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Abstract

This document presents a primer and class specification for the Taxonomy Package (TaxPac) sys-
tem developed by the Battelle Memorial Institute at the Pacific Northwest National Laboratory.
TaxPac is an experimental mathematics platform available in Python for the manipulation and
measurement of semantic hierarchies represented as ordered sets. TaxPac is built as an extension
of the NetworkX system for graph analysis developed by the Los Alamos National Laboratory.
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Chapter 1

Introduction

Semantic typing systems for modern knowledge systems such as ontological databases are dominated
by structures characterized as semantic hierarchies: collections of objects (classes or linguistic
concepts) which are organized into hierarchies such as taxonomic (subsumption, “is-a”), meronomic
(compositional, “has-part”), and/or implication (logical, “follows-from”) relations. Prominent ex-
amples include WordNet in the computational linguistics community [10]1 and the Gene Ontology
in the computational genomics community (GO [2]2).

Long a bullwark of both object-oriented programming and artificial intelligence [20, 24], such ontolo-
gies are increasingly seen as critical for facilitating large-scale knowledgebase integration [3, 4, 29].
Tasks include the construction of semantic hierarchies by authors and curators, automatically iden-
tifying hierarchical relations in data, annotation of semantic categories with instance data, align-
ment, linkage, and mapping of multiple structures together into federated ontologies, and search,
navigation, clustering, and visualization.

Fig. 1.1 shows a portion of the GO. Black text indicates nodes representing biological processes,
and are arranged in a subsumption hierarchy (“DNA repair” is a kind of “DNA metabolism”). The
names of genes from three species of model organism as “annotations” to thse nodes, indicating
that those genes perform those functions. Note that genes can appear at multiple nodes.

While Fig. 1.1 shows only a fragment of one portion of the GO, the GO is typical of many such real-
world semantic hierarchies in growing quite large, currently over twenty-five thousand nodes. As
the number and size of semantic hierarchies grows, it is becoming critical to have computer systems
which are appropriate for managing them, and especially important to complement manual methods
with algorithmic approaches to tasks such as construction, alignment, annotation, and visualization.
Thus it is essential to have a solid mathematical grounding for the analysis of semantic hierarchies,
and especially concepts such as distances, sizes of regions, and the vertical structure of levels and
rank separation.

As mathemtical data objects, semantic hierarchies resemble in many aspects top-rooted trees. But
with the presence of significant amounts of “multiple inheritance” (nodes having more than one
parent), and also the possible inclusion of transitive links, they must in general be represented at
most as directed acyclic graphs (DAGs). And since the primary semantic categories of subsump-
tion and composition are transitive, the proper mathematical grounding for such algorithms and

1wordnet.princeton.edu
2www.geneontology.org
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Figure 1.1: A portion of the Biological Process branch of the Gene Ontology (adapted from [2]).
The database is structured as a large, top-rooted directed acyclic graph of genomic functional
categories, labeled with the genes of multiple species.

measures is order theory, or the mathematics of directed acyclic graphs, lattices, and partially
ordered sets (posets) [8].

Order theory provides the fundamental formalization of hierarchy in the most general sense, and
provides or promises the needed tools for managing semantic hierarchies. But order theory has
been largely neglected in knowledge systems technology, and the most prominent approaches to
managing the GO and Wordnet are effectively ad hoc and de novo (e.g. [6]). Our prior work [13,
14, 15, 16, 17, 18, 28] has advanced the use of measures of distance and similarity, characterizations
of structures and levels, and characterizations of mappings and linkages within semantic hierarchies.

This document presents a primer and class specification for the Taxonomy Package (TaxPac) exper-
imental mathematics platform for measuring, manipulating, and displaying taxonomic structures
for knowledge systems analysis. TaxPac is built as an extension of the NetworkX3 [12] system for
graph analysis developed by the Los Alamos National Laboratory.

We begin with a terse primer on the fundamentals of order theory for application to semantic hier-
archies. We then describe the TaxPac system and present the Python class hierarchy to complement
the Javadoc in the distribution, with interleaved examples. We conclude with a reference table of
the mathematical notation.

3http://networkx.lanl.gov



Chapter 2

Order Theory for Knowledge Systems

Here we tersely introduce the mathematical notation we use for ordered sets and lattices. For
general references on order and lattice theory, see [5, 8, 23, 26].

2.1 Directed Graphs

Let G := 〈P, E〉 be a directed graph, with E ⊆ P 2 a set of directed edges on a nonempty, finite
set P of nodes. Let e := 〈a, b〉 be a link if e ∈ E, and denote a ≺ b, b � a. Let �(a) := {b � a} ⊆ P

be the parents of a ∈ P , and ≺(a) := {b ≺ a} ⊆ P its children. A node a ∈ P is a root if
�(a) = ∅, and a leaf if ≺(a) = ∅.
A graph G is node weighted if there exists a function wP : P → IR ∪ ∅, and link-weighted if there
exists a function wE : E → IR ∪ ∅.
Let a vector (ordered set, possibly containing duplicates) of n nodes ~C := 〈ai〉ni=1 ⊆ P be a directed
path (or just path) in G if n ≥ 3, and if ∀ai ∈ ~C, ai ≺ ai+1 or i = n, where a ∈ ~C means that
∃a ∈ P, ∃1 ≤ i ≤ n, ai = a. Note that therefore for our purposes, a link is not a path, since a path
has at least two links. Denote a1 ≺ a2 ≺ . . . ≺ an, and ~C ⊆ G. We say that an edge is included in
a path, denoted e ∈ ~C or a ≺ b ∈ ~C , if ∃ai, ai+1 ∈ ~C, a = ai, b = ai+1. (not yet implemented,
caj)

For any two nodes a, b ∈ P , we say that a is reachable from b if either a ≺ b or there is a path
~C = 〈a, . . . , b〉 ⊆ G. We then denote

a ≤ b (2.1)

We say a ≤ b ∈ G to mean that a, b ∈ P and a ≤ b.

A link a ≺ b is called transitive if there exists a path (in our sense) ~C = 〈a, . . . , b〉 ⊆ P . A graph
G is transitively reduced if it contains no transitive links, and transitively closed if it contains
all possible transitive links, that is, for all paths ~C = 〈a1, a2, . . . , an〉 ⊆ G, a1 ≺ an. Note that our
definition of transitively reduced is slightly different from that of [1]. Our definition corresponds
to [1] for acyclic graphs, and for that reason we only discuss or implement transitive reduction for
acyclic graphs.

We deal secondarily with undirected (simple) graphs as the symmetric closures of digraphs. Given
a digraph G = 〈P, E〉, its symmetric closure is the digraph U(G) := 〈P,U(E)〉, where U(E) :=
{〈a, b〉 ∈ P 2 : a ≺ b or b ≺ a}. A vector of nodes ~CU := 〈ai〉ni=1 ⊆ P is an undirected path in G

6
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if ~CU is a path in U(G). We say that an edge is included in an undirected path, denoted e ∈ ~CU

or a ≺ b ∈ ~CU , if ∃ai, ai+1 ∈ ~CU , a = ai, b = ai+1. (not yet implemented, caj)

The number of turns T ( ~CU ) of an undirected path ~CU is the minimum number of sub-vectors of
~CU which are directed paths, and whose union is ~CU . Note that T ( ~CU) ≥ 0, and T ( ~CU ) = 0 only
if ~CU is a directed path. (not yet implemented, caj)

2.2 Directed Acyclic Graphs (DAGs)

A path ~C = 〈a1, a2, . . . , an〉 ⊆ G is a cycle when C has no duplicates and an ≺ a1. A set of nodes
S ⊆ P is a strongly connected component (SCC) [21] if there is a path from every node a ∈ S
to every other. It follows that S is a union of cycles. If G is connected and contains no cycles, then
we call G a directed acyclic graph (DAG), denoted D. The cyclic closure of a graph G is a
DAG D created from G by contracting all its SCCs to single nodes, and connecting those to the
base graph according to the links into the SCC [7].

Given a DAG D, for any subset of nodes Q ⊆ P , define its maximal and minimal elements as

Max(Q) := {a ∈ Q : 6 ∃b ∈ Q, a ≺ b} ⊆ Q

Min(Q) := {a ∈ Q : 6 ∃b ∈ Q, b ≺ a} ⊆ Q,

called the roots and leaves respectively.

In a DAG D, for any node a ∈ P , define its up-set ↑a := {b ∈ P : b ≥ a} ⊆ P , its down-set
↓a := {b ∈ P : b ≤ a} ⊆ P , and its hourglass Ξ(a) := ↑a ∪ ↓a ⊆ P .

For any two nodes a, b ∈ P , define their upper cone as a∇b := ↑ a ∩ ↑ b ⊆ P and lower cone as
a∆b := ↓ a ∩ ↓ b ⊆ P . Their join is a ∨ b := Min(a∇b) ⊆ P , and meet is a ∧ b := Max(a∆b) ⊆ P .
Further define (asymmetric) implication a → b := ↑a \ ↑ b and difference a − b := ↓a \ ↓ b,
yielding the identities ∀a, b ∈ P

↑a = (a → b)∪ (a∇b), ↑ a ∪ ↑ b = (a → b)∪ (b → a)∪ (a∇b),

↓a = (a− b)∪ (a∆b), ↓a ∪ ↓ b = (a − b) ∪ (b− a) ∪ (a∆b).

Note, however, that in general ↑ a∪ ↑ b 6= a∇b, ↓a∪ ↓ b 6= a∆b. This does hold, however, at least if
P is a Boolean lattice. (not yet implemented, caj)

2.3 Intervals and Bounded DAGs

For a ≤ b ∈ G, define the interval [a, b] := {c ∈ P : a ≤ c ≤ b} = ↑a ∩ ↓ b. Then we have that

a∇b = ↑ b, a ∨ b = Max([a, b]) = {b}, a∆b = ↓a, a ∧ b = Min([a, b]) = {a}.

D is upper-bounded if |Max(P )| = 1, so that Max(P ) = {1} with 1 ∈ P ; and lower-bounded if
|Min(P )| = 1, so that Min(P ) = {0} with 0 ∈ P . D is bounded (we denote B) if it is both upper-
and lower-bounded. If D is not upper (lower) bounded, then it can be made so by inserting a node
1 ∈ P (0 ∈ P ) and inserting all links {a ≺ 1 : a ∈ Max(P )} ∈ E ({0 ≺ a : a ∈ Min(P )} ∈ E).
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Note that ∀a ≤ b ∈ P , the interval [a, b] is a sub-poset bounded above by b and below by a. Thus in
particular, if B is bounded, then P = [0, 1], and ∀a ∈ P, ↑a = [a, 1], ↓a = [0, a], Ξ(a) = [0, a]∪ [a, 1],
and all are also bounded. Additionally, ∀a, b ∈ P, a∇b, a∨ b, a∆b and a ∧ b are all non-empty.

Given a bounded DAG B, then define its height as H(B) := max~C⊆B | ~C| − 1, the size of its largest
directed path. For a node a ∈ P , define its top rank as rt(a) := H([a, 1]), and its bottom rank as
rb(a) := H(B) − H([0, a]). It can be shown that ∀a ∈ P, rt(a) ≤ rb(a), so define its interval rank
as the interval R(a) := [rt(a), rb(a)], the midrank as the midpoint of that interval rt(a)+rb(a)

2 , and
the rank width as the width of that interval rb(a) − rt(a).

Given a bounded DAG B, then define it atoms as ⊥(B) :=�(0), and its co-atoms as >(D) :=≺(1).
For any node a ∈ P , define its complement

a := P \


 ⋃

b∈>(↑a)

↓ b


 ∪


 ⋃

b∈⊥(↓ a)

↑ b


 ⊆ P.

Note 0 = {1}, 1 = {0}. For any subset of nodes Q ⊆ P , define its complement as

Q :=
⋂

a∈Q

a.

While ∀a ∈ P, a 6= ∅, it is common for any Q ⊆ P, Q = ∅. (not yet implemented, caj)

Given a bounded DAG D equipped with a complement operator ·, we can define the following
Boolean-like operations (not yet implemented, caj) .

Difference: a − b := Max(a∆b)

Implication: a → b := Min(a∇b)

Symmetric Difference: a ./ b := Min((a − b)∇(b− a))

2.3.1 Node Comparisons

If B is node-weighted, then we have its upper weight F ∗(a) :=
∑

b≥a wP (b) and lower weight
F∗(a) :=

∑
b≤a wP (b). Denote

F∨(a, b) := 2 max
c∈a∨b

F ∗(c), F∧(a, b) := 2 max
c∈a∧b

F∗(c).

For any two nodes a, b ∈ P , define their upper distance and lower distance

d∗(a, b) := F ∗(a) + F ∗(b)− 2F∨(a, b), d∗(a, b) := F∗(a) + F∗(b)− 2F∧(a, b)

respectively. Finally, if a ≤ b ∈ G then d∗(a, b) = F ∗(b)− F ∗(a) and d∗(a, b) = F∗(a)− F∗(b).

The Tversky parameterized ratio [27] is generalized in ordered sets to be

S∗
α,β(a, b) :=

F∨(a, b)
F∧(a, b) + α
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2.4 Posets and Covers

A structure P = 〈P,≤〉 is called an ordered set, partially-ordered set, or poset if ≤⊆ P 2 is a
binary relation on P which is reflexive, anti-symmetric, and transitive. We say a ≤ b ∈ P to mean
that a, b ∈ P and a ≤ b.

If a DAG D is transitively closed, then 〈P,≤〉 is a poset, where ≤ is the relation from (2.1). Given
a DAG D, then let P(D) be its transitive closure, the DAG produced by including all possible
transitive links consistent with its paths. Thus a ≤ b ∈ G → a ≤ b ∈ P . The graph V(D) produced
from a DAG D by removing all its transitive links determines a cover relation or Hasse diagram.

In this way, each cover relation V determines a unique poset P(V), and vice versa P determines a
unique cover V(P); each DAG D determines a unique poset P(D) and cover V(D); and each unique
poset-cover pair determines a class of DAGs equivalent by transitive links. Thus the degree of
transitivity of a DAG can be measured as

TR(D) :=
|D \ V(D)|

|P(D) \ V(D)| .

Given a poset P = 〈P,≤〉, two nodes a, b ∈ P are called comparable if a ≤ b or b ≤ a (we denote
a ∼ b), and noncomparable otherwise (we denote a 6∼ b). A chain is a set of nodes C ⊆ P which
are pairwise comparable, so that ∀a, b ∈ C, a ∼ b. A chain C ⊆ P is called saturated if in addition
∀a, b ∈ C, a ≺ b or b ≺ a. Note that thereby the nodes of any directed path ~C ⊆ G form a saturated
chain C ⊆ P . An antichain is a set of nodes A ⊆ P which are pairwise noncomparable, so that
∀a, b ∈ A, a 6∼ b. Define the width W(P) := maxA⊆P |A| of a poset P as the size of its largest
antichain.

2.5 Lattices and Trees

A poset P = 〈P,≤〉 is a join semi-lattice L∨ if ∀a, b ∈ P, |a∨ b| = 1, and is a meet semi-lattice
L∧ if ∀a, b ∈ P, |a∧ b| = 1. In these cases we denote a∨ b = c, a∧ b = d ∈ P for those unique nodes,
respectively.

A poset P is a lattice L if it is both a join- and a meet-semilattice. In a lattice L, we have that

d∗(a, b) = F ∗(a) + F ∗(b)− 2F ∗(a ∨ b), d∗(a, b) = F∗(a) + F∗(b)− 2F∗(a ∧ b).

Every poset P can be embedded homomorphically into a latticeL through the Dedekind-MacNeille
completion process [8].

A join semi-lattice L∨ is an upper tree R∨ if ∀a 6= 0 ∈ P, |�(a)| = 1. A meet semi-lattice L∧ is a
lower tree R∧ if ∀a 6= 1 ∈ P, |≺(a)| = 1.

In this work, we will consider a concept lattice to be a doubly-labeled, bounded lattice. This
work is not complete yet. See [8, 11] for more information about the mathematical definitions.



Chapter 3

Class Specification

We now provide a specification of the TaxPac classes and methods, with interleaved examples, to
complement the HTML documentation which lists every class and function with documentation.
The TaxPac class hierarchy is shown in Fig. 3.1. Classes and methods are described below. Methods
that are not currently implemented are indicated by ∗.

DAG


Digraph


Contains


Poset


Lattice
 Upper Tree


Node Weights


Contains


Link Weights


Cover


Join Semilattice
Meet Semilattice


Lower Tree


Concept

Lattice


Bounded

DAG


Figure 3.1: Class hierarchy for TaxPac.

Each TaxPac object and method is illustrated with examples drawn from a digraph G shown in
Fig. 3.2, with its components identified in Fig. 3.3, its cyclic closure shown in Fig. 3.5, and the
bounded version of its cyclic closure in Fig. 3.6. We additionally sometimes use a DAG shown in
Fig. 3.4. We also repeat the mathematical notation developed in Sec. 2, which is then compiled in
the appendix.

10



11

B

MG

I

H

C

EJ
D

1

R

K

L
A

N

O

P

Q

F

T

S

Figure 3.2: Example digraph G.

Figure 3.3: G with its components identified.
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3.1 Class Digraph

The TaxPac class DiGraph extends the NetworkX class MultiDiGraph.

3.1.1 Objects

Digraph: Let G := 〈P, E〉 be a directed graph, with E ⊆ P 2 a set of directed edges on a finite set
P of nodes. Fig. 3.2 shows a digraph.

Link: Let e := 〈a, b〉 be a link if e ∈ E. Denote a ≺ b, b � a. We have C ≺ T, I � E.

Directed Path: Let a vector (ordered set, possibly containing duplicates) of nodes ~C := 〈ai〉ni=1 ⊆
P be a directed path in G if n ≥ 3 and ∀ai ∈ ~C, ai ≺ ai+1 or i = n. Note that for our
purposes, a link is not a path, a path has at least two links! Denote ~C ⊆ G. We have
C ≺ T ≺ J ≺ Q ⊆ D.

Undirected Path: A vector of nodes ~CU := 〈ai〉ni=1 ⊆ P is an undirected path in G if ~CU is a
path in U(G). C � D ≺ E is an undirected path. (not yet implemented, caj)

Cycle: A directed path ~C = a1 ≺ a2 ≺ . . . ≺ an is a cycle when C has no duplicates and an ≺ a1.
F ≺ C ≺ T is a cycle.

Weight Set: Let W = IR ∪ {∅} be a weight set.

3.1.2 Methods

3.1.2.1 Weights

bool = is node weighted(G): Returns true if ∃wP : P → W .

G ′ = set node weights(G, wP): Returns G now equipped with the node weight function wP : P →
W . There are four special cases:

Null Node Weighting: ∀a ∈ P, wP (a) ≡ ∅
Zero Node Weighting: ∀a ∈ P, wP (a) ≡ 0

Unit Node Weighting: ∀a ∈ P, wP (a) ≡ 1.

Probabilistic Node Weighting: ∀a ∈ P, wP (a) ∈ [0, 1],
∑

a∈P wP (a) = 1.

Information Content Node Weighting: ∀a ∈ P, wP (a) = log(p(a)) ∈ [0,∞), where p(a)
is a probabilistic node weight. (not yet implemented, caj)

double = get node weight(G, a): Returns the node weight wP (a) for the given node, or null if
no weight.

bool = is edge weighted(G): Returns true if ∃wE : E → W .

G ′ = set edge weights(G, wE): Returns G now equipped with the edge weight function wE : E →
W . There are two special cases:

Null Link Weighting: ∀e ∈ E, wE(e) ≡ ∅
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Zero Link Weighting: ∀e ∈ E, wE(e) ≡ 0

double = get edge weight(G, e): Returns the edge weight wE(e) for the given edge, or null if
no weight.

3.1.2.2 Paths and Connectiveness

bool = is connected(G): Returns true if G is connected [9]. is_connected(G) = true

bool = is link(a, b): Returns true if a ≺ b. A ≺ F .

P ′ = parents(a): Returns {b � a}. Denote �(a). �(J) = {G, R}.

Q′ = roots(Q ⊆ P ): Returns {a ∈ Q :�(a) = ∅} ⊆ Q. Denote Max(Q). Max(P ) = {1}, Max({G, R, J, O,Q}) =
{G, R}, Max({F, C, T}) = ∅.

bool = is root(a): Returns true if a has no parents.

P ′ = children(a): Returns {b ≺ a}. Denote ≺(a). ≺(J) = {O, Q}.

Q′ = leaves(Q ⊆ P ): Returns {a ∈ Q :≺(a) = ∅} ⊆ Q. Denote Min(Q). Min(P ) = {G, M, K, A, H, O, D,Q},Min({
{O, Q}, Min({F, C, T}) = ∅.

bool = is leaf(a): Returns true if a has no children.

{ ~C} = paths(a, b): Returns the set of all noncyclic directed paths ~C = 〈a, . . . , b〉 ⊆ G. paths(D, C) =
{D ≺ C, D ≺ E ≺ I ≺ C}. (not yet implemented, caj)

int = turns( ~CU): Returns the numbder of turns in the undirected path ~CU . turns(1 � M ≺
B � G) = 2. (not yet implemented, caj)

{ ~CU} = unidrected paths(a,b): Returns the set of all noncyclic undirected paths ~CU = 〈a, . . . , b〉 ⊆
G. undirected_paths(G, 1) = {G ≺ B ≺ 1, G ≺ B � M ≺ 1, G ≺ B � M ≺ L ≺ 1, G ≺
L � M ≺ B ≺ 1, G ≺ L � M ≺ 1, G ≺ M ≺ 1}. (not yet implemented, caj)

bool = has directed path(a, b): Returns true if paths(a, b) is non-empty. has_directed_path(J, N)=true,
has_directed_path(J, R)=false. (not yet implemented, caj)

double∪{∅} = path weight( ~C): Returns
∑

e∈~C
wE(e). Under unitary weighting, path_weight(〈D, E, I,C〉) =

4. (By convention for every r ∈ R, r+ NULL = NULL.) (not yet implemented, caj)

double∪{∅} = undirected path weight( ~CU): Returns
∑

e∈~CU wE(e). Under unitary weighting,
path_weight(〈C, T, J〉) = 3. (By convention for every r ∈ R, r+ NULL = NULL.) (not yet
implemented, caj)

〈double ∪ {∅}〉 =path weights(a, b)): Returns the vector of path_weight for all directed paths
from a to b. Under unitary weighting, path_weights(D, C) = 〈2, 4〉. (not yet imple-
mented, caj)

〈double ∪ {∅}〉 =undirected path weights(a, b)): Returns the vector of undirected_path_weight
for all undirected paths from a to b. Under unitary weighting, undirected_path_weights(G, 1) =
〈3, 4, 5, 5, 4, 3〉 (not yet implemented, caj)
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double∪{∅} = min directed path(a, b): Returns minimum path length if has_directed_path(a, b),
otherwise returns NULL. Under unitary weighting, min path length(D, C) = 2, min path length(J, N) =
NULL. (not yet implemented, caj)

double∪{∅} = min undirected path(a, b): Returns minimum undirected path length if has_directed_path(a, b
otherwise returns NULL. Under unitary weighting, min path length(G, 1) = 3. (not yet
implemented, caj)

bool = is connected(a, b): Returns true if a = b or is_link(a, b) or has_directed_path(a, b).
Note polymorphism with is_connected(G). is_connected(J, N)=true,is_connected(J, R)=true.

3.1.2.3 Transitivity and Cycles

bool = is transitive(a, b): Returns true if has_directed_path(a, b). is_transitive(D, C) =
is_transitive(M, 1)=true.

bool = is cycle( ~C): Returns true if ~C ⊆ G is a cycle. is_cycle({P, R, N}) =is_cycle({F, C, T}) =true.

{ ~C} = get cycles(): Returns the set of all cycles in the graph.

G ′ = transitive closure(G): Returns the transitive closure of G [19, 25]. Denote P(G). In
Fig. 3.4, for the digraph D shown on top, P(D) is shown on the right.

Figure 3.4: (Top) A DAG D. (Left) Transitive reduction V(D). (Right) Transitive closure P(D).

bool = is transitively closed(G): Returns true if P(G) = G. For any digraph G,
is_transitively_closed(P(G)) = true.
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3.2 Class DAG : Digraph

We note that many of the mathematical methods described in Sec. 2 which are available on DAGs
are implemented in TaxPac in the BoundedDAG class documented in Sec. 3.3 below. This is for
the purposes of engineering convenience and efficiency. In practice, the methods for which TaxPac
is used require bounded DAGs.

3.2.1 Objects

DAG: Let D := G be a directed graph where is_connected(G) and 6 ∃C ⊆ G, is_cycle(C).

3.2.2 Methods

D = cyclic closure constructor(G): Constructs the DAG D as the cyclic closure of the digraph
G by the algorithm:

1. Input G = 〈P, E〉.
2. Let S := {Sj}N

j=1, Sj ⊆ P be the set of all strongly connected components (SCCs) of G

[21].

3. Let P ◦ :=
⋃M

j=1 Sj ⊆ P be the set of all nodes in any SCC.

4. Let P ′ := P \ P ◦

5. For each SCC Sj ∈ S, insert into P ′ a new node aj mapping uniquely to that strongly
connected component Sj .

6. Let
E↓ := {a ≺ b : a 6∈ P ◦, b ∈ P ◦} ⊆ E

be the links entering an SCC, but not leaving one.

7. Let
E↑ := {a ≺ b : a ∈ P ◦, b 6∈ P ◦)} ⊆ E

be the links leaving an SCC, but not entering one.

8. Let
E− := {a ≺ b : ∃Sj , Sj′ : a ∈ Sj , b ∈ Sj′} ⊆ E

be the links leaving one SCC and entering another.

9. Let E ′ := E \ (E↑ ∪ E↓ ∪ E−).

10. For each edge a ≺ b ∈ E↓, insert into E ′ an edge a ≺ aj , where b ∈ Sj .

11. For each edge a ≺ b ∈ E↑, insert into E ′ an edge aj ≺ b, where a ∈ Sj .

12. For each edge a ≺ b ∈ E◦, insert into E ′ an edge aj ≺ aj′ , where a ∈ Sj , b ∈ Sj′ .

13. Output D = 〈P ′, E ′〉.

The DAG produced from cyclic_closure_constructor(transitive_reduction(G)) is shown
in Fig. 3.5, where X = {F, C, T}, Y = {R, P, S, N}. Note that |cyclic_closure_constructor(G)| ≤
|G|.
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Figure 3.5: DAG D = cyclic closure constructor(transitive reduction(G)).

∗D = union constructor(D1,D2, . . . ,Dn): Return 〈
⋃n

i=1 Pi,
⋃n

i=1 Ei〉. Denote
⋃n

i=1 Di. No exam-
ple needed, but note that Max (

⋃n
i=1 Di) =

⋃n
i=1 Max(Di), Min(

⋃n
i=1 Di) =

⋃n
i=1 Min(Di).

bool = below(a, b): Returns true if is_connected(a, b). Denote a ≤ b, b ≥ a. D ≤ X .

bool = comparable(a, b): Returns true if a ≤ b or a ≥ b. Denote a ∼ b. D ∼ X, I ∼ D.

bool = non comparable(a, b): Returns true if not comparable(a, b). Denote a 6∼ b. J 6∼ E.

P ′ = downset(a): Returns {b : b ≤ a}. Denote P ′ = ↓ a = ↓(a). ↓ J = {J, O, Q, D}.

P ′ = upset(a): Returns {b : b ≥ a}. Denote P ′ = ↑a = ↑(a). ↑J = {1, X, Y, J}.

P ′ = hourglass(a): Returns ↑a ∪ ↓a. Denote Ξ(a). Ξ(J) = {J, O, Q, D, 1,X, Y }.

P ′ = lower bounds(D): Returns Min(P ). Min(D) = {G, M, K, A,H,O,D, Q}

bool = is lower bounded(D): Returns true if |Min(D)| = 1. Denote 0 ∈ D. 0 6∈ D.

D′ = make lower bounded(D): Construct D′ by the algorithm:

1. Let D′ := D.

2. If is_lower_bounded(D) then return.

3. Let P ′ := P ′ ∪ 0.

4. For each node a ∈ Min(D) insert into E ′ the link 0 ≺ a.

P ′ = upper bounds(D): Returns Max(D). Max(D) = {1}.

bool = is upper bounded(D): Returns true if |Max(D)| = 1. Denote 1 ∈ D. 1 ∈ D.

D′ = make upper bounded(D): Construct D′ by the algorithm:

1. Let D′ := D.
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2. If is_upper_bounded(D) then return.

3. Let P ′ := P ′ ∪ 1.

4. For each node a ∈ Max(D) insert into E ′ the link a ≺ 1.

bool = is bounded(D): Returns true if is_upper_bounded(D) and is_lower_bounded(D). is_bounded(D)=false

D′ = make bounded(D): Return make_upper_bounded(make_lower_bounded(D)). make_bounded(D)
is shown in Fig. 3.6. In the sequeal, let D′ =make_bounded(D).

L

MG

I

H

X

E

J

D

1

Y

K

B

A

O Q

0

Figure 3.6: D′ =make bounded(D).

G ′ = transitive reduction(G): Returns the transitive reduction of G. Denote V(G). In Fig. 3.4,
for the digraph D shown on top, V(D) is shown on the left.

bool = is transitively reduced(G): Returns true if V(G) = G. For any digraph G,
is_transitively_reduced(V(G)) = true.

real = transitivity degree(D): Return

TR(D) :=
|D \ V(D)|

|P(D) \ V(D)|
.

In Fig. 3.4, we have |D \ V(D)| = 2, |P(D) \ V(D)| = 9, TR(D) = 2/9.

real = upper additive(a): Return F ∗(a) :=
∑

b≥a wP (a). Note that for unit node weighting,
F ∗(a) = | ↑a|. For unit node weighting, F ∗(J) = | ↑J | = |{1, X, Y, J}|= 4.

real = lower additive(a): Return F∗(a) :=
∑

b≤a wP (a). Note that for unit node weighting,
F∗(a) = | ↓a|. For unit node weighting, F∗(J) = | ↓J | = |{0, O, Q,D, J}|= 5.

P ′ = upper cone(a, b): Returns ↑a ∩ ↑ b. Denote a∇b. H∇J = {1, X}.
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P ′ = join(a, b): Returns Min(a∇b). Denote a ∨ b. Note that a ∨ b 6= ∅ necessarily only if
LowerBounded(D). H ∨ J = {X}.

P ′ = lower cone(a, b): Returns ↓a ∩ ↓ b. Denote a∆b. L∆B = {G, M, 0}.

P ′ = meet(a, b): Returns Max(a∆b). Denote a ∧ b. Note that a ∧ b 6= ∅ necessarily only if
UpperBounded(D). L ∧ B = {G, M}.

P ′ = interval(a, b): If a ≤ b, returns {c ∈ P : a ≤ c ≤ b}; otherwise returns null. Denote [a, b].
[E, 1] = {E, I, Y, X, 1}.

bool = is saturated(C ⊆ P ): Returns true if C ⊆ V(P), that is, if C is also a chain in the cover
relation. If C = a1 ≤ a2 ≤ . . . ≤ an is saturated, then ∀C ′ = a1 ≤ . . . ≤ an, C ′ ⊆ C. Denote
a1 ≺ a2 ≺ . . . ≺ an.

{C} = chains(a, b): If a ≤ b, returns {C ⊆ [a, b] : saturated(C)}. Otherwise returns null.
Denote C(a, b). C(E, 1) = {E ≺ I ≺ X ≺ 1, E ≺ Y ≺ 1}.

int = chain density(a): Returns |C(a, 1)|× |C(0, a)|. chain_density(Y ) = 1 × 4 = 4.

3.3 Class BoundedDAG : DAG

3.3.1 Objects

BoundedDAG: Let B := D be a DAG where is_bounded(D) = true.

3.3.2 Methods

3.3.2.1 Vertical Ranks

int = height(B): Returns maxC⊆B |C| − 1. Denote H(B). In P(D), the largest path is 0 ≺ D ≺
E ≺ I ≺ X ≺ 1, so H(D′) = 5.

int = top rank(a): Returns H([a, 1]). Denote rt(a). rt(Y ) = H([Y, 1]) = |Y ≺ 1| − 1 = 1.

int = bottom rank(a): Returns H(B) −H([0, b]). Denote rb(a).

rb(Y ) = H(D) −H([0, Y ]) = 5 −H({0, D, O, Q, E, J, Y }) = 5 − (|0 ≺ D ≺ J ≺ Y | − 1) = 2.

real = mid rank(a): Returns rt(a)+rb(a)
2 . mid_rank(Y ) = 1.5

[int,int] = interval rank(a): Returns [rt(a), rb(a)]. Denote R(a). R(Y ) = [1, 2].

int = rank width(a): Returns rb(a) − rt(a). rank_width(Y ) = 1.
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3.3.2.2 Complementation (not yet implemented, caj)

P = atoms(B): Returns �(0). Denote ⊥(Q). coatoms(B) = {G, M, A, H, D,O,Q,K}.

P = coatoms(B): Returns ≺(1). Denote >(Q). atoms(B) = {L, B, X, Y, Q}.

P = complement(a): Returns

P \


 ⋃

b∈>(↑ a)

↓ b


 ∪


 ⋃

b∈⊥(↓a)

↑ b


 .

Denote a. A = P \ ↓X ∪ ↑A = {L, G, B, M, Y,K}.

3.3.2.3 Boolean-Like Operations

P = difference(a, b): Retrns Max(a∆b).

Implication: a → b := Min(a∇b)

Symmetric Difference: a ./ b := Min((a − b)∇(b− a))

3.3.2.4 Node Comparisons

3.3.2.4.1 Distances

real = upper distance(a, b): Return

d∗(a, b) = F ∗(a) + F ∗(b)− 2 max
c∈a∨b

F ∗(c).

Under unit weighting, for D′,

d∗(H, J) = F ∗(H)+F ∗(J)−2 max
c∈H∨J

F ∗(c) = 4+4−2 max(F ∗(X), F ∗(1)) = 4+4−2 max(2, 1) = 4.

d∗(L, B) = F ∗(L) + F ∗(B) − 2 max
c∈L∨B

F ∗(c) = 2 + 2 − 2F ∗(1) = 2 + 2 − 2× 1 = 2.

real = lower distance(a, b): Return

d∗(a, b) = F∗(a) + F∗(b)− 2 max
c∈a∧b

F∗(c)

Under unit weighting, for D′,

d∗(H, J) = F∗(H) + F∗(J) − 2 max
c∈H∧J

F∗(c) = 2 + 5− 2F∗(0) = 2 + 5− 2 × 1 = 5.

d∗(L, B) = F∗(L)+F∗(B)−2 max
c∈L∧B

F∗(c) = 4+4−2 max(F∗(G), F∗(M)) = 4+4−2 max(2, 2) = 4.

int = upper diameter(): Upper diameter is the upper distance between leaf and root.

int = lower diameter(): Lower diameter is the lower distance between leaf and root.

3.3.2.4.2 Tversky Measures (not yet implemented, caj)
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3.3.2.4.3 Semantic Similarities (not yet implemented, caj)

Resnik Semantic Similarity:

Lin Semantic Similarity:

Jian and Contrath Semantic Similarity:

3.3.2.4.4 Vector Space Model (not yet implemented, caj)

Cosine Measure:

3.3.2.5 Node Set Characterization (not yet implemented, caj)

DAG Width:

3.3.2.5.1 Rank Methods

Top Rank Statistics:

Bottom Rank Statistics:

Rank Width Statistics:

3.3.2.5.2 Metric Methods

Diameter:

Centroid:

Dispersion:

3.3.2.5.3 POSOC Scores

3.3.2.6 Compare Node Sets (not yet implemented, caj)

Hausdorff Distance:

Hierarchical Precision and Recall:

3.4 Class Cover : DAG

3.4.1 Objects

Cover: Let V := D be a DAG where is_transitively_reduced(D). Denote P = {P,≺}.



21

3.4.2 Methods

V = transitive reduction constructor(D): Returns transitive_reduction(D).

3.4.2.1 Node Comparisons (not yet implemented, caj)

3.4.2.1.1 Interval Chain Decomposition Methods

3.4.2.1.2 Path-Length Methods

Wu and Palmer:

Hisrt and St. Onge:

3.5 Class Poset : BoundedDAG

3.5.1 Objects

Poset: Let P := D be a DAG where is_transitively_closed(D). Denote P = {P,≤}.

Chain: Denote C ⊆ P where C is a path in P . Ordering the ai ∈ C so that ai ≤ ai+1, 1 ≤ i ≤
|C|−1, then denote C = {a, b, . . . , p|C|} = a1 ≤ a2 ≤ . . . ≤ a|C|. C = {E, X, 1}= E ≤ X ≤ 1.

Antichain: Denote A ⊆ P where ∀a, b ∈ A, a 6∼ b. A = {H, E, O,Q}.

3.5.2 Methods

P = transitive closure constructor(D): Returns transitive_closure(D).

∗int = width(P): Returns maxA⊆D |A|. Denote W(P) [22]. The maximal antichain is {G, M, A, H, D,O,Q,K},
so that W(D′) = 8.

3.6 Class Meet Semilattice : Poset (not yet implemented)

3.6.1 Objects

Meet Semilattice: Let L∧ := P where is_lower_bounded(P) and ∀a, b ∈ P, |a ∧ b| = 1.

3.6.2 Methods

bool = is meet semilattice(P): Returns true if is_lower_bounded(P) and ∀a, b ∈ P, |a∧b| =
1.

c = meet(a, b): Returns c ∈ P for which a ∧ b = {c}. Note polymorphism with DAG.meet().
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3.7 Class Lower Tree : Meet Semilattice (not yet implemented)

3.7.1 Objects

Lower Tree: Let R∧ := L∧ where ∀a 6= 1 ∈ P, |≺(a)| = 1.

3.7.2 Methods

bool = is lower tree(L∧): Returns true if ∀a 6= 0 ∈ P, |≺(a)| = 1.

3.8 Class Join Semilattice : Poset (not yet implemented)

3.8.1 Objects

Join Semilattice: Let L∨ := P where is_upper_bounded(P) and ∀a, b ∈ P, |a ∨ b| = 1.

3.8.2 Methods

bool = is join semilattice(P): Returns true if is_upper_bounded(P) and ∀a, b ∈ P, |a∨b| =
1.

c = join(a, b): Returns c ∈ P for which a ∨ b = {c}. Note polymorphism with DAG.join().

3.9 Class Upper Tree : Join Semilattice (not yet implemented)

3.9.1 Objects

Upper Tree: Let R∨ := L∨ where ∀a ∈ P, |�(a)| = 1.

3.9.2 Methods

bool = is upper tree(L∨): Returns true if ∀a ∈ P, |�(a)| = 1.

3.10 Class Lattice : Meet Semilattice, Join Semilattice (not yet

implemented)

3.10.1 Objects

Lattice: Let L := P where is_meet_semilattice(P) and is_join_semilattice(P).
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3.10.2 Methods

bool = is lattice(P): Returns true if is_meet_semilattice(P) and is_join_semilattice(P).

L = CompletionConstructor(P): Returns L as the Dedekind-MacNeille completion of P [8]. Re-
quires is_bounded(P).

real = upper distance(a, b): Return

d∗(a, b) = F ∗(a) + F ∗(b)− 2F ∗(a∨ b)

real = lower distance(a, b): Return

d∗(a, b) = F∗(a) + F∗(b)− 2F∗(a ∧ b)

3.11 Class Concept Lattice : Lattice (not yet implemented)



Chapter 4

Acknowledgements

Valerie Cross at Miami U. of Ohio made substantial contributions to this material. Thanks also to
Alex Donaldson, Patrick Paulson, and Joshua Short at PNNL for supporting this work. This work
was funded by the Battelle Memorial Institute through the Threat Anticipation Initiative.

24



Appendix A

Reference Sheets

Class Method Notation
Directed Graph Digraph G = 〈P, E〉

Node set P

Node a ∈ P
Edge set E ⊆ P 2

Link a ≺ b = e ∈ E
Parents �(a) ⊆ P

Children ≺(a) ⊆ P
Weight set W = IR ∪ ∅
Node weight function wP : P → W
Link weight function wE : E → W

Directed path ~C = a1 ≺ a2 ≺ . . . ≺ an ⊆ G
Symmetric closure U(G) = 〈P,U(E)〉
Undirected path ~CU = a1 ≺ a2 � . . . ≺ an ⊆ G
Number of turns T ( ~CU ) ∈ W

Directed DAG D
Acyclic Graph Downset ↓ a ⊆ P

Upset ↑ a ⊆ P

Hourglass Ξ(a) ⊆ P
Roots Max(Q) ⊆ P

Leaves Min(Q) ⊆ P
Lower bound 0 ∈ D
Upper bound 1 ∈ D
Upper cone a∇b ⊆ P
Join a ∨ b ⊆ P

Lower cone a∆b ⊆ P
Meet a ∧ b ⊆ P

Transitive closure P(G)
Transitive reduction V(G)
One node below another a ≤ b
Interval [a, b]

25
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Class Method Notation
Bounded DAG Bounded DAG B

Height H(B) ∈ W
Top rank rt(a) ∈ W
Bottom rank rb(a) ∈ W
Interval rank R(a)
Co-atoms ⊥(B) ⊆ P
Atoms >(B) ⊆ P

Complement a ⊆ P, Q ⊆ P
Upper additive F ∗(a) ∈ W

Lower additive F∗(a) ∈ W
Upper distance d∗(a, b) ∈ W
Lower distance d∗(a, b) ∈ W
Degree of transitivity TR(D) ∈ [0, 1]

Cover Cover V
Poset Poset P

Comparable nodes a ∼ b
Noncomparable nodes a 6∼ b

Antichain A ⊆ P
Width W

Meet Semilattice Meet Semilattice L∧

Meet a ∧ b
Chain C = a1 ≤ a2 ≤ . . . ≤ an ⊆ P
Saturated Chain C = a1 ≺ a2 ≺ . . . ≺ an ⊆ P
Saturated Chains C(a, b)

Lower Tree Lower Tree R∧

Join Semilattice Join Semilattice L∨

Join a ∨ b

Upper Tree Upper Tree R∨

Lattice Lattice L

Table A.1: Notation
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