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Abstract. We show how the concept of an annotated ordered set can
be used to model large taxonomically structured ontologies such as the
Gene Ontology. By constructing a formal context consistent with a given
annotated ordered set, their concept lattice representations are derived.
We develop the fundamental mathematical relations present in this for-
mulation, in particular deriving a conceptual pre-ordering of the tax-
onomy, and constructing a correspondence between the annotations of
an ordered set and the closure systems of its filter lattice. We study an
example from the Gene Ontology to demonstrate how the introduced
technique can be utilized for ontology review.

1 Introduction

Ontologies, taxonomies, and other semantic hierarchies are increasingly nec-
essary for organizing large quantities of data, and recent years have seen the
emergence of new large taxonomically structured ontologies such as the Gene
Ontology (GO) [AsMBaC00]1, the UMLS Meta-Thesaurus [BoOMiJ02], object-
oriented typing hierarchies [KnTReJ00], and verb typing hierarchies in compu-
tational linguistics [DaA00a]. Cast as Directed Acyclic Graphs (DAGs), these all
entail canonical mathematical representations as annotated ordered sets (previ-
ously called “poset ontologies” [JM04]).

The size and complexity of these modern taxonomic hierachies requires al-
gorithmic treatement of tasks which could previously be done by hand or by
inspection. These include reviewing the consistency and completeness of the un-
derlying hierarchical structure, and the coherence of the labeling (the assignment
of objects to ontological categories). The close similarity of the annotated ordered
set representations of these taxonomies to concept lattices in Formal Concept
Analysis (FCA) [GW99] suggests pursuing their representation within FCA, in
order to gain a deeper understanding of their mathematical structure and opti-
mize their management and analytical tractibility (see also [JoCGeD06]).

We begin this paper by defining annotated ordered sets, and demonstrate
their appropriateness for representing the GO. Then, we define a formal con-
text appropriate for annotated ordered sets, and thereby construct their concept
1 http://www.geneontology.org
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lattices. We analyze the relationship between an annotated ordered set and its
concept lattice representation, which includes the formulation of a correspon-
dence between the annotations of an ordered set and the closure systems of its
filter lattice. Additionally, we study an example from the GO. The paper is con-
cluded with a discussion of future applications and extensions of the outlined
approach. Throughout, we assume that the reader is knowledgable of the theory
of FCA [GW99].

2 Taxonomic Ontologies as Annotated Ordered Sets

We use the GO as our touchstone for the general concept of an annotated or-
dered set. Fig. 1 (from [AsMBaC00]) shows a sample portion of the GO. Nodes
in black represent functional categories of biological processes, basically things
that proteins “do”. Nodes are connected by links indicating subsumptive, “is-a”
relations between categories, so that, for example, “DNA ligation” is a kind of
“DNA repair”. Elsewhere in the GO, nodes can also be connected by compo-
sitional, “has-part” relations, but for our purposes, we will consider the GO as
singly-typed.

Fig. 1. A portion of the BP branch of the GO (used with permission from
[AsMBaC00]). GO nodes in the hierarchy have genes from three species annotated
below them.
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Colored terms attached to each node indicate particular proteins in particular
species which perform those functions. This assignment is called “annotation”.
Note that proteins can be annotated to multiple functions, for example yeast
MCM2 does both “DNA initiation” and “DNA unwinding”. Furthermore, an
annotation to a node should be considered a simultaneous annotation to all an-
cestor nodes, so that yeast CDC9 does both “DNA ligation” and “DNA repair”.
So explicit such annotations, for example CDC9 annotation to both “DNA liga-
tion” and “DNA recombination” in Fig. 1, are actually redundant. Finally, note
the presence of multiple inheritance: “DNA ligation” is both “DNA repair” and
“DNA recombination”.

It is therefore appropriate to model structures such as the GO as structures
called annotated ordered sets (previously referred to as poset ontologies [JM04]).

Definition 1 (Annotated Ordered Set). Let P := (P, ≤P) be a finite or-
dered set (poset), let X be a finite set of labels, and let F : X → 2P be an
annotation function. Then we call O := (P , X, F ) an annotated ordered set and
refer to (X, F ) as an annotation of P. In case P is a (complete) lattice we call
O an annotated (complete) lattice denoted L. If |F (x)| = 1 for all x ∈ X, for
convenience, we regard F as a map from X to P and say that O is elementary.

It should be emphasized that Fig. 1 shows only a small fragment of the GO,
which currently has on the order of 20,000 nodes in three disjoint taxonomies,
annotated by hundreds of thousands of proteins from dozens of species.

3 Concept Lattice Representations

We are now prepared to construct concept lattice representations of annotated
ordered sets by deriving the appropriate formal contexts. For an ordered set
P := (P, ≤P ) and node q ∈ P we denote by ↑ q := {p ∈ P | q ≤P p} the principal
filter of q and dually by ↓ q the principal ideal. In general, for Q ⊆ P we define
↑ Q := {p ∈ P | ∃q ∈ Q : q ≤P p} and dually ↓ Q. Given an annotated ordered
set O := (P , X, F ) we can construct a formal context KO := (X, P, I) where

xIp :⇐⇒↓ p ∩ F (x) �= ∅

for x ∈ X, p ∈ P . Note also that

xIp ⇐⇒ ∃q ≤P p : q ∈ F (x) ⇐⇒ p ∈
⋃

q∈F (x)

↑ q.

The concept lattice of KO will be denoted by BO := (BO, ≤B
O
), where BO :=

B(KO) is the set of formal concepts of the formal context KO [GW99]. BO is
called the concept lattice representation of the annotated ordered set O.

In case O forms an annotated complete lattice and (A, B) ∈ BO is a formal
concept in BO, we observe that A = BI is the set of all x ∈ X such that

∧
B
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is an upper bound of F (x). Also, for convenience, for a node p ∈ P denote
pI := {p}I ⊆ X .

We can define a new relation on P induced by the concept lattice BO. We
say p is conceptually less or equal than q if and only if (pI , pII) ≤B

O
(qI , qII),

denoted by p ≤O q. We call ≤O the conceptual pre-order of O. In general, the
relation ≤O is not an order since for different p, q ∈ P the corresponding attribute
concepts (pI , pII) and (qI , qII) can match. Two annotations (X, F1), (X, F2) of
P are called annotationally equivalent if their conceptual pre-orders coincide. In
Sections 4, 5, and 6 we will explore the relationship between the original ordered
set P and the constructed conceptual pre-order (P, ≤O) and hint at potential
applications arising from this comparison.
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Fig. 2. Example of an annotated lattice

0 A B C D E F G H I J K 1
a × × × × × × ×
b × × × × ×
d × × ×
e × × × × ×
f × × ×
g × × ×
j × × × × × × ×

Fig. 3. Context for the annotated lattice in Fig. 2

Example 1. An example for an elementary annotated lattice L := (P , X, F ) is
given in Fig. 2 where P := ({A, B, . . . , K, 0, 1}, ≤P), X = {a, b, d, e, f, g, j}, and
F and ≤P are defined as illustrated. Fig. 3 shows the formal context KL,. and
Fig. 4 the resulting concept lattice BO.
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Fig. 4. Concept lattice representation of the annotated lattice in Fig 2

4 Mathematical Properties of Concept Lattice
Representations

In the first part of this section we will analyze how the order of the annotated
ordered set and the order of its concept lattice are related. In the second part
we will investigate how the concept lattice representations, derived from a given
ordered set using different annotations, can be classified.

4.1 Annotated Ordered Sets and Their Conceptual Pre-order

The following proposition connects an annotated ordered set with its concept
lattice representation.

Proposition 1. Let O := (P , X, F ) be an annotated ordered set and let μ : P →
BO be such that μ(p) = (pI , pII) maps each poset node to its attribute concept
in BO. Then μ constitutes an order-homomorphism between P and the concept
lattice representation of O.

Proof. Let p, q ∈ P . Then we have p ≤P q ⇐⇒↓ p ⊆↓ q which implies

pI = {x ∈ X | ↓ p ∩ F (x) �= ∅} ⊆ {x ∈ X | ↓ q ∩ F (x) �= ∅} = qI .

Since the last statement is equivalent to μ(p) ≤B
O

μ(q) this asserts the proposi-
tion. ��

By definition of ≤O, it follows that p ≤P q =⇒ p ≤O q. Clearly, the converse
is wrong, since in general ≤O is only a pre-order. Even for the factor order
associated with the pre-order, the converse implication does not hold as is verified
by the example shown in Figure 5, where c ≤O a, but c and a are non-comparable
in P .
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Fig. 5. Counter-example to μ inducing an order isomorphism

But for elementary annotated complete lattices we find the following connec-
tion which goes further than the results for annotated ordered sets.

Proposition 2. Let L = (P , X, F ) be an elementary annotated complete lattice.
The concept lattice of L is order-embedded into P via the map ϕ : BL → P where
(A, B) �→

∧
B.

Proof. For all c1, c2 ∈ BL, we have to show that c1 ≤B
L

c2 holds if and only if
ϕ(c1) ≤P ϕ(c2). Let c1 = (A, B) and c2 = (C, D) be concepts in BL.
“⇒”: Assume (A, B) ≤B

L
(C, D). This is equivalent to D ⊆ B which implies∧

B ≤P
∧

D.
“⇐”: Assume

∧
B ≤P

∧
D. Since L is elementary, BI is the set of all labels

x ∈ X such that
∧

B is an upper bound of F (x) it follows that BI ⊆ DI and
therefore we have (BI , B) ≤B

L
(DI , D) as required. ��

For elementary annotated lattices the previously introduced mappings μ and ϕ
combine in a surprising way.

Theorem 1. Let L := (P , X, F ) be an elementary annotated complete lattice.
Then (ϕ, μ) forms a residuated pair between the concept lattice representation
of L and P. In particular, ϕ is an injective

∨
-morphism and μ is a surjective∧

-morphism.

Proof. Firstly, we deduce from Proposition 2 that ϕ is injective. For residuated
pairs this implies the surjectivity of the second map. It remains to show that
(ϕ, μ) forms a residuated pair.

Since L is elementary, F can be regarded as a map from X to P and then the
incidence relation I of KL is defined via xIp if and only if F (x) ≤P p; therefore
xI =↑ F (x) for all x ∈ X . In the following let (A, B) be an arbitrary concept
in BL. We derive B = AI =

⋂
a∈A xI =

⋂
a∈A ↑ F (x) =↑

∨
F (A); hence, we

receive ϕ(A, B) =
∧

B =
∨

F (A). We conclude the proof as follows:

ϕ(A, B) ≤P p ⇐⇒
∨

F (A) ≤P p ⇐⇒ p ∈↑
∨

F (A) = AI

⇐⇒ A ⊆ pI ⇐⇒ (A, B) ≤B
L

μ(p)

��

As a consequence of our theorem we know that ϕ embeds the concept lattice
representation of an elementary annotated complete lattice into its underlying
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lattice as a kernel system. This fact applies to Example 1 and is visualized in
Fig. 6.

Though, in general, the concept lattice representations of elementary anno-
tated ordered sets cannot be embedded into their underlying ordered set, it is
feasible to embed them into a well-known extension of the former. For a subset
Q of an ordered set P , we will use the notation Q↓ for the set of all lower bounds
of Q in P .

Theorem 2. Let O := (P , X, F ) be an elementary annotated ordered set and
let K := (P, P, ≤P ). Then the map BO → B(K) with (A, B) �→ (B↓, B) forms
a

∨
-embedding of the concept lattice representation of O into the Dedekind-

MacNeille completion of P.

Proof. Firstly, we refer to Theorem 4 in [GW99], p.48, for details regarding the
Dedekind-MacNeille completion.

Since O is elementary, xI =↑ F (x) is an intent not only of KO but also
of K for every x ∈ X ; trivially, pI is an extent of KO for every p ∈ P . By
Definition 69 in [GW99], p. 185, this means that I is a bond from KO to K. Now
Corollary 112 in [GW99], p. 256, implies that the map ϕI from BO to B(K) with
ϕI(A, B) = (AI↓, AI) = (B↓, B) is a

∨
-morphism, which clearly is injective. ��
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Fig. 6. The concept lattice representation from Fig. 4 embedded as kernel system in
its annotated lattice from Fig. 2

4.2 Classifying the Annotations of an Ordered Set

We start with giving two rather extreme examples for different concept lattices
derived from the same ordered set via different annotations. In the following,
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it is more convenient to regard an annotated ordered set O := (P , X, F ) as a
formal context with an ordered set of attributes. Since the annotation function
F : X → 2P set-theoretically is a relation F ⊆ X × P , the formal context
(X, P, F ) together with the ordered set P = (P, ≤P) yields another way of look-
ing at an annotated ordered set. It is obvious, that the formal context KO is equal
to (X, P, F ◦ ≤P), where ◦ denotes the relational product. We recall Theorem
4 from [GW99] which states that for an ordered set P its Dedekind-MacNeille
completion is isomorphic to the concept lattice of the formal context (P, P, ≤P ).
Now it is easy to see, that the identical labelling function Fid : P → 2P with
p �→ {p} yields an annotated ordered set Oid := (P , P, Fid) which is isomorphic
to the Dedekind-MacNeille completion of P , because Fid ◦ ≤P=≤P which yields
KO = (P, P, ≤P ). On the other hand – as complicated as P might be – if the
labelling function is constant with FP (x) = P for any label x ∈ X we get a
formal context with I = X × P . That means, the concept lattice representation
shrinks the ordered set into a single element.

To get a more comprehensive description of the interplay of the annotations
of an ordered set P and its concept lattice representations we will use the filter
lattice of an ordered set P – which is defined as F(P) := ({F ⊆ P | ↑ F = F}, ⊆)
– as a framing structure.

Theorem 3. The annotations of an ordered set P = (P, ≤P) are, up to anno-
tational equivalence, in one-to-one correspondence to the closure systems in the
filter lattice of P.

Proof. Let x ∈ X be a label. The object intent xF◦≤P of x in (X, P, F◦ ≤P)
is of the form {p ∈ P | ∃q ∈ xF : q ≤P p} which is equal to the filter ↑ xF in
P . Since the intents of all concepts of a concept lattice are exactly the meets
of the object intents, the intents of the concepts of B(X, P, F◦ ≤P) are exactly
the meets of filters of the form xF◦≤P with x ∈ X , and therefore, form a closure
system in the filter lattice of P .

Let us assume that X ⊆ 2P is a closure system in the filter lattice of P .
We consider the formal context (X , P, �). For X ∈ X , we get X� = {p ∈
P | p ∈ X} = X . Therefore the intents of the associated concept lattice constitute
exactly the closure system X . And since in our situation � ◦ ≤P is equal to �,
an annotation (X , �) corresponding to X is found. ��

The above theorems say that the cosmos of possible structures which can be
produced via annotating an ordered set and forming its concept lattice are re-
stricted to closure systems in the filter lattice of the original ordered set – and
also exhaust them.

5 Application to the Gene Ontology

In this section we apply our proposed technique to the GO cutout depicted in
Figure 1. The given diagram can be seen as an annotated ordered set where the
underlying ordered set consists of the functional categories of biological processes
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(as e.g. DNA replication) and the order is given by the arrows. The set of labels
consists of the proteins and the annotation function maps a protein to a function
category if it is listed at the respective function category node. Clearly, this
annotated ordered set can not be interpreted as an annotated lattice, since infima
and suprema do not exist for any subset of nodes, e.g. the infimum over all
function categories is not present. Also the annotation function attaches some
proteins to several nodes as it is the case for Lig1 and Lig3 who are attached to
the functional categories of DNA ligation, DNA recombination, and DNA repair.
Figure 8 shows a diagram of the concept lattice representation of this annotated
ordered set where we have omitted function categories where there is no protein
attached to the nodes or to some subnode. Figure 7 shows the conceptual pre-
ordering of the functions derived from the concept lattice representation (in this
case it is an order).
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Fig. 7. Function categories ordered conceptually

We want to point out some interesting differences between the annotated
ordered set and its concept lattice. Conceptually, the function category DNA
Recombination is less than DNA Repair while in the GO the two nodes are not
comparable. This change occurs because DNA Repair “inherits” the proteins
from DNA Ligation which yields a superset of proteins annotated to DNA Repair
compared to DNA Recombination. Since the design of the function category
ordering of the GO differs from the conceptual pre-ordering the question arises
if some proteins exists but are not present in the GO which justify the non-
comparability or if the ordering should be redesigned.
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Fig. 8. Concept Lattice for the GO cutout depicted in Figure 1

If we focus our attention on the protein CDC9 we see that it is annotated
to two quite horizontally distinct nodes in the GO, Lagging strand elongation
and DNA ligation. In the concept lattice representation, the new object concept
node for CDC9 thus ties together these two GO nodes through the intermediate
concept shown there, the CDC9 object concept atom on the left. Now, we could
ask the question if there is a meaningful label for this node and if it should
eventually be introduced in the GO.
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6 Discussion

It should be noted that the formal properties of the GO are just now beginning
to be explored. Joslyn et al. [JM04] have done preliminary measurements of its
poset properties, including height, width, and ranks. And while we’ve noted that
the GO is not specifically lower-bounded, if a lower bound is asserted, then it can
be questioned how many pairs of nodes do not have unique meets and joins, and
thus how close it comes to our idealized annotated lattice. This is something we
have addressed specifically elsewhere [JoCGeD06], including proposing a method
to measure this degree of lattice-ness based on the FCA reconstruction of the
(un-annotated) GO.

As a main application area of our technique we see the task of ontology re-
view or refinement as insinuated in the last section. We want to emphasize two
aspects. Firstly, one can investigate all pairs of nodes which are not comparable
in the ontology but become comparable in the conceptual pre-order. Secondly,
one can consider concepts which are not attribute concepts in the concept lattice
representation. Those concepts might be considered as proposals for new nodes
in the ontology. This task could even be supported by software tools which could
automatically extract the conceptual pre-order of the nodes of the ontology and
compute all pairs of nodes which are not comparable in the ontology but become
comparable in the conceptual pre-order. The number of those nodes could be
interpreted as a degree of conceptual soundness of the ontology. Many additional
measures are possible, e.g. counting the number of concepts which are not at-
tribute concepts in the concept lattice representation, where this number could
be interpreted as conceptual completeness. In both cases lower numbers would
be considered as better results. We see future work in this line of research in
evolving measures and tools to make the technique operable for large ontologies
(see also [JoCGeD06]). This would involve the design of expert systems, which
support a semi-automated ontology review or reengineering process.
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