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Abstract
This is a public version of the report delivered in February, 2000 from the Los Alamos

National Laboratory team on the Decision Structures (DS) project to the Physical Science Lab-
oratory (PSL) of the New Mexico State University (NMSU). It includes a proposed simulation
environment for hybrid agent stochastic-event modeling; a proposed experimental paramateri-
zation for agent models in general; and a consideration of various platforms for the development
of agent models, with special attention on Swarm and DEVS/HLA.
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1 Introduction

This document concludes the work of the Los Alamos team on the Decision Structures (DS) project
with PSL/NMSU with FY99 funding. It covers the period from November 1999 through February
2000, and includes discussion of:

• A proposed simulation environment for hybrid agent stochastic-event modeling developed out
of discussions at the November 1999 project meeting.

• A proposed experimental paramaterization for agent models in general, attempting to develop
an experimental framework for discovery of dependencies among independent factors in agent
models.

• And finally, a consideration of various platforms for the development of agent models, with
special attention on Swarm and DEVS/HLA.

2 A Hybrid Simulation Environment for the DS Project

At the November, 1999 project meeting we decided as a group on the proper path forward to inte-
grate the work on data analysis and agent simulation with existing sources of data. It was evident
that acquiring real data would be next to impossible in the short- to medium-run, and therefore it
was decided that simulated data would have to used instead. A stochastic-event simulator was to
be made available to us for this purpose.

We thus entered into constructing a complex architecture, where data analysis would be per-
formed on one set of simulated data, and agent models providing a different set of simulated data,
all interacting with the data analysis modules. At this point, it became clear that some explication
of the issues involved in such an undertaking would be useful. In this section we first address these
issues in general, and then describe the details of the specific architecture decided upon which
would instantiate this general scheme.

2.1 Hybrid Simulation Environments

We begin by addressing some ambiguity which has recently been perceived to exist concerning the
relations between the three main thrusts of the project: the signal analysis, the problem definition,
and the agent simulation.

Our perspective on this begins with our position on modeling and simulation in general, which
can be summarized using the modeling relation shown in Fig. 1.

Given a real system, certain data is measured from that system, and a simulation of certain
aspects of that system is constructed through the modeling task. The simulation in turn generates
simulated data, which is compared to the measured data. If there is a high degree of corroboration
(validation) between the simulated and measured data, then this is inductive evidence to support
the hypothesis that the simulation has accurately captured the particular features of the real system
which were selected by the modeling task.

Of course, in any particular application, the entire process is dependent on the appropriate
choice of measured variables, aspects of the system to be simulated, and a technologically sound
simulation process. Note also that the simulation must produce simulated data whch is the same
type as the measured data, and then an appropriate corroboration measure must be chosen based
on that type.
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Figure 1: The modeling relation.

This is the general pattern of traditional simulation. In our project, at least two components are
attempting to do a task substantially different from traditional simulation. In Fig. 2, the traditional
simulation problem is shown in the bottom. The Signal Analysis group is attempting to analyze
data, whether measured data from a real system or simulated data from a traditional simulation,
in order to develop high-level representations of that data in terms of dynamical systems concepts
and the related research thrusts, namely combinatorial homotopy and Chu spaces. Simultaneously,
the Agent Modeling group is attempting to develop relatively abstract high-level models of the
general class of target systems, rather than high-fidelity simulations of particular examples of the
target system.

In effect, we are recapitulating the traditional modeling relation, but at a higher level of ab-
straction. It follows that now, it is rather the high-level representations produced by the Analysis
Group and the data generated by the high-level simulation which must be of the same type, so as
to be able to have appropriate corroboration (validation).

Also, note that in this context, the Ping model [4] is actually playing the same role as the Agent
model. In other words, it is a high-level simulation which is attempting to capture appropriate
abstract properties of systems of the type of the target system, and produces data comparable to
that which will eventually be produced from the high-level analysis. Thus our work in particular
should involve a close consideration of the Ping model, either as a point of departure for our models,
or at least as providing guidance for their design.

As stated in Joslyn’s August deliverable [7] this stance has both advantages and disadvantages.
In particular, we gain generality and flexibility, but lose fidelity and precision. However, in this
project where we are attempting to gain insight into the emergent structures in systems of this
type, and wish not to embed too much initial structure into our models, this is an appropriate
decision.

To summarize, our view of the proper relations among the project components is:

Signal Analysis: Develop and validate high-level representations.

Agent Model: Develop high-level simulations which appropritately capture target system prop-
erties and generate data for the Signal Analysis team.

Problem Definition: Work with low-level simulations sufficiently to provide guidance to the other
teams about appropriate forms of abstraction.
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2.2 Specific Architecture

The argument above results in a proposal for a specific architecture for our hybrid simulation
problem. It is illustrated in Fig. 3 and explained below.

1. Stochastic Event Simulator: A detailed, high fidelity simulation, which is standing in for
reality for us.

(a) The vignette as a scenario is used to instantiate the simulator proper.

(b) The simulator runs a simulation of the vignette, at PSL.

(c) Message logs and/or an event logs would provide source data.

2. Data Analysis: A variety of tools to construct high-level representations from the data log
output, and provided by the signal analysis researchers on the PSL team. We cannot speak
to the specifics here, but this would include at least:

(a) Influence Chains: From Laubenbahcer’s combinatorial homotopies.

(b) Chu Representations: From Gherke’s work.

(c) Other Output: From work developed by Reinfelds.

3. High Level Features: Various representations of high level, abstract features of the DR of
the target organization.

(a) Induced features are derived from data analysis of the data logs of the detailed simu-
lation, as specified above.

(b) Constructed features are used to instantiate the agent model (below). They are derived
initially by hand directly from abstracting the original vignette (e.g. a highly limitted
number of units, unit types, unit capabilities, message types, etc.). It is also intended
that later on the induced features will provide a source for constructed features.

(c) Generated features are produced directly from the agent model (below).

(d) Corroboration must be performed to check the “distance” between the features gener-
ated from the agent model and those induced from the high fidelity simulation. Much is
hidden in this arrow. What will ultimately be included is highly dependent on the nature
of the derived features and the level of abstraction of the agent model, and therefore
cannot be specified now.

4. Agent System: The agent system is intended to capture the high level, abstracted features
of the DS of the target organization within a simulation environment.

(a) The agent model is a high level abstraction of features of a command and control
organization.

(b) The agent shell is the basic engineering platform in which the agent model in imple-
mented. Multiple platforms were considered (see Sec. 4). At the time this design was
completed, the platforms under consideration had the following statuses:

Swarm: Installed at both LANL and PSL. PSL would have provided support for Ob-
jective C Swarm, and LANL was to have developed a JAVA capability.
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Figure 3: Proposed testbed architecture for hybrid simulation environment.
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Mozart/Oz: Being pursued by Reinfelds at PSL.
DEVS/HLA: Considered in detail by Joslyn and Marathe (see Sec. 4.2.1). At the date

of writing, this platform had just been made available to the LANL team, and was
installed there.

(c) Data logs produced from the agent simulation will supply (directly or indirectly) the
generated features.

(d) Visualization includes the simulation environment (grid, terrain), atomic unit posi-
tions, center-of-mass and uncertainty distribution of aggregated units, and “lightning
bolts” of communication events among units at multiple echelon levels.

(e) Data Driving/Aggregation: Initially the agent shell was not to be used to generate
simulated data, but rather its visualization was to have been driven directly from the
simulator data logs.

5. Perturbation: The ultimate goal is to simulate a perturbation in both the stochastic event
simulator and the agent model. In the simulator this will be done by altering average message
delay time and loss rate. Similar capabilities, at an appropriately abstracted level, must exist
in the agent model. Given a perturbation to either the simulator or agent models or both,
appropriate changes should be measurable at the corroboration step.

The February 2000 demo was intended to include:

1. Running the simulator with log capture.

2. Display of data analysis output.

3. Data driven aggregation and visualization in the agent shell.

The Los Alamos team was to have been responsible for 3 implemented in either Swarm or DEVS/HLA.
PSL was to have provided appropriate engineering support, beginning with the specification of the
data logs. Between November 1999 and February 2000, this did not occur, and in fact, there was
very little communication to the LANL team from PSL. As we were preparing to execute our re-
sponsibilities, we were informed that funding would not be renewed past February 2000, and that
this report would be our final deliverable.

3 Experimental Parameterization of Agent Simulations

In a series of published papers [8] and delivered reports [6, 7, 15] within this project, and others
published outside of this project [9, 10, 16], Rocha and Joslyn have developed the conceptual basis
for semiotic agent-based modeling and simulation of socio-technical organizations. In doing so,
we have been impressed by the complexities involved in even the simplest semiotic agent systems,
which, if complete, necessarily involve at least the following three components:

1. Agents interacting with a virtual physical environment.

2. Agents interacting with each other through both communication actions and actions into the
“relative environments” (those including other agents).

3. And some sort of even simple knowledge or endo-model structures interior to the agents.
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We have emphasized that each of these three factors induces constraints on the freedom of action
and decision which systems must necessarily possess in order to be identified as agents or semiotic
agents.

Here we would like to present one result of some of this analysis. In particular, we have in mind
a series of staged, controlled experiments through which particular aspects of agent simulations
could be included, excluded, or combined, in order to gauge the sensitivity to these factors for
various particular problem types. Some of these factors are qunatitative, in that they admit to
degrees; others are qualitative, meaning that they are either present or absent.

Virtual Environments: The first set of factors involve the nature of the virtual “physical” envi-
ronment in which the agents interact.

• Strength of physical laws: The properties of the (virtual) physical laws manifested
in then artificial environment may be more or less constraining on agent behavior. In
one limit, it is determining, meaning that the agents have no autonomy of action. In
the other, there are no such constraints, meaning an absence of physical laws. This
parameter describes the amount of coupling between agents and their environments.

• Size of the environmental state space: Simiarly, the number of indepdent variables
(dimensions) in the environment can be small or large. Also, the number of different
values (states) each dimension might have can vary. Together, they yield the size of the
overal state space of the artificial environment.

Individual Agent Properties: The second set of factors involve the inherent properites of the
agents themselves, in interaction with the environment.

• Number and kinds of agent sensory or action modalities: The modalities by
which the agents can sense their environments, and then in turn act back into them, are,
of course, crucial. There can be either more or less of these, and more or less different
from each other. For example, some agents might be able to perceive both position and
color of other agents, or affect both position and orientation.

• Amount of memory: We have argued that semiotic agents should be based on an
architecture of state machines with memory. We have also observed that learning (for
example, in iterated prisoner’s dillema problems) can be highly sensitive to the amount
of memory available within the agent. Thus this is a crucial quantitative parameter.
One limit (no memory) should recover classical collective automata systems, while there
need not effectively be any upper limit on the amount of memory.

Collective Agent Properties: The final set of factors are the most important and most inter-
esting, and involve the nature of the interaction among agents in the community. Below it is
important to recall that in our approach we have decided to distinguish actions proper which
agents take into their environments from semiotic actions of creating and passing commu-
nicative tokens.

• Degree of agent interdependence vs. autonomy: Just as agents can be more or less
coupled to their virtual environments, they can also be more or less coupled to each other.
This describes the degree to which agents are either interdependent or autonomous, due
either to proper or semiotic actions.
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• Semiotic tokens: Qualitatively, while we assert that all agents must engage in proper
actions with respect to their environments, they may or may not engage in semiotic
actions. If so, then to other factors come to bear.

– Token passing: Tokens may or may not be passed to other agents.
– Token storage: Tokens may or may not be stored in memory.
– Presence of syntactic relations among tokens: Tokens may or may not be

able to be combined to create new tokens at a higher level of syntax.

• Common knowledge structures: Understanding knowledge as semiotic tokens which
are interpreted, there may be interpretations held in common by different agents.

– Cultural vs. genetic transmission: Knowledge can be shared “horizontally”
with cultural transmission among agent contemporaries, or (assuming reproduction
of agents) passed “vertically” with genetic transmission between agent generations.

– Amount of shared knowledge: As we have noted, research has indicated that
the amount of knowledge of the world shared among multiple agents (however trans-
mitted) can be a crucial factor in the robustnes of their behavior.

4 Development Environments

We have recognized many senses and conceptions of the agent modeling paradigm [7, 15]. The
primary schools are based either in Artificial Intelligence (AI) or Artificial Life (ALife). There are
also many programming languages and software modeling environments to support them. We note
that most existing platform are based on the AI approach, while ours is more rooted in the ALife
approach.

In this section we do not provide a comprehensive survey of the field, referring the reader to
other public sources of information on agent modeling environments for that [2]. Rather, here we
review a few platforms of particular interest. These have either a special interest for the ALife
approach to agent modeling, or have been brought to our attention for other reasons.

Below we first consider our general requirements for a development platform. We then move on
to describe and compare the primary development environments we considered, namely Discrete
Event SystemS/High Level Architecture (DEVS/HLA) from the University of Arizona, and Swarm
from the Santa Fe Institute. We focus especially on the technical details of DEVS/HLA, as it is
not familiar to the PSL team. We conclude by describing a number of other environments which
are also available for developing agent-based models.

4.1 Requirements

We are motivated by the following requirements:

Rapid Prototyping Environment: Relatively light, flexible environment, without a strong com-
mittment to a particular mathematical methodology, and ability to swap in and out different
agent internal structures, environmental properties, and agent interaction and communica-
tion.

Instrumentation: Ability to get real-time output of agent state variables, behavior, etc., with
accompanying display.

Graphics: Support for graphical display of instrumentation, agent environment, etc.
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Hierarchical Support: Support for agents embedded in multiple hiererchicaly spatial and tem-
poral scales.

Environment: Support for embedding agents in discrete and continuous spatial and temporal
environments.

Programming: An industry-standard programming language environment is preferred, although
specialized languages can provide some advantages.

4.2 Primary Development Environments

We now describe the principle feature of the two primary development environments we examined.
We deal especially with the details of DEVS/HLA, as it is both new to the PSL team, and highly
appropriate for our project.

4.2.1 DEVS/HLA, University of Arizona [5]

DEVS (Discrete EVent Systems) is a long-standing approach to discrete event modeling based on
mathematical systems theory. HLA (High-Level Architecture) is an IEEE and DMSO standard
for producing inter-operable and distributed simulations. The advantange of DEVS as a discrete
modeling environment is its generality, derived from its elegant rooting in mathematical systems
theory, its close connection to formal automata theory, and its scalability.

DEVS Formalism Following Zeigler [20, 21], we have (Fig. 4):

Definition 1 (Atomic DEVS) Let D := 〈X,Y, S, t, δint, δext, λ〉, where:

• X is a set of external events;

• Y is a set of outputs;

• S is a set of states;

• t: S �→ [0,∞] is the time advance function, where [0,∞] := IR+ ∪ {∞};
• δint: S �→ S is the internal transition function;

• δext: Q × X �→ S is the external transition function, where

Q := {〈s, e〉 : s ∈ S, 0 ≤ e ≤ t(s)}
=

⋃
s∈S

[0, t(s)] ⊆ S × [0,∞]

is the total state set; and

• λ: S �→ Y is the output function.

These functions are interpreted as follows. Assume that D is in state s ∈ S. If an event x ∈ X
arrives after a duration e ≤ t(s), then D transits to state δext(〈s, e〉 , x). If no event arrives before
t(s), then s is said to expire, and D transits to state δint(s). Finally, at all times, D produces output
λ(s).

This basic formalism has been extended recently to handle concurrency.
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S=

D

<x,e(x)> l (s)

dint

s
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dext (<s,e(x)>,x)

Figure 4: The basic devs formalism.

Definition 2 (Extended Atomic DEVS) Let D+ :=
〈
X,Y, S, t, δint, δ

+
ext, δcon, λ

〉
, where X,Y, S, t, λ,

and δint are as before, but:

• δ+
ext: Q × Xb �→ S is the extended external transition function, where Q is as above, but Xb

is the set of bags (ordered collections possibly with duplicates [19]) over X; and

• δcon: Q × Xb �→ S is the confluent transition function.

The use of bags here allows the representation of concurrency: any bag with more than one element
represents the simultaneous occurrence of these events. The extended external transition function
represents the case when all the events are input events. The confluent transition function represents
the case when some input events occur simultaneously with the expiration of the time advance
function.

Finally, given devs atomic models, whether basic or extended, coupled models can be con-
structed to create a hierarchically structured system, here presented in the classical (non-parallel)
version:

Definition 3 (Coupled devs) Let DC := 〈X,Y,D, {Md}, {Id}, {Zi,d}, select〉, where X and Y
are as before, but:

• D = {d} is a set of indices of component models;

• ∀d ∈ D, the Md are component devs (whether atomic or coupled);

• ∀d ∈ D∪{N}, the Id ⊆ D∪{N} are the influencer set of d, where N indicates the environment
of DC ;

• ∀d ∈ D, Zi,d is the i to d output translation with:

– i = N → Zi,d: X �→ Xd, mapping external inputs to component inputs;

– d = N → Zi,d: Yi �→ Y , mapping component outputs to external outputs;

– d �= N �= i → Zi,d: Yi �→ Xd, mapping component outputs to component inputs.

• select: 2D �→ D, with select(E ⊆ D) ∈ E is a tie-breaking function to arbitrary the occurrence
of simultaneous events (note this is not necessary in the parallel version).

The most important thing which follows from this is:
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Theorem 4 (Closure Under Coupling) Every coupled devs DC can be transformed into an
extended atomic devs D+′

in some appropriately generalized space 〈S′,X ′, Y ′〉.
Thus it is garaunteed that devs can be connected in hierarchical patterns of arbitrary complexity,
and always yield another devs.

Implementations The current primary implementation is DEVS/Java. We have installed DEVS/Java
in a Solaris environment, and have made some preliminary explorations. We have also received the
DEVS/Java Pursuer model, a 2-D grid-based combat model which has properties similar to DS
applications. It was developed by UA for the Joint Measure project for the Navy. Regretably, we
received this software at the very end of the performance period.

Furthermore, we have identified staff at LANL who are very interested in DEVS/Java, not only
for potentially participating in our effort, but also for applying it to other projects in computer
systems simulation currently ongoing at LANL.

The advantages of DEVS/JAVA include its explicit support for hierarhical agent models, the
HLA layer, the fact that DEVS is a general (if particular) methodology, and that it is JAVA-
based. Its disadvantages are that it is a rather poor development environment, and that DEVS is
a particular (if general) methodology.

We will now review these specific points.

Parallel DEVS Formalism: The extensions to the basic devs formalism to include bags of input
events allow simulation of concurrency. This has been motivated by the requirements for
parallelism necessary for distributed simulation environments. This extended formalism has
also been proved to be closed under composition and hierarchical construction. They are
available in the current implementations.

Variable Structure Modeling: DEVS implementations rely on a 〈port, value〉 structure for in-
puts and outputs, where “value” can be entity, in particular another devs. This facilitates
much recent academic work on DEVS for variable structure modeling, or the ability of a sim-
ulation to change its structure while running. The current implementation supports adding
and deleting components and moving components within the model hierarchy.

Development Environment: DEVS/Java provides a large Java class library to support the basic
modeling methodology. Particular models extend these classes, and a number of computer-
engineering-based basic models are provided which demonstrate these capbilities. Container
libraries are also provided.

External Interfaces: It is important to consider what portions of an overall simulation effort
should be included within the devs umbrella and what support services should be considered
as outside of it; or, in other words, should everything be a devs component? and if not,
how do we know? The answer is that generally, those components which handle autonomous
scheduling should be considered candidates to be made into devs components. For example,
the UA team has developed simple devs display components which make Java graphics calls,
since these conincide with model events. Batched file input, on the other hand should be
regarded as “synchronous”, and thus written in native Java called from a devs component.

Overall Model Support: devs models are trees, with atomic leaves combined into higher-level
coupled models. There is currently no support for working on this graph overall, as opposed
to within each node. There is a tree-structured documentation tool, but no way to view or
modify the overall hierarhy.
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HLA and Corba Layers: An important new development is the introduction of external inter-
faces to DEVS/Java. One is to the High-Level Architecture (HLA), which is a DMSO-
approved interoperability standard for simulations. Both DEVS/Java and DEVS/C++ now
have an HLA layer, which is useful for protection for both secure and proprietery information,
and, of course, for interoperability.

DEVS is a powerful and flexible discrete event modeling environment with many attractive
features with respect to agent modeling. In particular, it may provide a superior platform to
Swarm with respect to basic model scheduling, model composition and hierarchical structures, and
variable structure modeling, all of which are important for the DS project. Furthermore, the HLA
layer can prove to be an important asset as our agent models are connected to other simulation
packages, e.g. our stochastic event simulator.

Where DEVS/Java is weak is on the support provided by the development environment, espe-
cially graphical elements. On the other hand, such capabilities are increasingly available in the Java
environment in which DEVS now lives. Furthermore, the UA team is able to provide examples of
graphical packages which they have developed for projects similar to ours, in particular the Joint
Measure project with the Navy within which the HLA layer was developed. Beyond that, UA is
able to provide substantial support for continued enhancement and development of the software
platform. Such assistance is available at student rates, and can be flexibly negotiated.

4.2.2 Swarm, Santa Fe Institute [18]

Swarm is a well established object-oriented agent modeling platform developed by the Santa Fe
Institute for Artificial Life agent-based simulation.

Swarm is a set of Objective C libraries, now supplemented with a Java layer. We have installed
and have available demo applications for both versions.

It has been the assumed default platform for the Decision Structures project. Since members
of the DS project are quite familiar with Swarm already, we do not it in detail here. Rather, we
focus on pointing out some particular aspects of Swarm and how they compare with devs for our
application.

4.2.3 Comparison and Recommendation

Swarm supports virtually all of the requirement above, especially the hierarchical architecture,
instrumentation (called “probes”), and graphical and environmental support. On the other hand,
Swarm is definitely a programming environment in which to develop applications, and is thus not
the lightest prototype environment possible.

Furthermore, unlike devs, Swarm has no unifying mathematical framework for discrete event
simulation. Rather, it is a collection of programming structures and practices which allows efficient
construction of different agent models. Basically, devs provides a solid platform with a long
track record and, most importantly, provable analytical properties. Swarm is a programming
environment which support systems development in which systems properties can be demonstrated
and experimented on.

For example, in Swarm scheduling is supported within hierarchical models by merging atomic
schedules to higher and higher levels, eventually constructing a global schedule for the application.
In devs there can no global schedule and no global clock. Instead, the only global information
propogated up the model hierarchy is the time of the next event.
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This is both an advantage and a disadvantage for devs. The devs methodology is a particular
one, while Swarm allows the implementation of any mathematical methodology. However, the devs
methodology, while particular, is also very general, falling out from the history of mathematical
developments in mathematical systems theory as the minimally complex system necessary to per-
form discrete event simulation. It has been proved that classical simulation methodologies from
differential equations to cellular automata are all expressible as devs [21].

This can be expressed (here with little explanation) by:

Theorem 5 (Universality of devs) Every devs-like system is a homomorphic image of a devs
I/O system.

Theorem 6 (Uniqueness of devs) Every devs-like system has a canonical realization by a devs
I/O system.

Here “devs-like system” is referring to systems with devs interfaces, which can be understood as
any system with an input-output interface, which is a shockingly broad class of systems.

Thus one quite interesting suggestion we would like to make is that the Swarm programming en-
vironment be used, but to implement devs systems and methodology. This is one way to approach
the problem of capturing the best of both worlds: use a general-purpose programming platform
which supports agent programming and simulation in general, but implement these agents consis-
tent with a proven mathematical methodology.

4.3 Secondary Development Environments

We now very briefly survey a few other packages which we have been made aware of to support
agent simulations.

4.3.1 Mozart/OZ (European academic consortium) [12]

Mozart-Oz is a programming language and a program development system that is well suited for the
implementation of agent based simulations in particular and distributed computations in general.

Mozart-Oz is a mature system that has been under development for about 10 years in a collab-
oration between German Institute of AI, Univ of Saarbruecken, Univ of Louvain and the Swedish
Institute of Computer Science. Its web page points to a very impressive list of papers on its
structure, implementation and applications.

Two papers on it will be presented at the Internat Logic Prog Conf 1999 in Las Cruces NM Nov
29 - Dec 3, 1999. The paper on agent related simulations (see above URLpapers) seems particularly
relevant to our work.

Mozart is a programming environment that permits seamless transfer of Oz program execution
from one machine to a cluster of many machines. Oz is a programming language that combines the
best features of Logic, functional, imperative. and object oriented programming into a powerful and
elegant programming language, much like UNIX once combined the best features of then current
mainframe operating systems into a new and elegant operating system that we now like so much.

4.3.2 AgentSheets [1]

This is a very interesting spreadsheet-oriented approach to generalized agent modeling, which would
be appropriate for rapid prototyping. Graphical support and probing are implicit. Too bad it runs
only on Mac! From the main web page:
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Agentsheets is an authoring environment developed by Alex Repenning at the Center
for Lifelong Learning and Design (L3D) located in the University of Colorado at Boulder.
It features a versatile construction paradigm to build dynamic, visual environments
for a wide range of problem domains such as art, artificial life, distributed artificial
intelligence, education, environmental design, object-oriented programming, simulation
and visual programming. The construction paradigm consists of a large number of
autonomous, communicating agents organized in a grid, called the agentsheet. Agents
can use different communication modalities such as animation, sound and speech. To
view a sample of Agentsheets applications select here.

The construction paradigm supports the perception of programming as problem
solving by incorporating mechanisms to incrementally create and modify spatial and
temporal representations. In a typical utilization of Agentsheets, designers will define
the look and behavior of agents specific to problem domains. The behaviors of agents
determine the meaning of spatial arrangements of agents (e.g., what does it mean when
two agents are adjacent to each other?) as well as the reaction of agents to user events
(e.g., how does an agent react if a user applies a tool to it?).

4.3.3 The Paracell Programming Environment (Flavors Corp.) [13]

Flavors is the former leader in knowledge systems programming, object-oriented LISP. Paracell is a
massively parallel programming environment. Agents are implemented as simple single rule-based
components in a uniform topology and architectures.

Paracell is mostly used for manufacturing process control, job-shop scheduling, etc. It is more
appropriate for hardware development applications than the agent environments we are considering.

4.3.4 Strictly Declarative Modeling Language (SDML) (Centre for Policy Modeling,
Manchester Metropolitan U.) [17]

SDML is a declarative modelling language based on rulebases and databases and implemented
in Smalltalk. Models can be constructed from many interacting agents, and hierarchical agents
are supported. Although the primary paradism is forward and backward chaining, partial object-
oriented facilities are available, as well as hierarchical temporal composition. Primary applications
have been in economic and market modeling.

4.3.5 Ascape (Center on Social and Economic Dynamics, The Brookings Institute)
[3]

From the main web page:

Ascape is a software framework for developing and analyzing agent-based models.
In Ascape, agent objects exist within scapes; collections of agents such as arrays and
lattices. These scapes are themselves agents, so that typical Ascape models are made up
of “collections of collections” of agents. Scapes provide a context for agent interaction
and sets of rules that govern agent behavior. Ascape manages graphical views and
collection of statistics for scapes and provides mechanisms for controlling and altering
parameters for scape models.

Ascape is written in Java. Primary applications are economic and market modeling.
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Marcus Daniels, the primary engineer of the Swarm Development Group, says “Ascape has
strong features for doing lockstep/temporally-flat, CA-like simulations. It includes several fairly
interesting/complex models” [Swarm-support email list, 4/13/00].

4.3.6 Repast (University of Chicago’s Social Science Research Computing) [14]

Java classes to support agent-based modeling. From the web page:

It provides a library of classes for creating, running, displaying and collecting data
from an agent based simulation. In addition, Repast can take snapshots of running
simulations, and create quicktime movies of simulations. Repast borrows much from
the Swarm simulation toolkit and can properly be termed “Swarm-like.” In addition,
Repast includes such features as run-time model manipulation via gui widgets first
found in the Ascape simulation toolkit.

From Daniels:

Repast doesn’t quite seem to be as responsive to me as Ascape. Of course, that’s
pretty much a useless remark. But, hey, so long as we’re cloning each others’ GUIs, I
guess it is in some sense it is appropriate.

Repast has a more general scheduling engine than Ascape. It’s a lot like Swarm’s,
but uses some different idioms. And of course, Repast and Ascape are ‘pure java’, which
in principle means code portability is less of a problem, i.e. it is easier to make demos
on the web, migrate code, and that sort of thing.

Finally, Repast has a nice multilayer raster display, where you can turn different
layers on and off. (In heatbugs, for example, you can see the bugs, the diffusion space,
or both.)

Repast is a respectable Java-based simulator implementation with interfaces highly
similiar to many in Swarm.

4.3.7 Logic for Ecological Modeling (LEM, Serguei Krivov, Jawaharlal Nehru Uni-
versity) [11]

An interesting and flexible package, but too specifically tailored to ecological models. From the
web page:

LEM supports interactive development of individual based ecological models. There
is a special language for specification of models. No knowledge of computer languages
is required for development of new models, and it seems that LEM is the first general
purpose individual-based modeling tool that could completely relieve ecologists and
artificial life researchers from programming work. LEM is a forward chaining rule based
system. The behavior of agents and reaction of environment on the actions of agent
are specified by the sets of production rules. In evolutionary models each agent has its
own rule base that also serves as a set of chromosomes. In simple ecological models the
rule base is shared by the specie of agents and it should be preprogrammed. There is a
special rule table that defines the reactions of the environment to the actions of agents.
LEM runs under Windows 95/98/NT. It could be ported to OS/2. It has professional
quality visual interface comparable with the best examples of Windows programming.
LEM comes with the set of tools that facilitate development of individual based models.
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