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Abstract 

In this paper we present some ideas about how to formally relate various uncertainty 
representations together in a taxonomic structure, capturing both syntactic and seman- 
tic generalization. Fuzziness and nonspecificity are presumed as primitive concepts of 
uncertainty, and transitive and intransitive methods operating with nonspecificity and 
fuzziness are introduced to generate a base class of hybrid uncertainty representational 
forms. Additive, maximal, and interval constraints then complete the characterization 
of the most important hybrid forms. © 1998 Elsevier Science Inc. All rights reserved. 
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1. Introduction 

Recen t  years  have  seen a p ro l i f e ra t ion  o f  me thods  in add i t i on  to p robab i l i t y  
theo ry  to  represen t  i n f o r m a t i o n  and  uncer ta in ty .  These  new m a t h e m a t i c a l  
s t ructures  include fuzzy sets and  systems [16], fuzzy measures  [25], r o u g h  sets 
[17], r a n d o m  sets [6,13] ( D e m p s t e r - S h a f e r  bod ies  o f  evidence [7,20]), poss ib i l i ty  
d i s t r ibu t ions  [2], imprecise  p robab i l i t i e s  [24], etc. W e  can  ident i fy  these fields 
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collectively as General Information Theory (GIT) [14]. So it is clear that there 
is a pressing need for the GIT community to synthesize these methods, search- 
ing Out larger formal frameworks within which to place these various compo- 
nents with respect to each other. And indeed there is a growing movement in 
that direction [4,15]. 

There has also been significant work to develop the semantic relations 
among these components of GIT [21]. Each was originally intended to capture 
different semantic aspects of uncertainty and information. Traditionally, these 
semantic criteria include such categories as fuzziness, vagueness, nonspecificity, 
conflict, imprecision, belief, plausibility, randomness, etc. 

Fig. 1, adapted from Klir and Yuan [16], p. 268, shows a typical example of 
the understood relations among broad classes of uncertainty types, and acts as 
our point of departure. Klir and Yuan classify uncertainty into two main 
forms: ambiguity and fuzziness. Ambiguity is further divided into the categories 
of nonspecificity and conflict. 
• Ambiguity: Webster [26] defines ambiguity as: 
1. Doubtfulness or uncertainty of meaning or intention: to speak with ambi- 

guity. 
2. The condition of admitting more than one meaning. 

Mathematically, ambiguity is identified with the existence of one-to-many 
relations, that is, when several alternatives exist for the same question or pro- 
position. Nonspecificity is associated with unspecified alternatives, and conflict 
with the existence of several alternatives with some distinctive characteristics. 
Possibility theory and probability theory are therefore appropriate formalisms 
to represent these cases, respectively. Dempster-Shafer (DS) Theory [15,20] 
provides an ideal framework for the study of ambiguity in general, as it both 
enlarges the scope of traditional probability theory, and includes possibility 
theory as a special case. 
• Fuzziness: Fuzziness is identified with lack of sharp distinctions. Synonyms of 
"fuzzy" include: blurred, indistinct, unclear, vague, ill-defined, out of  focus, inde- 

finite, shadowy, dim, obscure, misty, hazy, murky, foggy, and confused [26]. Fuz- 
zy logic (or fuzzy set theory) is usually used to formalize this kind of 
uncertainty. In fuzzy logic the truth value of a proposition ranges between 0 
and 1. The amount of fuzziness of a fuzzy logic proposition is defined as the 
lack of distinction between the proposition and its negation (or between a 
set and its complement in fuzzy set theory) [27,19]. 

Indeed, it is precisely the lack of distinction between sets and their comple- 
ments that distinguishes fuzzy sets from crisp sets. The less a set differs 
from its complement, the fuzzier it is [15], p. 298. 

In other words, the more something is and is not, at the same time, the fuzzier it 
is. As degree of truth substitutes for binary truth, we find that what is true to a 
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degree, is also false to the inverse degree. In the limit, when something is true 
and false to the same degree we have paradox. 

The authors have been doing significant work with hybrid mathematical 
structures which, it would seem, thereby capture or represent multiple forms 
of uncertainty. In particular we have been working with random sets [IO] 
and intervals [ 11,121, which combine nonspecificity and randomness; and with 
evidence sets [l&19], which introduce fuzzy membership weighted by a prob- 
ability restriction from the DS theory of evidence [20]. We therefore have an 
interest in how these hybrid mathematical forms can be incorporated both 
within a larger mathematical framework, and within the understanding of 
the interactions among these semantic uncertainty categories. 

In this paper we present ideas about how to develop a simple, exhaustive, 
formal taxonomic basis for the representation of hybrid uncertainty forms suf- 
ficient to accommodate these particular structures, and other hybrid and com- 
plex uncertainty representation forms. In so doing we depart from the view 
represented in Fig. 1, proposing fuzziness and nonspecificity as the primitive 
forms of uncertainty, from which the others are derived by combination and 
restrictive constraints. 

Further, we make the mathematical development of the formalism interac- 
tive with their semiotic basis in different semantic interpretations. In this way 
we aim not only to achieve greater mathematical elegance and generalization, 
but also a greater semantic coherence among many possible interpretations. 

2. The semiotics of uncertainty representations 

Our basic assumption, derived from the semiotic perspective on formal lan- 
guage [5], is that mathematical systems are fundamentally independent of their 
interpretations. That is, we are free to interpret the symbols and productions of 
a mathematical system in any way we choose, constrained only by the internal 
logic and consistency of the formal system itself. 

Uncertainty 

Fuzziness: Ambiguity: 
Fuzzy Sets Dempster-Shafer Theory 

Nonspecificity: Conflict: 
Possibility Theory Probability Theory 

Fig. 1. A semantic taxonomy of uncertainty types (adapted from Klir and Yuan [16]). 
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Of course, this does not require that formalisms and their interpretations do 
not interact at all. First, real formalisms are almost all developed within a spe- 
cific semantic context, which is surely not harmful. Then, although different 
formalisms, with different axiomatic bases, do not require particular interpreta- 
tions, they do provide different abilities to represent natural language concepts 
or scientific applications. 

Furthermore, in general a formalism might have multiple possible interpre- 
tations, each of which is “valid” for those who find a benefit in using one in 
that way. Similarly, it might be possible, and even desirable, to represent a cer- 
tain semantic content in more than one formal system. Ideally, syntactic (math- 
ematical) generalization can both aid and be aided by the semantic analysis 
available in terms of the conceptual categories outlined above. 

Thus we arrive at a picture illustrated in Fig. 2. At the syntactic level, var- 
ious mathematical systems have formal entailments among them, as indicated 
by the dashed arrows. Each may also have multiple semantic interpretations, as 
indicated by the solid arrows, and vice versa. What is demanded is that the 
mathematical and semantic development go on in the context of each other. 
So, for example, if a mathematical system has a particular interpretation, 
and at the same time a formal relation to another mathematical system, then 
we should attempt to interpret that second system in the original semantic con- 
text. 

A specific example using the classical structures for uncertainty representa- 
tion in GIT is shown in Fig. 3. Fuzzy sets are almost always interpreted as lin- 
guistic variables modeling the fuzziness of human language, and probability 
distributions as a constraint on the likelihood or frequency of occurrence. Si- 
milarly, possibility distributions are commonly interpreted as forms of “elastic 
constraint” or graded nondeterminism, and simple intervals as results of 
imprecise observations or measurements. But formally, we know that both 
probability and possibility distributions are specialized fuzzy sets, and intervals 
are specialized possibility distributions. So it is incumbent on us to at least 
consider, for example, interpreting a probability distribution as a linguistic 
variable, or an additive fuzzy set as a statement of likelihood. 

Syntactic 

Formalism 1 4- - _) Formalism 2 

f /\/\ 

Application 1 Application 2 Application 3 

Fig. 2. Formalisms and their applications. 
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i 

Syntactic 

Fuzzy 
Sets 

Probability 
Distributions 

Conflict: 
Frequency/ 

Chance 

Possibility 
Distributions 

lntirvals 

Graded 
Fuzziness Nondeterminism: Pure Nonspecificity 
Linguistic Elastic Imprecise 
Variables Measurements Constraints 

Fig. 3. Some formalisms and their applications in GIT. 

3. Mathematical definitions 

Assume a universe o f  discourse O = {co} o f  some as yet  unspecified cardin-  
ality. Somet imes  be low we restrict O ={coi} ,  1 ~< i ~< n to be finite. Other  times, 
o = ~ o r  o = [0, 1]. 

Deno te  a subset A C_ f2, and a class cg = {A} C_ N(O) ,  where ~ ( O )  is the 
power  set (set o f  all subsets) o f  O. A fuzzy subset of  O, denoted  A_Ca, is defined 
by  its member sh ip  funct ion #~ : O ~-+ [0, 1], also denoted  as just  A. The  value 
A(co) is usual ly  in terpre ted  as the degree or  extent  to which co E A. 

Let  an operator ® be a b inary  funct ion (9 : N 2 H N which is commuta t ive ,  
associative,  usual ly monoton ic ,  and  with identify 0. Fo r  a given fuzzy set A, 
use ®o)~A(co) as the app rop r i a t e  ope ra to r  no ta t ion  for  applying • over  the ele- 
ments  of .4.  I f  ®~ca-d = 1 (or, if  O is finite, Gn,=a ~(col) = 1) then A is said to be 
normal by O, or  to be a distribution [10]. 

W h e n  • + ,  so tha t  ~ E a ' 4 ( c o )  1 " - = = -= ( o r ~ i = l A ( c o i )  1), then A is an ad ,  
ditive probability distribution. W h e n  • = V, where  V is the m a x i m u m  opera tor ,  
so tha t  supo~EaA(co ) = 1 (V~=lA(coi) = 1), then A is a max ima l  possibility distri- 
bution. 

Deno te  the set o f  all fuzzy subsets o f  O as the fuzzy power  set [0, 1] °.  The  
weights o f  a type-2 fuzzy subset are themselves fuzzy subsets o f  [0 1], and  
are thus defined by  member sh ip  funct ions o f  the f o r m  .4 : (2 ~-+ [0, 1] 0,1. A le- 
vel-2 fuzzy subset is a fuzzy subset  o f  the fuzzy power  set o f  O, and  thus defined 
by  m e m b e r s h i p  funct ions  o f  the fo rm .4 : [0, 1] ° H [0, 1]. 
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Given a probability space (X, C, Pr), where (.) denotes a vector, then a fimc- 
tion S : X H 8(Q) - {0}, w h ere - is set subtraction, is a random subset of 52 if 
S is Pr-measurable, so that VA C Q, S-‘(A) E C. Thus a general random set S 
associates a probability (Pr o S-l)(A) to each A 2 52. Let m : S(X) H [0, 11, 
where S(X) C g(Q) - 0 is the image of S, and m := Pr o S-l. The focal set 
of a random set S is then defined as F(S) := {A E 5’(X): m(A) > O}. 

When F(S) is finite (for example, when either X or Q is finite), then it is 
common (e.g. [3]) to much more simply begin by defining m : P(C2) H [0, 11 
as an evidence function, with the restrictions that m(0) = 0 and 
cAcQ m(A) = 1. Then Y := {(AZ, mj)} . IS called a finite random subset (or just 
random set where possible without confusion) of Q, where 
1< j<N := ]Y] <2”,mj := m(Aj), and mj > 0. Here the focal set becomes 
F(Y) := {AZ: mj > O}. Also, for our purposes we can regard a random set 
Y as a fuzzy subset of Y(Q), so that Y : P(Q) H [0, l] and Y = m, with the 
additional additivity requirement that xAEasz Y(A) = 1, and such that 
A E P”(Y) * Y(A) > 0. 

Random set theory is formally equivalent to the DS theory of evidence 
[7,20]. Here m is called a basic probability assignment, and { (Aj, mj)} a body 
of evidence. In DS theory emphasis is placed on the belief and plausibility fuzzy 
measures Bel, Pl : 8(Q) H [0, 11, where VA C Q 

Bel(A) := Cmj, PI(A) := Cmj 
AjCA A,IA 

andAIB:=AnB#0. 
Given a class V C g(Q), denote c&?(%‘) := (9 : F(9) C W} as the set of all 

finite random subsets of Sz whose focal sets are all in %?. Note that 
‘dY E W(W), ]F(Y)] < 00. Denote 

52 := {I := [Zt,ZJ: zt,z, E R,Z, <I,}, 

9(Z) := {Z’ E 9: z’ c I}, z E 9 

as the class of all closed interval subsets of R, and the class of all closed sub- 
intervals of Z E 9, respectively. A random interval ~2 is a member of .%(s) 
[11,12]. 

Interval-valued fuzzy subsets are defined by membership functions of the 
form A” : f2 w 9( [0, l]), so that their membership grades are closed interval 
subsets of [0, 11. Rocha [l&19] has generalized interval-valued fuzzy sets by in- 
troducing evidence sets, defined by membership functions of the form 
A : 52 c-) 92(9( [0, 11)). Thus an evidence set maps each element of Q to a body 
of evidence whose focal elements are closed intervals of [0, 11, or in other words 
to a random subinterval of [0, 11. 
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4. Methodology 

We now outline our overall method for developing this taxonomic hierarchy 
in a number  of  steps: 
1. We begin with both a mathematical  and a semantic foundation based on the 

departure f rom certainty in two independent directions: 
(a) Nonspecificity as the fundamental  action of forming a homogeneous 
collection of  multiple possibilities; and 
(b) Fuzziness as the fundamental  action of  allowing a fuzzy degree of 
truth for a previously certain qualification, thereby creating a heteroge- 
neous collection of  a possibility and its weight. 

2. We then proceed to provide two methods for the construction of  hybrid 
forms for uncertainty representation based on these primitive syntactic ac- 
tions of  collecting and weighting: 

(a) A transitive method generates a lattice of  possible forms. 
(b) An intransitive method generates a tree of  possible forms represented 
as postfix strings. 

These methods end up being largely, but not completely, equivalent, as dis- 
cussed below. 

3. The next step is to apply meaningful constraints on the weightings, includ- 
ing additive, maximal, and interval constraints. 

4. The final step is to consider the meaningfullness and usefullness of  the re- 
maining structures, and eliminate irrelevant forms. 
Now we discuss aspects of  this method in more detail, referring ahead some- 

times to the results which are shown in Figs. 4-7, and discussed in detail in Sec- 
tion 5. 

4.1. Foundations in primitive uncertainty 

Consider first that  our universe of  discourse is finite, with (2 --- {a, b , . . . ,  z}. 
We then want to describe a situation in which we ask a question of the sort 
"what  is the value of  a variable x which takes values in f27". 

We introduce the assumption here that  x can actually only take a unique va- 
lue in f2, that  is that x E f2. In this way we distinguish uncertainty representa- 
tions as disjunctive rather than conjunctive: x takes on exactly one value in f2, 
and we are interested in characterizing our knowledge, and its certainty or un- 
certainty, as to which value that  is. 

When there is no uncertainty, or in other words complete certainty, we have 
a single alternative, say x = a. Or, in logical terms, we would say that  the pro- 
position p: "the value of  x is a" ,  is TRUE.  

There are then two primitive operations which can change our knowledge of  
x, each of  which represents a different form of  uncertainty. 
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• Nonspecificity: This operation introduces more than one possible answer to the 
question, while leaving the answers themselves unqualified. This kind of  pure 
nonspecificity implies that our knowledge of which element x is not restricted 
to a unique a. In other words, we establish a collection of  possible values. Math- 
ematically, this operation introduces a subset of  possible answers. Logically, we 
now have a set P of propositions p, one for each member of some group of  the 
~o c f2, but the value of  each proposition is TRUE.  Formally, this operation is 
represented as a simple homogeneous collection, a subset A c_ f2, for example 
A = {a, b} E ~(~2). 
• Fuzziness: This operation introduces a fuzzy degree of  truth to qualify the an- 
swer to the question, while still leaving only a single answer. This kind of pure 
fuzziness implies that our knowledge of  the value of  x is fuzzy or blurred, as it 
rests on just a single value a, but to a degree. Mathematically, a numerical 
weighting #(a) c [0, 1] is introduced on the answer a. Logically, the proposition 
p is still "the value of  x is a", but it's truth value is #(p) c [0, 1]. Formally, this 
operation is represented by a heterogeneous collection, a vector 
(x, #(x)) E f2 x [0, 1], for example (a, 0.3). 

We assert not only that collections and weighted elements are the paradig- 
matic forms of primitive uncertainty, but also that the actions of  collecting 
or weighting alternatives with a fuzzy degree are a sufficient procedural founda- 
tion for the production of more complex forms of uncertainty structures. In- 
deed, these two actions are used below as the two basic operations of  an 
uncertainty generation grammar leading to the construction of such mathema- 
tical structures. 

We also assert that this is well justified and motivated both in its mathema- 
tical simplicity and its semantic coherence. In other words, we believe that all 
other more complex forms entail fuzziness, nonspecificity, or both, at both the 
mathematical and semantic levels, although perhaps with the inclusion of ad- 
ditional constraints, which we will introduce below. 

One consequence of  this view is to reject the idea that probabilistic conflict 
or possibilistic imprecision are independent categories of  uncertainty. Rather, 
each is a more complex expression of uncertainty involving each of  these fun- 
damental forms of fuzziness and nonspecificity. 

In other words, a probability distribution in general does not represent the 
semantic category of  conflict in any pure sense. Rather, it also entails nonspe- 
cificity, in the collection of elements of the universe on which it takes values; 
and fuzziness, in the various weighting that those values can take, albeit they 
have an additive constraint present among them. 

4.2. Taxonomic development 

In the taxonomic development itself, the intention is to start from the state 
of  pure certainty (x = a), introduce the first principles of primitive uncertainty 
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representations and transformations (collecting and weighting), and apply 
them iteratively to generate the basic framework of  all the more complex 
forlns. 

We have identified two distinct overall methods. 
• T r a n s i t i v e :  In this approach we consider each entity as either a homogeneous 
collection (a subset), or a heterogeneous c o l l e c t i o n  (a vector). We then alterna- 
tively apply fuzzy weighting and collecting to either the whole or the parts of  
the collection. For  example, weighting the parts of  a simple collection, yielding 
a classical fuzzy set, suggests weighting the parts of a weighted element sepa- 
rately. In this way we end up applying transformations of  weighting and col- 
lecting consistently to all entities seen. Transitivities exist in the sense of  
multiple paths of  transformations resulting in the same structures. Transforma- 
tions overall are irreversible, and a lattice structure results: The transitivities in 
the lattice define equivalence classes of  transformations. Some of  these equiva- 
lent transformations involve transformations through intermediate forms. For  
example, weighting the parts of  a subset is equivalent to collecting fuzzy ele- 
ments, each resulting in a fuzzy set. Or, making a whole collection a weight 
is equivalent to making the weights of a weighted element collections. These 
paths and the intermediate entities are kept distinct. Other equivalent transfor- 
mations do not involve intermediate entities. For  example, making the parts of  
a collection is equivalent to combining separate collections into a new collec- 
tion. These collection transformations are identified in the diagram. 
• I n t r a n s i t i v e :  In this approach generalizations apply in a strict sequence, so 
that a generalization is only applied to the portion of its representation which 
was last generalized. Each of  these steps can be seen as a production rule. This 
allows the transformations to be reversible, and introduces a significant 
amount  of  order to the space of  hybrid representations. An uncertainty struc- 
ture is uniquely defined by the sequence of  rules that produce it from the initial 
no uncertainty situation (x = a). Furthermore,  this history of  generalization 
constraint the type of uncertainty generalization that can be applied to the pre- 
sent structure, since only the portion of  its representation that was previously 
generalized can be generalized again with one of  the two production rules. 
What  results is a tree structure generated by a simple postfix string production 
system. For  the grammar, the atoms are {F, N} for fuzziness and nonspecifi- 
city, and the productions are: 

X ~-+ XF, X v-~ XN. 

So using just these two concepts of  fuzziness and nonspecificity, with either 
method we can describe a variety of  foundational representations, including a 
variety of  simple sets, weighted elements, and classical fuzzy sets. After more 
iterations, with other levels of  fuzziness or nonspecificity added in, more com- 
plex forms such as type 2 fuzzy sets, set-valued fuzzy sets, "fuzzy classes", and 
"fuzzified classes", appear. 
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In both methods, each application of  a transformation introduces another 
"level" of either nonspecificity or fuzziness to the prior structure. We use the 
notations IF I E ~¢r :_- {0, 1 ,2 , . . .}  and IN[ E ~ to indicate the number of  le- 
vels of  fuzziness and nonspecificity present, respectively. Denote 
INF[ := ([NI, IFI) E ~¢r2, which is then the overall "uncertainty cardinality" 
of  a given structure, however it was generated. 

4.3. Syntactic  constraints 

Once the overall taxonomic structure has been generated, it is possible to 
identify structures which have both fuzziness and nonspecificity present, that 
is where INFI >/ (1, 1). Under these conditions, additional constraints can be 
applied to achieve traditional GIT structures. 

Normalization: Fuzzy sets are one of  the simplest structures which contain 
both fuzziness and nonspecificity, in that they are a collection of  weighted ele- 
ments. If  a normalization operator ® is applied to this collection of  weights, the 
resulting structures become appropriately distributed. We identify two of  par- 
ticular significance: 
• Additive: When ® = ÷,  then the resulting structure is probabilistically dis- 

tributed. For  example, fuzzy sets become probability distributions, and fuz- 
zified classes become random sets (see below). 

• Maximal." When ® = V, then the resulting structure is possibilistically dis- 
tributed. For  example, fuzzy sets become possibility distributions, and fuzzi- 
fled classes become possibilistic sets. 
Universe o f  discourse: Constraints on the base universe of  discourse f2 are 

also available and used somewhat in the results below. For  example, we can 
let (2 = N or f2 = [0, 1]. 

Intervals: What we call "set-valued fuzzy elements", or structures with the 
general form Icoi,M(e)i)), where M(coi) E ~([0, 11) , are generated very early 
in either the transitive or intransitive taxonomies. These are the simplest struc- 
tures which contain both fuzziness and nonspecificity in the form of  a weight 
which, conversely to fuzzy sets, is i t se l fa  collection. Such structures, and others 
closely related to them, for example set-valued fuzzy sets, can be constrained to 
make M(coi) E ~([0, 1]), so that weights are interval subsets of [0, 1]. This re- 
sults, for example, in interval-valued fuzzy elements and interval-valued fuzzy 
sets. 

Given an existing set-valued structure, the method to affect the transforma- 
tion to an interval-valued structure is actually quite simple. Given M(coi) E 
([0, 1]), where IM(coi)l < cxz, construct a new weight Mr(COl) C ~ ([0, 1]) as the 
simple closure 

M'(e)i) := [min{x E M(coi)}, max{x E M(coi)}]. 
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These additional mathematical constraints allow greater semantic expressi- 
bility. Specifically, the additivity of probability allows the expression of con- 
flict, or randomness. And the maxitivity of possibility allows the expression 
of ordinal concepts surrounding distances and capacities 191. 

4.4. Semantic interpretation 

Finally, now that these basic structures have been identified, they are avail- 
able for interpretation. Attempting to semantically identify these various struc- 
tures results in three possible situations: 
l Traditional forms are recovered, for example fuzzy or random sets. 
l Nontraditional, but meaningful and suggestive, forms are generated. This is the 

case, for example, with the structure we call the fuzzy class, a collection of ar- 
bitrarily weighted subsets, whose additively constrained form is a random set. 
Both of these first two forms are identified on the diagrams with an appro- 

priate label. But in addition a final case can result: 
l Nontraditional, and likely unmeaningful forms are generated. 

These are labeled in the diagrams using quotation marks. 

5. Results 

We now describe some results of our approach. First we discuss the specific 
application of both the transitive and intransitive methods. Then the particular 
basic and constrained forms are enumerated. 

5.1. Methods 

Results for the transitive method are shown in Figs. 4 and 5, and those for 
the intransitive method are shown in Figs. 6 and 7. 

5.1.1. Transitive method 
Partial results for the transitive method are shown in Figs. 4 and 5. Fig. 4 

shows the base forms through INI + IFI < 3, and some of the resulting con- 
strained forms. Fig. 5 continues with some structures with INI + IFI 2 3, con- 
cluding with evidence sets. 

In the figures, each particular form is identified by its label and canonical ex- 
ample. Dashed boxes surround forms with identical INFl. Transformations op- 
erate on parts or whole, and are so identified. Not all possible transformations 
are shown, in order to make the complexity of the diagrams reasonable to handle. 

Transformations are of three distinct kinds: 
1. Weighting: Solid arrows indicate fuzzy weighting. Weighting transforma- 

tions can be one of the following: 
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(a) To give weights to any of the parts of the preceding structure; 
(b) To give a weight to the whole of the preceding structure; or 
(c) To make the whole preceding structure itself a weight of a new ele- 
ment. 

2. Collecting: Dashed arrows indicate nonspecific collecting. Collecting trans- 
formations can be either: 

(a) To make any of the parts of the preceding structure into a collection; 

;;) T o collect together whoZes of the preceding structure. 
3. Constraint: Dotted arrows indicate forms of constraint, and are appropri- 

ately labeled. 
Note that the basic transformations of collecting and weighting create high- 

er levels of homogeneous and heterogeneous structures, respectively. Thus the 
base forms are essentially multiply-layered hierarchical structures of alternat- 
ing homogeneous subsets and heterogeneous vectors. 

A note must also be made about the “make whole weight” transformation 
number lc above. This method proceeds by taking a given object, for example 
a subset {a, b} c 0, and using the structure of that object to be the structure of 
a weighting on a new element. Thus this transformation implies that the pre- 
ceeding structure must be capable of being a weight, and thus implies the uni- 
verse of discourse constraint such that 52 = [0, 11. 

Thus, for example, the transformation from Fig. 4 taking a subset to a set- 
valued fuzzy element {a, b} H (a, {0.2,0.3}), should actually be seen as the ser- 
ies of transformations 

{a, b} t-$ {0.2,0.3} H (a, {0.2,0.3}). 

5.1.2. Intransitive method 
Partial results for the intransitive method are shown in Figs. 6 and 7. As 

above, Fig. 6 shows the base forms through IN] + JF] < 3, and some of the re- 
sulting constrained forms, and Fig. 7 continues with some structures with 
]N] + ]FJ k 3, concluding with evidence sets. 

In these figures, the arrows are similar to those in Section 5.1.1, except that 
types of fuzziness and nonspecificity transformations are not distinguished. Re- 
call that unlike the transitive method which can use its operations in any part 
of the representation of an uncertainty structure, the intransitive method is 
constrained to applying its methods to only the portion which was last general- 
ized. 

For example, fuzzy sets are constructed (uniquely) by applying the fuzziness 
production rule to a crisp set (itself a nonspecific structure). This operator as- 
sociates a weight with each element of the crisp set. Thus, to generalize fuzzy 
sets with this method, we can apply either of the weighting or collecting pro- 
duction rules to these weights. 
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~ F u z z i n e s s  
- -  - -  - -  Nonspecificity - -  

. . . . . . . .  Constraint. . . . . .  

N : Nonsepcificity 

F = Fuzziness 

/ 
2 

NFNF 
{<a,{<.3,.2>,<.2,.5>}>, 
<b,{<.4,.3>,<.2,.6>}>} 

Type II Fuzzy Set 

2,1 

NFN 
{<a,{.2,.3}>,<b,{.3,.4}>} 
Set-Valued Fuzzy Set 

\ 

\ 
r . . . . .  " ~ , 1  

NFNN 
{<a,{{.2,.3},{.3,.4}}>, 
<b,{{.3,.4},{.5,.6}}>} 

"Class-Valued Fuzzy Set" 

. . . . . . . . .  

NFNNF 
{<a,{<{.2,.3}.6>,<{.3,.4},.7>}>, 
<b,{<{,3,.4},.1>,<{.5,.6},.2>}>} 

"Fuzzy Class-Valued Fuzzy Set" 

, 

Interval 

{<a,{<[.2,.3],.6>,<[.3,.41,.7>}>, 
<b,{<[.3, .4],.1 >,<[.5,.6], .2>}>} 

"Fuzzy Interval-Class-Valued Fuzzy Set" 

Additive 

{<a,{<[.2,.31,.4>,<[.3,.41,.6>}>, 
<b,{<[.3,:4],.3>,<[.5,.61,.7>}>} 

Evidence Set 

NNF 
{<{a,b},.3>,<{c,d},.4>} 

Fuzzy Class 

Additive 

{<{a,b},.3>,<{c,d},.7>} 
Random Set = 

Body of Evidence 

.Q=R, 
Interval 

t 
{<[-1,31,.3>,<[2,Sl,.7>} 

Random Interval 

Fig. 7. Partial tree of  uncertainty representations, intransitive method, [N 1 + ]F[ /> 3. 

In other words, whatever generalization we pursue, it will always result in 
some sort of  set structure with more and more complicated kinds of  weights. 
In a sense, the sequence of  transformation preserves or inherits the primordial 
structure with [NF[ = (0, 0). 

5.2. Resulting structures 

We now discuss in detail the hybrid information structures generated by 
these methods. 
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5.2.1. Basic structures 
Table 1 lists the basic structures (those involving uncertainty and fuzziness 

in various combinations, with no other constraints) generated. The left column 
indicates INFI. For  example, a Type 2 Fuzzy Element has two levels of  fuzzi- 
ness and one level of  nonspecificity. For  each structure generated, we also in- 
dicate a simple canonical example drawn from the universe of  discourse 
f2 = {a, b, c}. Finally, we indicate the appropriate label or description of  the 
structure. Some of these labels are novel. Those labels in quotation marks 
are of  questionable semantic significance. 

We now describe these forms in detail. They are listed in JNF] partial order, 
and include an example for each. 

(0, 1): The fuzzy element, for example (a, 0.3), is the single form representing 
pure fuzzy weighting. It is a single element given a degree of  truth. This form 
is generally not recognized in set theory, but can be considered a fuzzy pro- 
position in fuzzy logic. 
(1,0): The subset, for example A = {a, b}, is the single form of  representing 
pure nonspecific collecting. This has obviously been a standard mathemati- 
cal form for centuries. 
(0, 2): These forms have two levels of fuzziness only. 

• Second order fuzzy element (a, (0.3, 0.3)): In this form, the weight of a 
fuzzy element is itself given a weight. Although this form is not recog- 
nized in itself, it is used in further structures, and forms one of  the bases 
for Type 2 Fuzzy Sets. 

• Weighted fuzzy element ((a,0.3),0.3): In this form, a fuzzy element is 
weighted. It is also not recognized in and of  itself, but is used in some 
later forms. 

• Fuzzy element weighted element (a, (b, 0.3)): In this form, a fuzzy element 
is itself used as a weight of  an element. Another nonstandard form. 

(2, 0): The class, for example cg = {{a, b}, ~b, e}}, is the single form with two 
levels of  nonspecificity only. 
(1, 1): These forms have a single level each of  fuzziness and nonspecificity, 
and are thus central in the taxonomic hierarchy. While they include some 
of  the most standard forms in GIT, there are also some novel structures 
here. 

• Fuzzy set {(a, 0.3), (b, 0.2)}: Of course, this is the classical form for GIT. 
In the transitive method, it is derived in a number of ways, and then 
used to derive many further forms. In the intransitive method, it is de- 
rived by collecting fuzzy elements. 

• Set-valued fuzzy element (a, {0.2, 0.3}): This is an element whose weight 
is a collection. Although this is a novel form, it is central to both the 
transitive and intransitive methods. 

• Fuzzified subset ({a, b}, 0.3): This is a weighted subset. Although not re- 
cognized on its own, it is used in later forms in both methods. 
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Table 1 
Generated unconstrained hybrid uncertainty forms 

[NF[ Label example 

0, 1 

1,0 

0,2 

2,0 

1,1 

1,2 

2,1 

2,2 

3,1 

3, 2 

Fuzzy element 
(a, 0.3) 
Subset 
{a,b) 
Second order fuzzy element 
(a, (0.3, 0.3>> 
"Weighted fuzzy element" 
<(a, 0.3>, 0.3> 
"Fuzzy element weighted element" 
(a, (b, 0.3)) 
Class 
{{a, b}, {b, e}} 
Fuzzy set 
{(a, 0.3), (b, 0.2)} 
Set-valued fuzzy element 
(a, {0.2, 0.3}) 
"Fuzzified subset" 
({a, b), 0.3) 
Type 2 fuzzy element 
(a, {(0.2, 0.3>, (0.2, 0.5)}> 
Collection of second order fuzzy elements 
{(a, (0.2, 0.3)), (b, (0.2, 0.5))) 
"Weighted fuzzy set" 
({(a, 0.2), (b, 0.3)},0.3) 
Set-valued fuzzy set 
{(a, {0.2, 0.3}), (b, {0.3, 0.4}) } 
Fuzzy class 
{({a, b}, 0.3), ({b, e}, 0.4)} 
"Fuzzified class" 
{{(a, 0.3), (b, 0.2)), {(b, 0.2), (c, 0.3))} 
Type 2 fuzzy set 
{(a, { (0.3, 0.2), (0.2, 0.5)}), (b, { (0.4, 0.2), (0.2, 0.6)))} 
Level 2 fuzzy set 
{({ (a, 0.2), (b, 0.3)), 0.3), ({(b, 0.3), (c, 0.4)}, 0.4)} 
"Class-valued fuzzy set" 
{(a, {{0.2, 0.3), {0.3, 0.4))), (b, {{0.3, 0.4), {0.5, 0.6)))) 
"Fuzzy class-valued fuzzy set" 
{(a, {({0.2, 0.3), 0.6), ({0.3, 0.4}, 0.7) )), (b, {({0.3, 0.4), 1), ({0.5, 0.6}, 0.2) })} 

(1,2): We now consider the first more complex forms, here with two levels of 
fuzziness and one of  nonspecificity. 

• Type 2 fuzzy  element (a, {(0.2, 0.3), (0.2, 0.5)}): An element weighted by 
a fuzzy subset of [0, 1], or weighted by a collection of  fuzzy weighted ele- 
ments. These are one basis of  type 2 fuzzy sets. 
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l Collection of second order fuzzy elements {(a, (0.2,0.3)), (b, (0.2,0.5))}: 
Another basis for type 2 fuzzy sets, these are precisely a collection of sec- 
ond order fuzzy elements. 

l Weightedfuzzy set ({(a,0.2), (b,0.3)},0.3) This is a fuzzy set which is 
then itself given a weight. This is one basis for level 2 fuzzy sets. 

(2,l): These are forms conversely with one level of fuzziness and two of non- 
specificity. 
l Set-valued fuzzy set {(a, {0.2,0.3}), (b, {0.3,0.4})}: This is a fuzzy set 

whose weights are collections. 
l Fuzzy class {({a, b}, 0.3), ({b, c}, 0.4)): A collection of weighted subsets, 

and the basis for random sets. These have been introduced in the context 
of fuzzy multi-valued mappings [22,23]. 

l Fuzzified class {{(a, 0.3), (b, 0.2)}, {(b, 0.2), (c, 0.3))): What we are call- 
ing a fuzzified class is then, conversely, a subset of the fuzzy power 
set, or just a collection of fuzzy sets. It is another basis for level 2 fuzzy 
sets in the transitive method. 

(2,2): These forms have both two levels of nonspecificity and two levels of 
fuzziness. Each is a standard form in fuzzy systems. 
l Type 2fuzzy set {(a, {(0.3,0.2), (0.2,0.5)}), (b, {(0.4,0.2), (0.2,0.6)})} 
l LeveZ2fuzzyset {({(a,0.2),(b,0.3)},0.3),({(b,0.3),(c,0.4)},0.4)} 

(3,l): We have identified a novel form with three levels of nonspecificity 
and one of fuzziness. It is available from both the transitive and 
intransitive methods, and we call it a class-valued fuzzy set. Its canonical 
example is: 

{(a, {{0.2,0.3), {0.3,0.4})), (b, {{0.3,0.4}, {0.5,0.6}])}. 

Essentially, this results when the weights of a set-valued fuzzy set are made 
into collections, and is an important step on the road to evidence sets. 
(3,2): When, in the transitive method, a fuzziness transformation is applied 
to a class-valued fuzzy set in order to give either of the sub-elements of the 
set-valued fuzzy set a weight, we call the resulting structure a fuzzy class-va- 
lued fuzzy set, with canonical example: 

{(a, {({0.2,0.3], 0.6), ({0.3,0.4}, 0.7))), (b, {(10.3,0.4], l), 

({0.5,0.6], 0.2>>>>. 

This form is essentially an evidence set with none of the necessary additive or 
interval constraints present. 

5.2.2. Constrained structures 
Table 2 lists some of the forms which result when syntactic constraints as 

described in Section 4.3 are applied to base forms. The base forms from which 
they are derived, and the form of constraint employed, are also listed. 
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We now describe these in detail: 
Probability distribution: Results when an additive constraint is applied to the 

weights of  a fuzzy set. 
Possibility distribution: Results when a maximal constraint is applied to the 

weights of  a fuzzy set. 
Interval-valued fuzzy element: Results when an interval constraint is applied 

to the weight (itself a collection) of  a set-valued fuzzy element. 
Interval-valued fuzzy set." Results when an interval constraint is applied to 

the weights (themselves collections) of  a set-valued fuzzy set. Alternately, it 
is a collection of  interval.valued fuzzy elements. 

Random set: Equivalent to a DS body of  evidence, results f rom the applica- 
tion of  an additive constraint to the weights of  a fuzzy class. 

Possibilistic set: This is a relatively new structure, al though it has been re- 
cognized [22,23]. This is essentially a possibilistic version of  a r andom set, or 
a class where the elements are weighted in a possibilistically normal  manner.  

Random interval." Results f rom the application of  an interval constraint on 
the universe of  discourse, or domain, of  a random set. 

Random interval of  [0, ll: Results f rom further constraining the initial uni- 
verse of  discourse of  a r andom set to be [0, 1]. 

Random interval of [0, 1] weighted element: Results f rom letting a r andom in- 
terval of  [0, 1] weight an element. Example: 

Table 2 
Constrained hybrid uncertainty forms (FS = Fuzzy Set) 

Resulting form Base form Constraint 
Example 

Probability distribution FS {Ca, 0.3), (b, 0.7)} Additive 
Possibility distribution FS { Ca, 0.3), (b, 1) } Maximal 
Interval-valued fuzzy element Set-valued fuzzy element (a, [0.2, 0.3]) Interval 
Interval-valued FS Set-valued FS {(a, [0.2, 0.3]), (b, [0.3, 0.4])} Interval 
Random set Fuzzy class {({a, b}, 0.3), ({b, c), 0.7)) Additive 
Possibilistic set Fuzzy class { ({a, b}, 0.3), ({b, e}, 1)} Maximal 
Random interval Random set {([-1,3], 0.3), ([2, 5], 0.7)} f2 = ~, Interval 
Random interval of [0, 11 Random interval ~ = [0,1] 

{([O.2, 0.3], 0.3), ([0.2, 0.5], 0.7)} 
Class-valued FS {Ca, {[0.2, 0.3], [0.3, 0.4]}), 

{(b, {[0.3, 0.4], [0.5, 0.6]}) } 
Fuzzy class-valued FS 

"Class-interval valued FS" 

"Fuzzy interval-class-valued FS" 

Evidence set, 

Interval 

Interval 
{ (a,-{ ([0.2, 0.3], 0.6), ([0.3, 0.4], 0.7)}, ), 

{b, {([0.3, 0.4], .1), ([0.5, 0.6], 0.2)))} 
Fuzzy interval-class-valued FS Additive 

{(a, { ([0.2, 0.3], 0.4), ([0.3, 0.4], 0.6)}, ), 
(b, {([0.3, 0.4], 0.3), ([0.5, 0.6], 0.7))) } 
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(a, {([0.2, 0.3], 0.3), ([0.3, 0.4], 0.7)}). 

Class-interval valued fuzzy  set: Results from applying an interval constraint 
to a class-valued fuzzy set, thus making the weights on the elements be collec- 
tions of intervals. Example: 

{(a, {[0.2, 0.3], [0.3, 0.41}), {(b, {[0.3, 0.4], [0.5, 0.61})}. 

Fuzzy interval-class-valued fuzzy  set: To be parsed as: (Fuzzy (Interval- 
Class-Valued)) Fuzzy Set. An interval constraint is applied to the weights of 
a fuzzy class-valued fuzzy set. In other words, the weights of a fuzzy set are 
themselves a collection of weighted intervals of [0, 1]. Example: 

{(a, { ([0.2, 0.31, 0.6), ([0.3, 0.41, 0.7)}, ), (b, { ([0.3, 0.41,0.1), 

([0.5, 0.6], 0.2)})}. 

Evidence set: Finally we arrive at our most complex structure, an evidence 
set with ]NF] = (3, 2). It is constructed either by placing an additive constraint 
on the weights of the intervals of a fuzzy interval-class-valued fuzzy set, or by 
making a collection of random interval of [0, 1] weighted elements. Essentially, 
an evidence set is a fuzzy set whose weights are DS bodies of evidence, or ran- 
dom intervals, on [0, 1]. Example: 

{(a, {([0.2, 0.31, 0.4), ([0.3, 0.4], 0.6)}, ), (b, { ([0.3, 0.4], 0.3), 

([0.5, 0.6], 0.7)})}. 

5.3. Methodological comparison 

The transitive method can expand fuzzy sets in more ways, for instance by 
weighting the whole structure and then collecting them to obtain a Level 2 fuz- 
zy set, a structure that is not obtainable with the transitive method. 

The intransitive method has the advantage of being reversible, thus defining 
structures with a unique transformation history. It allows the description of  
most known, semantically defined, truth-value representations and set struc- 
tures, including evidence sets. 

However, the intransitive method is thereby exploring only subsections 
of the entire universe of hybrid uncertainty structures which it attempts to 
simplify. All structures reached by this method are either an extension of  a 
set or of a truth-value. I f  we start by generalizing the certain situation with 
the fuzziness transformation, all subsequent uncertainty structures can only 
be some form of  singleton with extended truth-values. If  we start with the non- 
specificity transformation all structures reached are either a crisp collection of 
singletons with extended truth-values (e.g. fuzzy sets and its descendants), or 
nested crisp classes whose elements can be ascribed extended truth-value repre- 
sentations. 
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6. Conclusions and further work 

In  this  p a p e r  we have a t t e m p t e d  to out l ine  the  basis  for  the deve lopmen t  o f  a 
fo rma l  s t ructure  for  the  genera t ion  o f  s t ructures  to represent  hyb r id  fo rms  o f  
unce r t a in ty  f rom a va l id  semiot ic  basis.  The  results  p resented  so far  a re  no t  
comple te .  F o r  example ,  the  full space o f  all o f  the  t rans i t ive  t r ans fo rma t ions  
th rough ,  say, INI + [El ~< 4 has  no t  been explored.  

Fu r the r ,  it  will be mos t  in teres t ing to see how other  fo rms  o f  unce r t a in ty  re- 
p resen ta t ion ,  such as genera l  fuzzy measures  [25], imprecise  p robab i l i t i e s  [24], 
and  rough  sets [17], can  be cons idered  f rom this perspect ive.  

F ina l ly ,  the  a p p r o a c h  presen ted  here is s o m e w h a t  in the spir i t  o f  ca tegory  
theory .  I t  will be in teres ted  to c o m p a r e  this a p p r o a c h  to  tha t  o f  o thers  explor -  
ing the ca tegor ies  o f  fuzzy systems [1,8]. 
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