
PNNL is operated by Battelle for the U.S. Department of Energy 10/9/2022

For additional information, contact:

Hypergraph Topological Features for
Autoencoder-Based Intrusion Detection for
Cybersecurity Data
Bill Kay, Sinan Aksoy, Molly Baird,Daniel Best, Helen Jenne, Cliff Joslyn, Christopher Potvin, Gregory
Henselman-Petrusek, Garret Seppala, Stephen Young, Emilie Purvine; Pacific Northwest National Laboratory

Sbill Kay | (509) 375-3624 | William.kay@pnnl.gov

A workflow we propose for analyzing complex
cybersecurity data:
•Construct hypergraphs which capture complex
correlations.
•Use tools from topology to analyze relational
structure.
•Use auto-encoders to detect anomalous behavior.

Hypergraphs capture multiway relational data.
•Strictly more information than graphs.
•Relationships give rise to complex structure.

An example of information loss in a coauthor graph.
Hypegraphs distinguish different multiway relations
(pairwise, 3-way, etc.), while graphs do not.

Topology (homology): spatial properties known as “holes.”
Connected components (dim-0), loops (dim-1), and voids (dim-k).
•Counts of these voids are known as the “Betti numbers,” and
provide insight into which regions of a hypergraph are populated. Cyber data to Hypergraphs: From log files,
define useful sets of rules for constructing
hypergraphs from cyber data.
•Useful for anomaly detection.

• Build hypergraphs on anomaly free data.
• Compare to hypergraphs from the wild.

An example of one way to construct a hypergraph from cyber data
•Nodes are IP addresses.
•Edges are ports.
•A collection of IP addresses are in a given (port) edge if the port is
accessed by the IP during a fixed time window.

Machine Learning (high level): A workflow for anomaly
detection:
•Compute topological features of a time series of hypergraphs
constructed from known non-anomalous data.
•Train ML on vectorized hypergraph topological data.

• ML has good performance on non-anomalous data.
• Experiences performance dropoff on anomalous data.

Autoencoders are a type of ANN which:
•Learn efficient encodings of inputs.

• By having a bottleneck layer.
•Given output you can guess at the input.

• On clean data, guesses are good.
• On attack data, guesses are bad.

