce a Λ′ ⊂ Λ (this is not true in general), and these are
shown in Table 5. Fig. 3 shows the resulting concept lattices
for Λ′ determined by methods 4 (left) and 5 (right).

4 Test Corpus Selection and Processing

Optimal density attainment for the FCA methodology for
semantic hierarchy calculation depends on relational redun-
dancy in the input matrices, that is, row terms which have a
moderate amount of overlap with column terms. Thus our
goal in a test corpus selection is that it be neither so small
that terms only pair individually, nor so complex that ei-
ther syntactic structure or shared linguistic context cannot
be identified.

We selected the TASA corpus1 [14], a carefully con-
structed corpus of samples of texts used in schools and col-
leges in the United States. This corpus was originally col-
lected to estimate the frequency of words encountered by
school-age American children. It consists of 37,651 docu-
ments, just over 12 million word tokens, and 92,409 word
types (cf. the British National Corpus with over 315,000
word types).

The rationale behind this selection is that (a) the size of
the vocabulary is smaller than in generic English text, (b)
the size of the corpus is adequate to contain adequate vari-
ation in the usage contexts of individual terms, and (c) the
grammatical complexity is likely to be simpler than in other

1http://www.tasaliteracy.com/wfg/wfg-main.html
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Figure 3. Concept lattices produced from fil-
tering methods 4 (left) and 5 (right).

corpora, due to its orientation to younger readers.
The impact of these corpus characteristics for this ex-

periment is that we can expect reliable parse analysis of the
text, and we can expect that an individual verb will co-occur
with a variety of nouns while still containing sufficient lexi-
cal redundancy to provide evidence of the usage patterns of
specific terms.

To process the text, we employed the Stanford Parser
[11], a program that analyzes the grammatical structure of a
sentence. This parser includes functionality to produce the
dependency structure of the sentence, typed by grammatical
role. So, for instance, for sentence (1)

(1) He collects small crocodiles from
the wild.

the dependency relations identified by the parser are:

nsubj(collect-2, he-1)
amod(crocodile-4, small-3)
dobj(collect-2, crocodile-4)
det(wild-7, the-6)
prep_from(collect-2, wild-7)

where the relational predicate nsubj stands for nominal
subject, amod for adjectival modifier, dobj for direct ob-
ject, det for determiner, and prep_from for a “from”
prepositional relation. The numbers -d attached to each
word represent the position of the word in the sentence. We
remove these positional markers, and only keep the nsubj
and dobj relations as we wish to focus on verb-noun pairs.
Thus for sentence (1) we extract two (verb, noun, relation
type) triples:

(collect, he, subject)
(collect, crocodile, object)

We parse the complete TASA corpus using the Stan-
ford Parser, post-process each parsed sentence in the cor-
pus as indicated above, and count the number of occur-

Rank oj cj vi cj pk ck

1 person 376115 be 294904 be thing 43258
2 thing 181544 have 96097 be person 27307
3 people 141553 say 47230 have person 16851
4 time 9311 make 39502 say person 13685
5 way 8501 see 34007 see person 13008
6 day 6781 take 31198 know person 11561
7 part 6653 do 31077 think person 8975
8 some 6049 go 26222 go person 8596
9 water 5484 get 24511 be people 8499

10 something 5328 know 22593 do person 7949
11 child 5028 come 22333 have people 7794
12 mother 4990 use 20814 want person 7697
13 kind 4856 find 19910 tell person 7569
14 word 4849 give 19729 do thing 7296
15 food 4749 call 19157 get person 6741
16 all 4734 tell 18280 find person 5234
17 place 4545 want 15762 take person 5187
18 father 4324 think 15296 look person 4969
19 boy 4064 look 15060 make person 4716
20 problem 3928 need 11242 come person 4226

Table 6. Top 20 nouns (left), verbs (center),
and pairs (right) in test corpus.

rences of each (verb, noun, relation type) triple in the cor-
pus. We store each unique triple and its frequency count in
a database that will then form the input to the FCA analysis.

For our basic analysis, we ignore the relation type and
merge subject and object occurrence counts together prior
to analysis. Additionally, we merge pronoun references as
the semantic distinctions between them are not important
for the purpose of this analysis. Specifically, we map all
occurrences of:

• The words “he”, “you”, “I”, “she”, “one”, “who”, and
“man” to “person”;

• The words “they” and “we” to “people”; and

• The words “it”, “that”, “this”, “what”, and “which” to
“thing”.

This transformation will result in a somewhat denser ma-
trix around particularly common words, while retaining the
semantics implied by the pronouns.

The natural language processing described above results
in a database of n =43,702 nouns, m =18,841 verbs, and
l =541,146 noun-verb pairs. Tables of the top 20 nouns,
verbs, and pairs is shown in Table 6. The total matrix is
thus very sparse, filling only .07% of the approximately 823
million available cells.

5 Contexts and Lattices

We now show a partial analysis of some of the formal
contexts and concept lattices available within this frame-
work. In particular, in this paper we focus only on the top
50 square sub-matrices ρ ⊆ P for N̄ = M̄ = [1, N∗] =
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[1, M∗], N∗ = M∗ ∈ IN50. Density calculations for these
contexts are shown in Fig. 4. The top curve shows method
1 (no filtering, Λ′ = Λ), revealing that the upper-left cor-
ner of the matrix with low i and j is very dense, dropping
to only 94.1% density for N∗ = M∗ = 50. The results
for methods 3 and 6 are identical to each other in this case,
since these would vary only for rectangular matrices.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49
Noun/Verb Rank Cutoff N* = M*

D
en

si
ty

D
(B

)

No filtering Method 2 Method 3 Method 4
Method 5 Method 6

Figure 4. Densities for square matrices B
with N̄ = M̄ = [1, N∗] = [1, M∗].

Space precludes a very detailed discussion of the den-
sity results, but inspection reveals that methods 2 and 4
produce matrices and lattices which are too sparse, while
those from methods 3 and 6 are too dense. While in practice
the criteria for optimal density requires more analysis, the
row/column rank max squared approach (method 5), where
k ≤ [max(f1(k), f2(k))]2 = max(i, j)2, produces quite
good results.

The main example considered is shown in Fig. 5, for the
square context determined by N̄ = M̄ = [1, 37] and filter-
ing method 5. The resulting verb and noun taxonomies are
shown in Fig. 6. It reflects all of the the dual subsumption
relations present among the 37 nouns and verbs considered.

The most important factor to be taken into account when
interpreting the resulting lattice is the extensional nature of
the subsumption relations represented in the context K. For
example, in the upper left of Fig. 5, “come” and “go” are
asserted to be more general verbs than “get”. Tracing down-
wards from “get” and listing the nouns encountered, we can
see that the noun set, called the extension, is { home, peo-
ple, person }, while that for “come” and “go” is { home,
people, person, thing }. In other words, “come” and “go”
are paired with all of the verbs that “get” is, plus some ad-
ditional ones.

This expresses the semantics of class inclusion by exten-
sion: a class (a verb, in our case) is more general than an-
other if it holds for strictly more objects. And dually, an ob-
ject (a noun, in our case) is more general if it holds for more
verbs (if its intension is larger). This is the inherent Leib-
nizian semantics of FCA, reflecting the generality of objects
and attributes in terms of dual inclusions of extensions and
intensions. While other semantics of subsumption are avail-
able and sometimes desirable in knowledge systems, this
semantics is also fundamental and necessary.

As another example within the lattices available, Fig. 7
shows the lattice for N∗ = M∗ = 16 on the left, and
N∗ = M∗ = 17 on the right, both with filtering method
5. Moving from 16 to 17 involved bringing in the noun
o17 =“place” and the verb v17 =“want”, and the new pairs
shown in Table 7. “Want” introduces no new information,
adding in to the large block of verbs associated with the
noun set o1−3 = { person, people thing }. But note the in-
troduction of “place” as a new object in the lattice, a special-
ization of “thing”, and how the additional pairing of “take”
now with “place” p76 removes it from being a sub-class of
the “tell” block to being its own “top-level” verb. These are
the kinds of changes introduced both from changing matrix
size, and from changing filtering methods for the same un-
derlying corpus and extraction methodology.

Figure 7. Lattice for N∗ = M∗ = 16 (left), and
N∗ = M∗ = 17 (right), both filtering method 5.

6 Discussion and Future Work

The work presented here represents a very first report of
our attempt to make a systematic analysis of the properties
of semantic hierarchies produced by a pure FCA approach
in the context of paired term extraction from a corpus. It
is obvious that a more thorough analysis of the properties
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Figure 5. Concept lattice for N̄ = M̄ = [1, 37], and filtering method 5.

Verb

Learn Put
Come

Go
Work Do Live Grow

Get

Ask
Know

See

BeTakeUse HaveSay

Bring Move Leave Mean
Hear Keep Feel Like

Begin Help Show Need
Look Think Want Tell

Call Give Find

Make

Noun

Person ThingPeople Plant System Money Father

Home Child Hand
Day
Way

FoodWorkLife Mother

Group Animal
Number Idea

ProblemOther Most
Today Year
Name Boy
All Word
Kind Part

Place

Figure 6. (Top) Verb taxonomy. (Bottom) Noun taxonomy.
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k j oj i vi

12 1 Person 17 Want
49 3 Thing 17 Want
76 17 Place 6 Take
87 17 Place 1 Be

182 2 Thing 17 Want

Table 7. Pairs introduced when moving from
N∗ = M∗ = 16 to N∗ = M∗ = 17.

of the resulting contexts and lattices, as a function both of
context size and filtering approaches, is required.

Additionally, exploration of non-square contexts and
contexts which are not strictly in the upper-left of the main
matrix (that is, for which N∗, M∗ �= 1) are also necessary.
In particular, density falls off dramatically as N∗, M∗ grow,
and there will likely be very interesting semantic structure
represented by these noun-verb combinations away from
the most common.

The general issue of sensitivity to corpus selection and
NLP techniques employed is also quite a large one. In par-
ticular, in this analysis it can be seen that bothnsubj (nom-
inal subject) and dobj (direct object) relations are present
in our contexts. Separate analyses for each of these verb-
noun pairings is also in order, as well as noun-adjective
pairs.

The kinds of extensional, subsumptive hierarchical re-
lations produced in FCA need not necessarily map well to
our linguistic senses of generality, or the semantics of “is-a-
kind-of”. That said, it is clear from our analysis that in fact,
more general nouns and verbs do rise to the top of their re-
spective hierarchies. For example, while it is not true in
context 37, by the time we reach context 50, for filtering
method 5, “be” is at the top of the verb hierarchy, while
from the beginning our pronominal nouns “person”, “peo-
ple” and “thing” dominate the top of the noun hierarchy.
These are all expected.

Finally, it is clear that for all the formal strengths pro-
vided by this methodology, evaluation and interpretation
are central to its success and furtherance. We intend to
bring this work fully into the context of the ongoing efforts
within the ontology community to compare semantic struc-
tures against each other for validation [4], for example by
developing valid measures to compare our generated tax-
onomies against standards semantic taxonomies.
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