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Summary

While topological methods are gaining prominence in

other areas of data analytics [1], there is only sporadic

attention to the topological roles played by specific graph

structures, including vertices, edges, and cliques [3, 4].

We describe a class of measures on the clique (flag) com-

plex of a network based on the local topological structure

surrounding the multidimensional faces, and the role they

play within the the overall graph structure. This repre-

sentation of a graph as a topological complex admits an

Alexandroff topology, and the dimensions of the local ho-

mology groups of neighborhoods of faces are computable

as measures on nodes, edges, or any other higher-order

cliques. Their propertries are considered and compared

to other network measures both on the corresponding con-

tracted neighborhoods in the graph, and in consideration

of the planarity of the underlying graph. Examples are

provided for both standard test and random graphs. We

conclude with a couple of analytical results.

Local Homology on Flag Complexes of Graphs

For an undirected graph G = 〈V, E〉 on a finite set of

vertices V with edge set E ⊆ V 2, its flag complex X is a

collection of nonempty subsets F ⊆ V where F ∈ X if and

only if F is a clique in G. Each F ∈ X is a k-dimensional

simplex or face in X , where k = |F | − 1. X has the

Alexandroff topology, whose open sets are arbitrary unions

of “stars” ?(F ) = {G ∈ X : F ⊆ G} for F ∈ X . We also

have the closure cl(F ) = {G ∈ X : G ⊆ F }. In general for

any set of faces, Y ⊆ X , the star, ?(Y ), is the subset of

X containing Y and the star of each of its elements. We

similarly define the closure of any set of faces. For each

set of faces Y ⊆ X , define the 0-neighborhood of Y as

N0(Y ) = ?(Y ) and for each k > 0, the k-neighborhood as

Nk(Y ) = ?(cl(Nk−1(Y )). For every open subset, Y ⊆ X ,

we introduce the measure LHj(Y ) : = dim(Hj(X ,X\Y )).

For j ≥ 0 LHj(Y ) is the j’th local Betti number of the

space (a cell complex) produced by taking the quotient

of X by X \ Y , collapsing everything outside of Y to a

single point.

Fig. 1 shows an example, where on the left a graph

on 7 nodes has the flag complex X shown with a

tetrahedron, two triangles, and an edge as maximal

faces. N0(cl({A, K})) is shown in green (the red

points and edges are excluded), and the quotient space,

X / (X \ N0(cl({A, K}))) is on the right. Here we have

LH1(N0(cl({A, K}))) = 1: focusing on N0(cl({A, K}))

yields a single loop (shown), in that the points E and C

are separated from V, T1, and T2. This is not the case, for

example, with LH1(N0({A, V })) = 0, since it sits on the

boundary and does not divide the space.

Figure 1: Example (left) flag complex of a graph and (right)

the cell complex produced by focusing on the 0-neighborhood

of the cl({A, K}).

Fig. 2 shows an example over a graph of USA borders:

two states are connected when they have an adjoining

border. As a flag complex, there is one maximal tetra-

hedron and one maximal edge, otherwise maximal trian-

gles. The top and bottom show LH1 and LH2 of the

0-neighborhoods of all faces, as identified. We observe

that LH1 serves to identify cut faces and cuttable regions;

while LH2 serves to identify the border, including the four

corners, which is measured as part of the border due to

its high internal connectivity.

Observational Comparison With Network Measures

While comparing LH with vertex and edge measures used

in network science is straightforward, to do so for higher

dimensional faces we build a new face contracted graph,
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Figure 2: LHk measures over the 0-neighborhoods of an

example flag complex. (Top) LH1 = 0 (magenta), LH1 = 1

(blue); (Bottom) LH2 = 0 (magenta), LH2 = 1 (blue).

GF , in which vertices of F ∈ X are replaced by a single

vertex, vF , which will be adjacent to the union of the sets

of neighbors of vertices in F that remain in GF . For any

graph measure g (e.g. centrality), we let g(F ) := g(vF )

as computed in GF , noting that this will not alter the

computation of any network measures on vertices.

We used NetworkX [2] and wrote a Python library

[5] to calculate LH1(N0(cl(F )) on all faces, F , of (1)

the Zachary Karate Club social network (34 vertices, 78

edges); (2) a synthetic Erdős-Rényi (ER) graph (40 ver-

tices, 146 edges); and (3) a synthetic Barabási-Albert

(BA) preferential attachment graph (40 vertices, 144

edges). Fig. 3 shows select scatter plots comparing LH1

with centrality measures and clustering coefficient (CC)

for the Karate club. We observed strong positive correla-

tion between LH1 and a number of centrality measures,

and strong negative correlation with the local CC.

Analytical Results

We also have some analytical results which bolster our

observations above. First, we have proved [4, Thm. 12]

that when X is an abstract simplicial complex (as all

flag complexes are), and connected, then for a face with

N0(F ) ⊆ X , LH1(N0(F )) + 1 is an upper bound on the

number of connected components of X \N0(F ); and when

H1(X ) is trivial (the usual, global homology), that upper

bound is attained. Thus we have LH1(N0({v})) = C −

1, where C is the number of connected components in

the subgraph of G induced by the neighbors of v (not

including v itself). This is visible in Fig. 2 for the NY and

NH vertices and the NH-ME edge: with LH1(N0(F )) =

1, their removal splits the local vicinity into 1 + 1 = 2

connected components; and these reach the upper bound

since the (global) H1 = 0.
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Figure 3: Scatter plots comparing network measures with

LH1 for the Karate network.

We have also found a functional relationship between

CC and LH1(N0({v})). If G is planar, then the number

of triangles incident to v is bounded by a linear function

of the number of neighbors of v. This allows us to prove

dv − 1 −
dv(dv−1)CC(v)

2 ≤ LH1(N0({v}))

≤ dv − 1 − dv(dv−1)CC(v)
6 ,

where dv is the degree of v and CC(v) is its clustering

coefficient. The lower bound is true for any simple graph

(i.e., not necessarily planar), but a similar upper bound

cannot be shown for all simple graphs. This tells us that

LH1(N0({v})) is bounded above by the pointwise max-

imum of a set of negatively sloped linear functions in

CC(v) sweeping out an “L” shaped curve. This is re-

flected in our experiments depicted in Figure 3 in which

the data points are following the predicted upper bound.

Though our graphs are not planar, the neighborhoods

generally are which is sufficient for this result to hold.
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