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Abstract The problem of describing the distribution of labels over a set of objects
is common in many domains. Cyber security, social media, and protein interactions
all care about the manner in which labels are distributed among different objects.
In this paper we present three interacting statistical measures on label distributions,
thought of as integer partitions, inspired by entropy and information theory.Of central
concern to us is how the open- versus closed-world semantics of one’s problem leads
to different ways that information about the support of a distribution is accounted
for. In particular, we can consider the number of labels seen in a particular data set in
relation to both the number of items and the number of labels available, if known. This
will lead us to consider both two alternate entropy normalizations, and a newmeasure
specifically of support size, based not on entropy but on nonspecificity measures as
used in nontraditional information theory. The entropy- and nonspecificity-based
measures are related in their ability to index integer partitions within Young’s lattice.
Labeled graphs are discussed as a specific case of labels distributed over a set of
edges. We describe a use case in cyber security using a labeled directed multigraph
of IPFLOW. Finally, we show how these measures respond when labels are updated
in certain ways corresponding to particular changes of the Young’s diagram of an
integer partition.
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1 Introduction

Given a nonempty collection of labeled entities, how are we to measure the distrib-
ution of their labels as drawn from a set of available discrete attributes? Of course,
such a basic question should, and does, have many answers already. In particular,
entropy measures are commonly used to measure the spread and shape of a dis-
tribution, but are defined only on probability distributions. And while probability
distributions, as relative frequencies, are easily and uniquely derived from counts,
nonetheless this transformation loses information about the support relative to the
original count distribution.

We have sought in the literature measures which completely characterize the size
and shape of the distribution of labels of such a collection, but were surprised not
to find them. We present candidates here, incorporating two forms of uncertainty-
based informationmeasures. Entropy andnormalized entropy are retained as standard
probabilistic approaches over a fixed support, which we introduce as ameasure of the
“smoothness” of a count distribution. But we also introduce a “dispersion” measure
of the degree of support itself relative to the total count. This is a kind of normalized
nonspecificity measure, a non-probabilistic uncertainty-based information measure.

In Sect. 2 we introduce integer partitions, different ways to represent them, and
our inspiration from collections of labeled items. Additionally, in this section we
introduce entropy measures on discrete probability distributions. Next, in Sect. 3 we
introduce our two candidate functions measuring the smoothness and dispersion of
a distribution of labels. Then in Sect. 4 we narrow to the case of integer partitions
derived from labeled degree distribution where each part counts the number of edges
with a particular label. We additionally give a use case related to cyber security.
Finally, in Sect. 5 we explore the theoretical aspects of our two functions as they
relate to integer partitions and Young diagrams.

2 Preliminaries

In our Preliminaries section we introduce three separate concepts: frequency distrib-
utions, integer partitions, and information measures. These three somewhat disjoint
concepts will be more strongly related in Sect. 3 and beyond.

2.1 Frequency Distributions

We begin by considering a finite set X = {xj}nj=1 of n items, each with a label l ∈ Λ,
drawn from a set of μ = |Λ| labels. Our goal in this paper is to study the distribution
of these μ labels over the set X. We begin then, by forming a frequency vector
γ = 〈γk〉μk=1, where γk ∈ N is the number of items in X that are labeled lk . Notice
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here that although we have μ labels available to us we may not use all of the labels,
so there might be some γk = 0 in our frequency distribution. In fact, it may be the
case that μ > n so that there must be zeros in our distribution as it’s impossible to
use more than n labels on a set of n objects.

2.2 Integer Partitions

An integer partition, or simply a partition, of a positive integer n is a list of strictly
positive integers, λ = 〈λ1, λ2, . . . , λm〉 such that λi ≥ λi+1 and

∑

i λi = n. Each λi

is called a part, and we denote the number of parts in λ by m := |λ|. For example,
λ = 〈5, 5, 3, 1〉 is a partition of 14 with m = 4 parts.

There are many areas in which integer partitions may arise, but we are concerned
with those induced by a collection of labeled items. Consider again a collection
X = {xj}nj=1 of n items, each with a label drawn from a set of labels Λ. When we
introduced frequency distributions in the previous sectionwe did our counting “label-
wise”. Here, to form an integer partition, we will count “item-wise”. The labels li
naturally partition X intom ≤ n disjoint blocks Xi ⊆ X where for each 1 ≤ i ≤ m, all
the labels for the items in Xi are the same. Let λi := |Xi|, 1 ≤ i ≤ m be the number of
items in block i, so that 1 ≤ λi ≤ n. Then sort them down, so that λi ≥ λi+1. Finally,
let λ := 〈λi〉mi=1. λ is now an integer partition representing the counts of the m labels
actually seen, amongst the n items in question.

The item-wise label frequency distribution λ created from X and Λ essentially
counts the same thing as the label-wise distribution γ , so let’s consider the rela-
tionship of γ to λ. Clearly μ ≥ m, so λ ⊆ γ in the sense that each λi ∈ λ has a
corresponding γk ∈ γ , but γ must have μ − m additional γk = 0. Basically, γ is λ

padded with zero counts for any unused labels. Note that if μ = m then γ = λ will
be a proper integer partition. Therefore, we may refer to γ in the general case below,
and λwhen we rely on having an integer partition.Wewill return later to a discussion
of γ versus λ in the case of information measures on label distributions, but for now
we return to our discussion on integer partitions.

There are various ways of representing partitions either as decreasing lists of
numbers as already stated, or as diagrams. A Young diagram of a partition λ is an
array of boxes which is top and left aligned in which each row represents a single
part of the partition. An example is shown in Fig. 1. We will often refer to both the
Young diagram of a given partition, and the partition itself, by the same name, e.g.,
λ. Sometimes these are also called Ferrers diagrams, though Ferrers diagrams are
often drawn with dots instead of boxes. We will come back to Young diagrams in
Sect. 5.

There is a great deal of research in the theory of partitions. Most prominent are
enumerative combinatorics questions of the form “Howmany partitions are there that
have a specific property, as a function of n?” Many properties are explored including
restricting the number of parts, type of parts (e.g., even parts, distinct parts), and
other more complicated types of restrictions.
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Fig. 1 The Young diagram
corresponding to partition
〈5, 5, 3, 1〉 of 14

Our research is looking not at these enumerative questions, but instead at calcu-
lating information measures, to be introduced in the following sections, over the set
of integer partitions, and studying the distribution of these statistics as n, m, and λ1

(the largest part) vary. Specifically we are interested in characterizing these statistics
over the integer partition poset,1 Pn, referenced in [1, 9]. Pn is the poset of integer
partitions of n ordered by refinement. So, if η ≤ λ in Pn then λ has fewer parts than η,
and each part in λ is split into multiple parts in η. For example, η = 〈5, 4, 2, 1, 1, 1〉
is a refinement of λ = 〈5, 5, 3, 1〉 since one of the 5 s is split into 4, 1, the 3 is split
into 2, 1, and everything else remains the same. The elements of Pn can be grouped
by their number of parts m, making Pn a graded poset [1, 6]. An example of the
Hasse diagram of the integer partition poset P6 is shown in Fig. 2. A Hasse diagram
is a visual representation of the cover relations in a poset. In general, each element
p ∈ P from the posetP = (P,≤) is shown, and an edge from p to q with p below q
indicates that p ≺ q. We call each group of partitions with the same number of parts
a rank of Pn. Notice that the ranks of Pn are separated onto different vertical levels
of the Hasse diagram.

Finally, note that the elements of each integer partition poset Pn sit within Young’s
lattice, a lattice of all integer partitions ordered by containment of their Young dia-
grams. One Young diagram, η, is contained within another, λ, if every box in η

occurs in λ. In other words, if we label each box with two integer coordinates, the x
coordinate increasing along columns and the y increasing along rows (as in labeling
matrix entries), then every label that occurs in η will also appear in λ. The Young’s
lattice for n ≤ 6 is shown in Fig. 3, the dashed edges indicate partition refinements
in Young’s lattice produced by adding or deleting boxes in a Young diagram λ, and
thus a change in n. Solid edges indicate partition refinements within each of the Pn

produced by splitting or merging blocks, and thus a change in m, but with no change
in n, these solid edges are not included in Young’s lattice. The significance of the G
notations at the bottom of Fig. 3 will be discussed later in Sect. 3. Notice that Young’s
lattice is also graded, with each rank being the set of partitions in one Pi.

1The integer partition poset should not be confused with the set partition lattice [1].
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〈6〉

〈2, 1, 1, 1, 1〉

〈1, 1, 1, 1, 1, 1〉

〈5, 1〉 〈4, 2〉 〈3, 3〉

〈4, 1, 1〉 〈3, 2, 1〉 〈2, 2, 2〉

〈3, 1, 1, 1〉 〈2, 2, 1, 1〉

Fig. 2 The Hasse diagram of the integer partition poset for partitions of n = 6, P6

Fig. 3 Partition posetsPi (solid arrows) embedded as ranks iwithinYoung’s lattice (dashed arrows)
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2.3 Information Measures

Let p = 〈

p1, p2, . . . , pμ

〉

be a discrete probability distribution, where the pk :=
p(yk) ∈ [0, 1] are the probabilities of a random variable Y taking values in the set
{y1, . . . , yμ}, so that ∑μ

k=1 pk = 1. The entropy of the distribution p, denoted H(p),
is given by the following equation:

H(p) = −
μ

∑

k=1

pk log2 pk .

In the case where any pk = 0 we define 0 log2(0) := 0. This is a logical definition
since limx→0 x log2(x) = 0. There are continuous analogs of entropy where the sum
is replaced by an integral, but we only deal with the discrete version in this paper.

Entropy can be thought of as a measure of uncertainty in a probability distrib-

ution. If the distribution is uniform, pu =
〈

1
μ
, . . . , 1

μ

〉

, then the entropy is H(pu) =
− log2(

1
μ
) = log2(μ). This represents maximum uncertainty, i.e., any outcome is

equally likely. Contrast that with the fully skewed distribution ps = 〈0, . . . , 0, 1〉
which has entropy H(ps) = − log2(1) = 0. This represents no uncertainty since the
outcome is determined with all of the probability mass sitting on only one possibility.

Normalizing entropy by its maximum, log2(μ), is a standard approach to effec-
tively measure the shape of the probability distribution. We call this normalized
entropy p-smoothness of a probability distribution p and denote it by ˜G(p):

˜G(p) = H(p)

log2(μ)
= −∑μ

k=1 pk log2 pk
log2(μ)

∈ [0, 1]. (1)

Just as in the definition for entropy, we must define ˜G(p) in a special case. This time
we treat μ = 1, which would require dividing by log2(1) = 0. In this case we let
˜G(〈1〉) := 1 which agrees with limx→1

x log2(x)
log2(x)

= 1. We are using the word “smooth”
here as a synonym for “close to uniform”. We know that a uniform distribution has
maximum entropy and therefore, when normalized, ˜G(p) = 1. So, a highly smooth
distribution is one that is close to uniform. On the other hand, a very skewed distrib-
ution, one that looks “lumpy”, will have low entropy (low uncertainty) and therefore
˜G(p) smaller. So, the closer the distribution is to perfectly smooth, or uniform, the
higher ˜G(p) will be.

3 Information Measures on Label Distributions

In this paper we are concerned with measuring the shape of a distribution of labels
over a set of items. Specifically, given an arbitrary collection of n labeled items
X = {xj}nj=1, how can we best characterize the distribution of their labels Λ? Now,
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this distribution is not a probability distribution but instead it is an absolute frequency
distribution. Classically, the first thing done is to transform the associated label-
wise distribution, γ , described in Sect. 2.2, which we recall may be a proper integer
partition, λ, into a relative frequency distribution f as

f(γ ) := γ /n = 〈fk〉μk=1 = 〈γk/n〉μk=1

so that now fk ∈ [0, 1] and ∑μ

k=1 fk = 1. Relative frequency distributions f are typ-
ically interpreted as (discrete) probability distributions p by considering fk as the
probability of choosing an item labeled lk when picking an item randomly from
the set of n labeled items, X = {xj}. Therefore, we can calculate the entropy and
p-smoothness as introduced in the previous section. With slight abuse of notation
here we define

˜G(γ ) := ˜G (f(γ )) = H(f(γ ))

log2(μ)
= −∑μ

k=1
γk
n log2

γk
n

log2(μ)
.

Now, consider our set X with items labeled from Λ and create both the integer
partition λ item-wise and the distribution γ label-wise. We can treat λ similarly,
taking

f(λ) := λ/n = 〈fi〉mi=1 = 〈λi/n〉mi=1 .

f(λ) is basically f(γ ) stripped of its μ − m trailing zeros. And then we have

˜G(λ) := ˜G (f(λ)) = H(f(λ))

log2(m)
= −∑m

i=1
λi
n log2

λi
n

log2(m)
.

We observe that ifm < μ then˜G(γ ) 
= ˜G(λ) despite being calculated from the same
sets X and Λ. Non-normalized entropy H, the numerator of ˜G, cannot distinguish
the relative frequency distributions of λ and γ as it is blind to zero-padding, but
the normalization factor is different in each case, log2(μ) on the left-hand side and
log2(m) on the right.

The question of whether or not thesemeasures should be equal is not for this paper
to decide. However, we present an additional measure which is blind to zero-padding
on absolute frequency distributions and later will show that there can be advantages
in using one or the other. We define smoothness as

G(γ ) = G (f(γ )) := H (f(γ ))

log2(m)
= −∑μ

i=1
γk
n log2

γk
n

log2(m)
.

Notice the difference being that here we normalize by the number of nonzero entries
in γ , and nowG(γ ) = G(λ) = ˜G(λ). So, G is only sensitive to the absolute support,
m, of λ or γ , that is, the number of labels actually seen, as opposed to the number μ

of labels which are available. Another way of saying this is that ˜G, as opposed to G,
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makes a closed-world assumption that we know in advance the universe of discourse
Λ of available labels. In open-world situations, Λ may be unknown, unspecified,
or so large as to be meaningless to the problem being modeled. The open world
assumption of G is thus independent of any implicit assumptions about the space of
labels.

While the open-world smoothness G provides an important alternative to the tra-
ditional closed-world normalized entropy ˜G, still for our question of characterizing
counts of labels in the context of integer partitions λ, or more general label distrib-
utions γ , both G and ˜G have flaws. Both relative frequency distributions f(γ ), f(λ)

lose information relative to absolute frequency distributions γ, λ. In particular, con-
sider two label frequency distributions γ and γ ′ of n and n′ objects. Let γ ′ = α · γ for
some α ∈ N, so that, incidentally, n′ = αn. Then additionally f(γ ) = f(γ ′), and of
course, both G(γ ) = G(γ ′) and ˜G(γ ) = ˜G(γ ′). In reducing to relative frequencies,
we have lost connection to the interpretation of the partitions as counts with respect
to a total number of items n, n′, and thus neither smoothness G nor p-smoothness ˜G
can distinguish these cases.

We have observed now that both G and ˜G are insensitive to the total number of
items that we are labeling, n = |X|, and additionally that˜G distinguishes between the
distributions item-wise (λ an integer partition) and label-wise (γ an arbitrary non-
negative integer distribution) when we have more labels available, μ, than observed,
m, whereas G does not. It is not our goal in this paper to decide which of ˜G and
G is more reasonable to use, indeed it often depends on the application. In some
cases, and often in those that we are concerned with, e.g., cyber networks, either
the number of possible labels is very large compared to the number of labels seen,
or we simply do not know how many labels are possible. In these cases of large μ

normalizing with respect to μ gives little to no information as all ˜G values will then
be very small. It is for these reasons that we generally turn our attention in this paper
to the use of G over ˜G, or when we do use ˜G we will often make the assumption that
μ = n. We note that we will contrast G and ˜G again later using this assumption on
μ when we introduce a third measure called κ . Additionally since G(λ) = G(γ ) we
will proceed working with only integer partitions.

As evidenced by the prior discussion on G versus ˜G it’s clear that there is an
important relationship between the three quantities n, m, and μ. While the number
of items n and the number of available labels μ themselves need not be related, we
do have m ≤ min(n, μ); that is, there can be as many labels, m, in X as the number
of items n, unless μ < n, in which case there are not enough labels to go around, and
some items xi must “double up.” So, there are two edge cases:

m = n: Here all items have a distinct label, so that λ = 〈1, 1, . . . , 1〉. Also n ≤ μ,
and our label-wise frequency distribution is γ = 〈1, 1, . . . , 1, 0, 0, . . . 0〉, with m
ones and μ − m zeroes.

m = μ: Here all available labels are used, so that n ≥ μ, and λ = γ with all the
λk ≥ 1.

Consider P6 as shown in Fig. 4. The integer partitions λ ∈ P6 are shown adorned
with the values for G, and m is shown on the right. The κ values on the right of this
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Fig. 4 The integer partition
P6 adorned with smoothness
G(λ)

0

0.3869

0.6131

0.7737

0.8982

1

1

2

3

4

5

6

m κ
〈6〉
1

〈5, 1〉
0.6500

〈4, 2〉
0.9183

〈3, 3〉
1

〈4, 1, 1〉
0.7897

〈3, 2, 1〉
0.9206

〈2, 2, 2〉
1

〈3, 1, 1, 1〉
0.8962

〈2, 2, 1, 1〉
0.9591

〈2, 1, 1, 1, 1〉
0.9697

〈1, 1, 1, 1, 1, 1〉
1

figurewill be defined later. As a generalmatter, for a given n, each level ofPn includes
partitions with the same number of parts. G(λ) then orders the λ within each level,
withG(λ) = 1 iff λ is uniform, andG(λ) → 0 for λ = 〈n − k, 1, . . . , 1〉 for each 1 ≤
k ≤ n − 1asn → ∞.Note that in somecaseswehaveG(λ1) = G(λ2)whenλ1 
= λ2,
e.g. when n = 20 andm = 6 we haveG([8, 3, 3, 2, 2, 2]) = G([6, 4, 4, 4, 1, 1]). We
will order these partitions according to lexicographic ordering when they occur.

The role of G to order partitions is illustrated in Fig. 3 in Young’s lattice, with G
operating within each Pn. So more generally, for any partition λ of any n, we seek
measures to place it within Young’s lattice in terms of:

• Its rank within Young’s lattice, which is clearly just n.
• Within each rank of Young’s lattice (that is, within Pn), its “horizontal” placement.
This is its smoothness G(λ).

• And again within each Pn, its “vertical” level within Pn.

So concerning this final quantity, we are left with the question, is there a way to order
the integer partitions based on how many parts they have? The number of parts, m,
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is the obvious answer, as together with G this ordering would essentially create a
coordinate system on the integer partition poset Pn.

We could simply measure the number of partsm relative to the number of possible
parts n, whether or not some absolute number of labels μ set an upper bound on m.
For a partition of n with m parts this would simply seem to be m

n . However, the
distribution of the number of partitions of n with a given number of parts has a long
tail, i.e., there are relatively few partitions of n with large numbers of parts, and
we seek a measure which has larger gaps when there are many partitions, when m
is smaller, and smaller gaps when there are fewer partitions, rather than something
linear in the number of parts. Additionally, while workingwith informationmeasures
like G, there are great advantages of working with log functions, due to additivity
and other properties. We therefore use a log ratio and define what we call dispersion,
denoted by κ(λ), as

κ(λ) = log2(m)

log2(n)
∈ [0, 1].

Figure4 also shows the κ value for each level of P6. Like G, we also have κ(λ) ∈
[0, 1], but now κ = 0 if and only if λ = 〈n〉 which is the case only when m = 1.
Additionally, κ = 1 if and only if λ = 〈1, 1, . . . , 1〉 when m = n. Notice that κ = 1
implies G = 1, but we can have G = 1 with small κ , as in λ = 〈3, 3〉 ∈ P6.

Note that unlike G, the value of κ does not depend on the actual values of the
λi ∈ λ, but only on m, the number of parts into which λ is divided, and n the total
sum of λ. It is effectively a measure of the support of the partition λ of the integer n
relative to n itself. AndwhileG, as an entropy, is ameasure of the information content
of the partition λ, interpreted as a relative frequency (that is, discrete probability)
distribution, f(λ), so κ is also a measure of information, although not an entropy, but
rather a Hartley measure [5].

In the context of generalized information theory, a Hartley measure is an infor-
mation measure called a nonspecificity N. Given a collection of m choices, then
their nonspecificity is simply N(m) = log2(m). Note that this quantity log2(m) is
also the maximal entropy H(p) when p is uniform, and in this particular case these
measures coincide. But like entropy, in more general cases nonspecificities can take
on more complex forms, and are fully-fledged information measures in that they
satisfy basic axioms of additivity, monotonicity, and normalization as they quantify
the amount of uncertainty present in a collection of choices which are not probabilis-
tically weighted.

In our case, our κ = log2(m)/ log2(n) is thereby a normalized nonspecificity. As
a general matter, nonspecificities are defined and used in the context of possibilistic
information theory, or possibility theory [2, 3, 8]. Although exploring possibilistic
measures of support is not the purpose of this paper, here it is sufficient to observe
that as entropy measures the probabilistic constraint placed on a collection of m
choices by the probabilities fi, so κ measures the non-probabilistic constraint placed
on a collection of n choices by the selection of m of them.
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We have already observed that we can use κ and G as two “coordinates” within
the Hasse diagram of the integer partition poset. We use κ to tell the vertical level
of a partition, a y coordinate in the Hasse diagram, and G as an x coordinate telling
how far to the right (closer to uniform) a partition is. This is illustrated in Fig. 5(a)
where κ (y-axis) and G (x-axis) are calculated on all partitions of n = 20. We see
clear levels corresponding to each m value yielding different κ values. The G values
then go up to a maximum of nearly 1 depending on if m divides 20 or not.

Another important observation is as follows. In our “typical case” of n = μ so
that we have no more labels than there are items, we actually have that

˜G = G · κ.

This, together with κ ∈ [0, 1], shows that ˜G can be interpreted as both a weighting
down of G by κ , and simply as a quantity reflecting both smoothness and dispersion
through the product, capturing information from both G and κ . So if ˜G captures
information from both κ andG, the question is: can we use it to determine both the x
and y coordinates of a partition? In order for this to be the case we would need to be
able to break up the range of˜G, [0, 1], into disjoint intervals, one for each level of the
poset (m value). Unfortunately, we can only do this for n ≤ 7. In the integer partition
poset for n = 8 we cannot decompose the interval [0, 1] into disjoint intervals for
each m value. For m = 3 the ˜G values range between 0.3538 and 0.5204, and for
m = 4 the values range between 0.5163 and 0.6667. There is a clear overlap between
the two ranges, so we cannot in general use ˜G to decide which level a partition is
on. The plot in Fig. 5b shows the plot of κ now against ˜G (with n = μ) to show the
overlap in ˜G ranges as it is broken up into its κ levels.

Considering the relation between our threemeasuresG, G̃, and κ , we can conclude
that it is more enlightening to use both κ and G separately to give information about

Fig. 5 Plots showing howG, κ , and˜G interact for all partitions of n = 20. a κ versusG. b κ versus
˜G with μ = n
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a partition λ. But at the same time, it might be convenient to use ˜G as an alternate
entropy normalization, a discounting of G by κ , or a scalar combining G and κ .
Effectively, ˜G provides a single, scalar quantity reflecting both the horizontal and
vertical position within Pn. Together with n itself, we can use them to uniquely
characterize any integer partition λ within Young’s lattice.

4 Application to Labeled Degree Distributions

So far in this paper we have described dispersion (κ) and smoothness (G) asmeasures
on integer partitions, λ, or more specifically on frequency distributions of a set of
labels, Λ, on a set of objects X. Now we come to the application of labeled graphs.
Consider a directed graph or multigraph, G = (V,E), with edge label function f :
E → Λ. Theoretically, any collection of edges can be considered as our set of objects,
X, butwewill restrict to the casewhere the set of edges has a common source vertex or
target vertex. Given a vertex, v ∈ V , let Sv = {e = e1e2 ∈ E : e1 = v} be those edges
which have v as their source vertex, andTv = {e = e1e2 ∈ E : e2 = v} be thosewhich
have v as their target vertex. We may treat Sv and Tv separately as base sets, or take
their union and consider the full set of edges incident on v. For example, see Fig. 6.

Given these sets of edges, Sv and Tv, we consider not just the size of the sets, as
traditionally considered when investigating degree distribution, but also their disper-
sion and smoothness with respect to the labeling function f and label setΛ. Referring
back to Fig. 6 the integer partition corresponding to Tv is λTv := 〈2, 1, 1〉 where the
labels are in the order C, A, D, and integer partition for Sv is λSv := 〈2, 1, 1, 1〉 for
labels B, A, C, E. If we wish to take the full set of edges into account we have
λv := 〈3, 2, 2, 1, 1〉 for labels C, A, B, D, E. Figure7 shows the Young diagrams for
these three example partitions. Then we can calculate the dispersion, smoothness,
and λ-smoothness of these distributions. These values are found in Table1. As we
might expect, λSv has the highest smoothness among the three partitions and also the
highest dispersion. But, these three partitions are not very diverse and so we get very
similar G, ˜G, and κ values.

Fig. 6 An example vertex in
a labeled directed graph with
4 in-edges and 5 out-edges

A B
C

B
E

D

A
C

C

v

Tv
Sv
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Fig. 7 Young diagrams for
our three example partitions.
a λTv . b λSv . c λv

(a)

(b)

(c)

Table 1 Smoothness,
λ-smoothness, and dispersion
values for three example
partitions

λTv λSv λv

G 0.9464 0.9610 0.9463
˜G 0.7500 0.8277 0.6931

κ 0.7925 0.8614 0.7325

4.1 Cyber Security Use Case

This question of assessing the shape of labeled degree distributions, or more gener-
ally sets of labeled objects or integer partitions, through information measures was
originally motivated by a problem in cyber security. Securing cyber systems has
become more and more necessary since attacks to large companies and governments
have become increasingly common. Detecting different types of attacks while main-
taining system resiliency, i.e., being able to complete missions in the face of attack,
is a major focus in cyber security.

We focus on the use of a specific type of cyber data called NetFlow, or more gen-
erally IPFLOW, which is IP communication traffic collected at routers and switches
throughout the network. A single IPFLOW record contains a source IP and port,
a destination IP and port, as well as other data about the information being sent
including start and end time, number of packets, and number of bytes. We can study
IPFLOW data by transforming it into an IPFLOW multigraph in which vertices are
IP addresses, or IP:port pairs, and edges indicate a flow of information from one IP
to another. Figure8 shows an example IPFLOW graph where IPs have been reduced
down to their last two octets (e.g., a.x instead of α.β.a.x), and edges are labeled with
a flow ID.

Many common attack types have signatures for the way that they are carried out
that can be seen in the IPFLOW graph. Our observation was that these signatures
can manifest as extreme shifts in smoothness and dispersion values. For example,
consider a denial of service (DoS) or distributed denial of service (DDoS) attack. This
occurs when an adversary, or a distributed group of adversaries, floods a server with
external communication requests. This overloads the server so that it cannot respond



392 C. Joslyn and E. Purvine

Fig. 8 An example
IPFLOW graph with vertices
being IP:port pairs and edges
labeled with a flow ID

a.y:1

b.x:3

a.x:1

a.x:3

c.x:2

a.z:3 a.z:2

b.x:1

2

1

3 5

6

8

4

7

9

to all of the requests in a timely manner, effectively making the server unavailable
to legitimate requests.

If we are looking at a single attacker, IPA, a DoS attack manifests as a large
out-degree with the majority of edges having the same destination. Consider the set
of edges with source IPA and label each edge with its destination IP address. The
distribution of these labels will have a single, or very few, labels with high count
and any others with very low count. The smoothness of this distribution will likely
depend on the number of victims and non-victims being contacted by IPA. If IPA only
contacts victims then smoothness is likely to be high, but if they are also contacting
others (e.g., fellow attackers or a controller in a DDoS attack) then smoothness will
be low. However, we can say that dispersion will be very low since the number of
communications (the number of edges or items) will be much larger than the number
of IPs that are contacted (the number of labels).

In Fig. 9we show the outgoing smoothness versus outgoing dispersion for vertices
in an IPFLOWgraphwhen edges are labeled as described above, by the destination IP
address. We used NetFlow from the 2013 Visual Analytics Science and Technology
(VAST) Challenge data set which contains synthetic NetFlowwith well-documented
ground truth attacks [7]. The blue data points are external IP addresses and those large
blue points on the left that are labeled are known to be attackers. The cluster of blue
points on the upper right, with the IP 10.0.0.5 singled out, are virtual websites. Their
high smoothness and dispersion mean that they send information fairly uniformly
to other IP addresses, and they do not send very much to each, which is expected
behavior for a website. The size of each circle indicates how many flows were sent.
We havemore results on this data set using these dispersion and smoothnessmeasures
as well as other analysis in [4].

Other types of attacks have similar characterizations through smoothness and
dispersion. Port scans, for example, where one or many external IPs contact a single
vertex throughmany ports, can be seen again in the IPFLOWgraph. The port scanners
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Fig. 9 Outgoing smoothness (y-axis) versus outgoing dispersion (x-axis) for vertices in an IPFLOW
graph created by synthetic IPFLOW data around the time of a DDoS attack

will have both high outgoing dispersion and high outgoing smoothness when edges
are labeled with destination IP and port. Each scanner contacts each port on a given
IP address a small number of times, and does so fairly uniformly.

Thoughwe have onlyworked in the cyber security use casewe can see the value of
using these measures on vertices in other domains to enrich the degree distribution.
Labeled graphs have a richer set of information than unlabeled graphs and so we
should be using that extra information to perform analysis. Other possible application
areas could be social network graphs where edge labels are type of communication or
type of relationship between people, or protein interaction graphs where distributions
come from weights on edges indicating magnitude of interaction.

5 Relation to Young Diagrams

Although we were inspired to create the dispersion and smoothness functions to
measure the shape of labeled degree distributions in directed, labeled graphs, we
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realize that they are also interesting mathematical functions on the set of integer
partitions. In this section we will give a few of our observations about how G and κ

change when we change an integer partition in two specific ways.
Recall that a Young diagram is oneway to pictorially represent an integer partition

asm rows of boxes, the ith row containing λi boxes.Wewere interested in howG and
κ vary as we transform the Young diagram. Two transformations will be considered,
(1) moving one box from row j to row i, in the case of labeled items this corresponds
to changing one label to something else already seen, and (2) taking the conjugate
of the diagram.

5.1 Moving Boxes

We will first consider moving one box from row j to row i. Consider two partitions,
λ and η, where we form η from λ by switching one box as described. In this case we
can write η in terms of λ

η	 =
⎧

⎨

⎩

λi + 1 	 = i
λj − 1 	 = j
λ	 else.

We are interested in how G and κ change as we go from λ to η. If we make the
stipulation that λj ≥ 2 then we are never removing an entire part from λ, therefore
κ(λ) = κ(η). However, G will change as long as λi + 1 
= λj.

log2(m) [G (f(λ)) − G (f(η))] = −
m

∑
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+

+ 1
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[
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Wewill bound each of these terms independently to see what kind of change inGwe
can have. First, notice that λi cannot be bigger than n − 1 since we are adding 1 to it,
and λj cannot be less than 2 since we are subtracting 1 from it, it also cannot be more
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than n − 1 or there would be nowhere else to move a box. Therefore, 1 ≤ λi ≤ n − 1
and 2 ≤ λj ≤ n − 1.

Now, let’s focus on upper and lower bounds for the first term, λi
n

[

log2
λi+1
λi

]

. It is

not difficult to check that d
dx

(

x
n log2

x+1
x

)

is positive for x ≥ 1, so this term must be
increasing. Therefore, we can get upper and lower bounds for the term by plugging
in the maximum and minimum values for λi, respectively.

1

n
= 1

n
log2

1 + 1

1
≤ λi

n
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log2
λi + 1
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≤ n − 1

n
log2

n − 1 + 1
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= n − 1

n
log2

n

n − 1
.

Next, we look at bounds for the second term, λj

n

[

log2
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λj

]

. Again, we can see

that the derivative d
dx

(

x
n log2

x−1
x

)

is positive for x ≥ 2 and so we have an increasing
function of λj. We again plug in maximum and minimum values for λj to get upper
and lower bounds.
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Finally, we need to get bounds for the third term, 1
n

[

log2
λi+1
λj−1

]

. In this case we

have a function of both λi and λj so using the derivative to tell if it is increasing or
decreasing will not work. Instead, we bound λi+1

λj−1 and then take the log2 of those
bounds.

2
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Putting everything together we can bound our original quantity, log2(m)
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Both of these bounds tend to 0 as n → ∞, so that means that in the long run if
we just change one bit in the integer partition we don’t changeG by very much. This
makes sense because intuitively as n gets larger, moving one bit, or relabeling one
element of X, should impact the smoothness less and less as n gets larger.

5.2 Conjugation

The second way we can transform a Young diagram is by conjugating it. This is
flipping it over its main diagonal, as in Fig. 10. The conjugate of λ is written as λ∗.
Because κ depends entirely on the number of parts (along with the value n being
partitioned), and the number of parts of λ∗ is equal to the largest part of λ, we can
prove sharp bounds on κ(λ∗) in terms of κ(λ).

Proposition 1 Letλ be an integer partition of nwithm parts, andλ∗ be its conjugate,
with m∗ parts. Then

1 − κ(λ) ≤ κ(λ∗) ≤ log2(n − nκ(λ) + 1)

log2(n)
, (2)

and these bounds are sharp.

Proof We have already mentioned the fact that the number of parts of λ∗ is equal to
the largest part of λ, or λ1. Therefore, we can write κ(λ∗) in terms of the largest part
of λ as

κ(λ∗) = log2(m
∗)

log2(n)
= log2(λ1)

log2(n)
. (3)

Fig. 10 The conjugate of a partition is created by flipping the associated Young diagram over the
dotted diagonal line. For example, the conjugate of λ = 〈5, 5, 3, 1〉 is λ∗ = 〈4, 3, 3, 2, 2〉
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Now, observe that we can bound λ1 in terms of m. We claim an upper bound
λ1 ≤ n − m + 1. If λ1 were strictly larger than n − m + 1 and all other parts were
equal to 1 (the smallest they can be) then we would have

n =
m

∑

i=1

λi = λ1 + (m − 1) · 1 > (n − m + 1) + m − 1 = n

which is a contradiction. This upper bound is sharp which can be seen when λ1 =
n − m + 1 and all other parts are equal to 1.

Then, we claim a lower bound of λ1 ≥ n
m . Here if instead λ1 < n

m then we would
also have λi < n

m for all i since the parts are in decreasing order. Then in this case

n =
m

∑

i=1

λi < m · n

m
= n

again a contradiction. The lower bound is also sharp whenever m is a factor of n
by allowing λi = n

m for all 1 ≤ i ≤ m. We can now use these bounds to prove the
inequalities in (2).

We substitute λ1 ≥ n
m in (3) to prove the first inequality:

κ(λ∗) = log2(λ1)

log2(n)

≥ log2
(

n
m

)

log2(n)
= log2(n) − log2(m)

log2(n)

= 1 − κ(λ).

Next, we can substitute λ1 ≤ n − m + 1 again into (3) to prove the second inequality:

κ(λ∗) = log2(λ1)

log2(n)

≤ log2(n − m + 1)

log2(n)
.

We cannot break up the log in this case, but we can write m as a function of κ(λ) by
inverting κ .

κ(λ) = log2(m)

log2(n)

log2(n)κ(λ) = log2(m)

2log2(n)κ(λ) = 2log2(m)

nκ(λ) = m
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Substituting this back in to finish our bound we indeed see that

κ(λ∗) ≤ log2(n − m + 1)

log2(n)
= log2(n − nκ(λ) + 1)

log2(n)
.

To see that these bounds are sharp we simply need to provide a [λ, λ∗] pair for
each inequality whichmakes it into an equality. For the upper bound this is quite easy.
Given any q < n we have a partition λ = 〈q, 1, . . . , 1〉 and then λ∗ = 〈m, 1, . . . , 1〉.
Since this achieves the upper bound on λ1 that we used in proving the upper bound on
κ(λ∗) we can turn the one inequality into an equality. For the lower bound we do the
same thing. First assume that n is not prime, so we can write it as n = n1 · n2 for some
n1, n2 < n and n1, n2 ∈ Z. Then we let λ = 〈n1, n1, . . . , n1〉where we have n2 copies
of n1, and λ∗ = 〈n2, n2, . . . , n2〉 with n1 copies of n2. Again, because this achieves
the lower bound on λ1 in terms ofmwe can turn our inequality into an equality. Now,
in the case that n is prime we still achieve our lower bound for the trivial partition
λ = nwhere κ(λ) = 0. Then λ∗ = 〈1, 1, . . . , 1〉 andwe have κ(λ∗) = 1 = 1 − κ(λ).

In order to illustrate the bounds in Proposition 1 see Fig. 11. The x axis is κ(λ)

and the y axis is κ(λ∗). The line and curve are the bounds, and you can see many
instances of points sitting on the bounds. This picture is for n = 20.

Given that there are sharp bounds on κ(λ∗) in terms of κ(λ) we asked whether or
not we can do the same for G(λ∗). In fact we can get a lower bound, but the form
is much more complicated. And an upper bound seems nonexistent from looking at
the points themselves. In Fig. 12 we have a picture similar to that in Fig. 11, again

Fig. 11 Plot of κ(λ∗) versus
x = κ(λ) for n = 20
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Fig. 12 Plot of G(λ∗) versus
x = G(λ) for n = 20

for n = 20, but this time we give the G values. Notice that there is a clear lower
bound curve traced out by the points. These lowest elements correspond to the case
where λ = 〈λ1, 1, 1, . . . , 1〉 and then λ∗ = 〈m, 1, 1, . . . , 1〉 since partitions of this
form have the lowest G value. However, the form of G is much more complicated
than that of κ and we are not able to invert G to get a function for m in terms of
G(λ). Therefore, the solution is more of a numerical approximation than a closed
form function.

6 Conclusion

In this paper we introduced two functions, dispersion (κ) and smoothness (G), which
measure the shape of frequency distributions in two different ways. First, dispersion
assesses how many bins, or labels, there are in the distribution versus how many
objects. If there are a similar number of objects and bins then the distribution is
very dispersed, but if there are many more objects than bins then the distribution
is very narrow. Secondly, smoothness uses a normalized entropy to measure how
close the distribution is to uniform. We showed how these measures function on
directed labeled graphs and more specifically to the cyber security use case. Finally,
we explored how G and κ change when we make specific changes to the partition
through Young diagram manipulation.
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We believe that these two functions can help discover changes in evolving data
and characterize labeled directed multigraphs in much of the same way as the degree
distribution characterizes unlabeled graphs.
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