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Abstract. In this work we study the topological properties of temporal
hypergraphs. Hypergraphs provide a higher dimensional generalization
of a graph that is capable of capturing multi-way connections. As such,
they have become an integral part of network science. A common use
of hypergraphs is to model events as hyperedges in which the event can
involve many elements as nodes. This provides a more complete picture
of the event, which is not limited by the standard dyadic connections of
a graph. However, a common attribution to events is temporal informa-
tion as an interval for when the event occurred. Consequently, a temporal
hypergraph is born, which accurately captures both the temporal infor-
mation of events and their multi-way connections. Common tools for
studying these temporal hypergraphs typically capture changes in the
underlying dynamics with summary statistics of snapshots sampled in a
sliding window procedure. However, these tools do not characterize the
evolution of hypergraph structure over time, nor do they provide insight
on persistent components which are influential to the underlying sys-
tem. To alleviate this need, we leverage zigzag persistence from the field
of Topological Data Analysis (TDA) to study the change in topological
structure of time-evolving hypergraphs. We apply our pipeline to both
a cyber security and social network dataset and show how the topolog-
ical structure of their temporal hypergraphs change and can be used to
understand the underlying dynamics.

1 Introduction

Complex networks are a natural tool for studying dynamical systems where ele-
ments of the system are modeled in a dyadic way and evolve over time. There are
many real-world examples, such as social networks [28], disease spread dynam-
ics [18], manufacturer-supplier networks [31], power grid networks [26], and trans-
portation networks [9]. The underlying complex dynamical systems driving these
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networks cause temporal changes to their structure, with connections and ele-
ments added and removed as the dynamical system changes. We can summarize
this category of complex network as dynamical networks [17] where the resulting
graph is a temporal graph with temporal attributes associated to each connection
and/or element of the complex network.

While temporal networks are useful in understanding systems with dyadic
relations between elements, the complex network is not always satisfactory for
modeling the relationship between multiple entities [11]. For data with multi-
way relations that cannot be described by dyadic connections, hypergraphs cap-
ture richer information about community structure. For example, in Sect. 3.1 we
explore a hypergraph built from Reddit data (PAPERCRANE [5]) on threads
about COVID-19. A dyadic model, where an edge links two users if and only
if they posted in the same thread, loses all information about thread size. In
contrast, a hypergraph, where each thread is an edge and a user is in a thread if
and only if they posted in that thread, retains the total structure of the data. In
this way, hypergraph analytics are a powerful tool when higher order structure is
of interest. Some instances where hypergraphs have been useful include human
gene sets [12,19] where genes interact in complex combinations, cyber data [19]
with the domain name systems mapping multiple domains and IPs, and social
networks with interactions between large groups [11].

In many use cases, individual snapshots of a complex system are less impor-
tant than analysis of how the system changes. Often, these networks are further
improved by modeling them as Temporal HyperGraphs (THG) in the same way
as temporal graphs, with temporal attributes (e.g., intervals or times) associ-
ated to the multi-way connections and elements. Examples can be found in
many settings, such as anomaly detection in automotive data (CAN bus) [16]
and cybersecurity using the Operationally Transparent Cybersecurity data we
consider in Sect. 3.2 [15].

Many common tools for studying the characteristics of THGs are based on
summary statistics of the underlying hypergraph snapshots. These statistics pro-
vide insight to dynamic changes in the structure of the underlying hypergraph.
For example, in [8], Cencetti et al. studied temporal social networks as hyper-
graphs and were able to measure the burstiness of multi-way social interactions
using a burstiness statistic. While statistics such as this can be informative for
change detection and insights into the system dynamics, they are lacking in
their ability to interpret changes in the structure of the temporal hypergraph.
Another approach for studying temporal hypergraphs is through visual ana-
lytics. In [13], a matrix based visual analytics tool was designed for temporal
hypergraph analysis which provides insights into the dynamic changes of the
hypergraph. However, visualization tools are naturally limited in their ability to
be automatically interpreted and often require expertise to properly understand.

What distinguishes hypergraphs from graphs is that hyperedges come not
only in arbitrary sizes, but also connected into arbitrarily complex patterns.
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As such, they can actually have a complex mathematical topology1 as com-
plex “gluings” of multi-dimensional objects which can have a complex shape
and structure. Studying the topology of hypergraphs is a becoming an increas-
ingly large area, frequently exploiting their representation as Abstract Simplicial
Complexes (ASCs).

The field of Topological Data Analysis (TDA) [10,33] aims to measure the
shape of data. Namely, data is represented as an ASC, whose homology is then
measured to detect overall topological shape, including components, holes, voids,
and higher order structures. However, this often requires the choice of parameters
to generate the ASC from the data, which is typically nontrivial. Another, more
automatic, approach for measuring the shape of data is to use persistent homol-
ogy from TDA. This method for studying the shape of data extracts a sequence
of ASCs from the data, which is known as a filtration. Persistent homology has
been successfully applied to a wide application domains, including manufactur-
ing [20,32], biology [4], dynamical systems [22,29], and medicine [27]. Many of
the applications either represent the data as point clouds or graphs. For point
cloud data, filtrations are commonly generated as a collection of Vietoris-Rips
complexes [10] determined by identifying points within a Euclidean distances of
an increasing radius parameter. For graph data a similar process would be to
use a distance filtration with the shortest path distance [3,22].

Hypergraphs have also been studied using tools from TDA. Namely, the work
in [14] shows how the homology of hypergraphs can be studied using various
ASC representations such as the associated ASC [25] or the relative/restricted
barycentric subdivision.

However, a requirement for applying persistent homology is that there is
a monotonic inclusion mapping between subsequent members of a sequence of
ASCs (i.e., each subsequent ASC in the sequence has its previous as a subset).
Many sequences of ASCs associated with data sets are not monotonic, how-
ever, we still want to track their changing structure. This is commonly true for
temporal data, where, for example, hypergraph edges can appear and then disap-
pear over time, which would break the monotonicity requirement for persistent
homology.

To solve this problem, zigzag persistence [7] can be applied. Instead of mea-
suring the shape of static point cloud data through a distance filtration (e.g., a
Vietoris-Rips filtration), zigzag persistence measures how long a topology gener-
ator persists in a sequence of ASCs by using a an alternating sequence of ASCs,
called a “zigzag filtration”.

Both PH and zigzag persistence track the formation and disappearance of
the homology through a persistence diagram or barcode as a two-dimensional
summary consisting of persistence pairs (b, d), where b is the birth or forma-
tion time of a generator of a “hole” of a certain dimension, and d is its death
or disappearance time. For example, in [30] the Hopf bifurcation is detected
through zigzag persistence of Vietoris-Rips complexes over sliding windows using

1 Notice we use “topology” here in the formal sense, as distinct from how this is used
informally in graph applications to refer to connectivity patterns in networks.
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the one-dimensional homology. Another recent application [23] studies temporal
networks, where graph snapshots were represented as ASCs using the Vietoris-
Rips complex with the shortest path distance. However, both of these methods
require a distance parameter to be selected to form the ASC at each step, which
is typically not a trivial choice.

The resulting persistence barcodes from zigzag persistence can also be vector-
ized using methods such as persistence images [1] or persistence landscapes [6].
This allows for the resulting persistence diagrams to be analyzed in automatic
methods using machine learning for classification or regression.

In this work we leverage zigzag persistence to study THGs. By measuring
the changing structure of the temporal hypergraph through an ASC representa-
tion of the hypergraph, we are able to detect the formation, combination, and
separation of components in the hypergraph as well as higher dimensional fea-
tures such as loops or holes in the hypergraph and voids. The detection of these
higher dimensional features is critical for temporal hypergraph analysis as they
may be of consequence depending on the application domain. Additionally, in
comparison to creating an abstract ASC from point cloud or graph data, no
distance parameter needs to be chosen as there are natural representations of a
hypergraph as an ASC [14].

In Sect. 2 of this paper we introduce THGs and an ASC representation of
hypergraphs. We then overview persistent homology and zigzag persistence. In
Sect. 3 we demonstrate how our method can be applied to two data sets drawn
from social networks and cyber data. Lastly, in Sect. 4 we provide conclusions
and future work.

2 Method and Background

In this section the method for studying temporal hypergraphs using zigzag per-
sistence is developed alongside the necessary background material. Our method
is a confluence of zigzag persistence and the ASC representation of hypergraphs
for the topological analysis of THGs. Namely, we develop a pipeline for applying
zigzag persistence to study changes in the shape of a temporal hypergraph using
a sliding window procedure. This pipeline is outlined in Fig. 1.

Fig. 1. Pipeline for applying zigzag persistence to temporal hypergraphs.

We begin with a temporally edge-attributed hypergraph in Fig. 1–Temporal
Hypergraph, where each edge has active intervals associated to it as described in
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Sect. 2.1. Next, we use a Fig. 1–Sliding Window procedure, where we choose a
window size w and shift s that is slid along the time domain of the set of inter-
vals in discrete steps. Using each sliding window, we generate Fig. 1–Hypergraph
Snapshots at each window, which is described in Sect. 2.2. We then represent
each snapshot as a Fig. 1–ASC using the associated ASC in Sect. 2.3. Next, we
introduce simplicial homology for studying the shape of an ASC in Sect. 2.4.
This leads to the method for relating the homology within a sequence of ASCs
known as zigzag persistent homology in Sect. 2.5, which is used for calculating
the persistent homology of the temporal hypergraph represented as a barcode of
persistent diagram (Fig. 1–Barcodes).

To illustrate our procedure we provide a simple example throughout each step
in the pipeline. For the example and the remaining results we use the Python
packages HyperNetX2 to generate the hypergraphs and Dionysus23 to calculate
the zigzag persistence.

2.1 Temporal Hypergraphs

A graph G(V,E) is composed of a set of vertices connected using a set of edges
with E ⊆ (

V
2

)
. A hypergraph H(V,E) is composed of a set of vertices V and a

family of edges E, where for each Ei ∈ E,Ei ⊆ V . In this way a hypergraph can
capture a connection between k vertices as a k-edge. For example, consider the
toy hypergraph in Fig. 2a with four nodes V = {A,B,C,D} and five hyperedges
E = {E1, E2, E3, E4, E5}. These hyperedges in the example range in size from
edge E2 = (D) as a 1-edge to edge E4 = (A,B,C) as a 3-edge.

A temporal hypergraph H(V,E, T ) is a replica of its underlying static hyper-
graph with the addition of temporal attributes T associated to either the vertices,
edges, or incidences. An attribute to an incidence occurs when the temporal infor-
mation associated to a node is relative to the hyperedge. In this work we only
use temporal information attributed to the edges. However, our pipeline could

Fig. 2. Toy example temporal hypergraph.

2 HyperNetX: https://pnnl.github.io/HyperNetX.
3 Dionysus2: https://mrzv.org/software/dionysus2/.

https://pnnl.github.io/HyperNetX
https://mrzv.org/software/dionysus2/
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be adapted to any or all of the three temporal attribution types. Returning to
our toy example hypergraph H in Fig. 2a, we include temporal information as a
set of intervals associated to the time when each edge is active (e.g., E2 is active
for the point interval [0, 0] and interval [7, 8]).

2.2 Sliding Windows for Hypergraph Snapshots

The sliding window procedure is a ubiquitous part of signal processing, in which
a time series or signal is segmented into discrete windows that slide along its
time domain. Specifically, Given a time domain [t0, tf ], window size w, and shift
s, we create a set of windows that cover the time domain interval as

W = {[t0, t0+w], [t0+s, t0+s+w], [t0+2s, t0+2s+w], . . . , [t0+�s, t0+�s+w]},
(1)

The window size and shift should be such that s ≤ w. In this way the union of
all windows covers the entire domain and adjacent windows do not have a null
intersection.

For each sliding window Wi ∈ W we create a sub-hypergraph snapshot using
an intersection condition between the sliding window interval Wi and the col-
lection of intervals associated to each edge in the temporal hypergraph. The
intervals are considered closed intervals in this work. This procedure is done by
including an edge if there is a nonempty intersection between the edge’s interval
set and the sliding window interval Wi. We formalize this as

Hi = {Ej ∈ E | I(Ej) ∩ Wi �= ∅}, (2)

where Ej ∈ E is an edge in the set of edges of the static hypergraph and I(Ej)
is the interval collection for edge Ej . The resulting sub-hypergraph snapshot
collection of W is

H = {H0,H1, . . . , Ht, . . . , H�}.

We can cast this collection as a discrete dynamical process Ht �→ Ht+1 to gain
understanding of the underlying system’s dynamics.

Fig. 3. Sequence of sub-hypergraphs H from the sliding window procedure with corre-
sponding ASCs.

To demonstrate the sliding window procedure for getting hypergraph snap-
shots we use the toy example temporal hypergraph from Fig. 2 and window param-
eters w = 2 and s = 2. Using these parameters we get the sliding windows as
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W = {[0, 2], [2, 4], [4, 6], [6, 8], [8, 10]}.

Hypergraphs from each window are generated as subsets of the static H depend-
ing on the overlap of the window and the activity intervals associated to each
edge. For example, window W2 = [4, 6] has the hypergraph H2 with edges
{E1, E3, E5} based on the overlap between W2 and the collection of intervals
of each edge shown in Fig. 2b. Additionally, each hypergraph has now both an
index and time associated to it. The index is as was previously stated (e.g., H2

has index 2) and the time is the average time of the corresponding window (e.g.,
W2 has an average time of (4 + 6)/2 = 5). Applying this hypergraph snapshot
procedure using the sliding windows we get the five hypergraphs shown in Fig. 3.

2.3 Associated ASC of a Hypergraph

An ASC K is a collection of simplices, with a simplex σ ⊆ P as a subset of
n points from a set of points P and simplex dimension n − 1. This results in
points (1-edge) as 0-simplices, lines (2-edge) as 1-simplices, triangles (3-edge) as
2-simplices, etc. We denote the simplex σ as a face if σ ⊆ τ with τ as another
simplex. Additionally, a simplex σ of dimension n − 1 is required to be closed
under face relation, which is all of its subsimplices (faces) as the power set of the
simplex. The dimension of an ASC is the dimension of the largest simplex. ASCs
are often used to represent geometric structures and as such are referred to as
geometric simplicial complexes. However, we can also refer to them as abstract
simplicial complexes for purely combinatorially purposes.

We can generate the associated ASC of a hypergraph [25] using the simplices
associated to each hyperedge and building the closure under face relations, which
is the power set of each hyperedge.

To apply zigzag persistence to study the changing topology of our hypergraph
snapshots, we need to first represent our collection of hypergraph snapshots H
as a sequence of ASCs K which will later be used to create the zigzag persistence
module. While there are several methods for representing a hypergraph as an
ASC [14], we leverage an adaptation of the associated ASC method from [25].
The associated ASC of a hypergraph H is defined as

K(H) = {σ ∈ P(Ei) \ ∅ | Ei ∈ E}, (3)

where E is the edge set of the hypergraph H, Ei ∈ E, and P(Ei) is the power
set of Ei. Equation 3 provides a first starting point for calculating the zigzag
persistence, however, it is computationally cumbersome. Specifically, for a large
k-edge the computational requires

k∑

j=0

(
k + 1
j + 1

)
= 2k+1 − 1

subsimplices. However, the computation of homology of dimension p only
requires simplices of size p+1 to be included in the ASC. As such, we define the
modified associated ASC as
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K(H, p) = {σ ∈ Pp+1(Ei) \ ∅ | Ei ∈ E}, (4)

where Pp+1 is the modified power set to only include elements of the set up
to size p + 1 or

(
Ei

p+1

)
. The modified associated ASC reduces the computational

demand by only requiring
p+1∑

j=0

(
k + 1
j + 1

)

subsimplices for a k-edge.
Applying Eq. (4) to each hypergraph in H allows us to get a corresponding

sequence of ASCs as K. For the hypergraph snapshots H shown in Fig. 3 the
modified associated ASCs K are shown in Fig. 4.

Fig. 4. Sequence of associated ASCs from hypergraph snapshots in Fig. 3.

2.4 Simplicial Homology

Simplicial homology is an algebraic approach for studying the shape of an ASC
by counting the number of p-dimensional holes, where p = 0 are connected
components, p = 1 are graph triangles, p = 2 are three-dimensional hollow
tetrahedrons, and so on. We can represent the collection of p-dimensional holes
of an ASC K as the Betti vector β(K) = [b0, b1, b2, . . .], where bp is the number
of p-dimensional holes known as a Betti number. In this work we do not overview
the details on how the Betti numbers are calculated, but we direct the reader to
[21,24] for a formal introduction.

By calculating the Betti numbers for our sequence of ASCs in Fig. 4, we
get the Betti vectors in Fig. 5. These Betti numbers are informative on the
changing topology of the hypergraph snapshots in Fig. 3; however, they do not
capture information on how the topology between the snapshots are related.

Fig. 5. Betti numbers for ASCs in Fig. 4.
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For example, by observation of the hypergraph snapshots we know that there
is one main component that persists through the entire sequence of ASCs, but
this information can not be known directly from the Betti numbers. The Betti
numbers do not tell the complete story of this component persisting the whole
time. While they do tell us there is at least one component in each snapshot,
these components do not necessarily need to be the same component in each
snapshot to get the same Betti vectors. As such, we need to use a method to
track how the homology is changing and related between the sequence of ASCs.
To do this we implement zigzag persistent homology.

2.5 Zigzag Persistent Homology

This section provides a conceptual introduction to persistent homology and how
it generalizes to zigzag persistent homology. We suggest [21,24] for a detailed
introduction on persistent homology.

Persistent homology [33], a filtration tool from the field of Topological Data
Analysis (TDA) [10,33], is used to gain a sense of the shape and size of a dataset
at multiple dimensions and filtration values. For example, it can measure con-
nected components (dimension zero), holes (dimension one), voids (dimension
two), and higher dimensional analogues, as well as an idea of their general size
or geometry. Persistent homology measures these shapes using a parameterized
filtration to detect when homology groups are born (appear) and die (disappear).

To compute persistent homology a parameterization function is applied to
the dataset to create a nested sequence of ASCs

K0 ⊆ K1 ⊆ K2 ⊆ . . . ⊆ Kn. (5)

We can then calculate the homology of dimension p for each complex, Hp(Ki),
which is a vector space representing the p-dimensional structure of the space
such as components, holes, voids, and higher dimensional features. However, this
information does not yet yield how the homology of each ASC is related to the
next ASC. To get this information, persistent homology uses the inclusions on
the ASCs to induce linear maps on the vector spaces resulting in a construction
called a persistence module V:

Hp(Kα0) ↪→ Hp(Kα1) ↪→ Hp(Kα2) ↪→ . . . ↪→ Hp(Kαn
), (6)

where ↪→ are the maps induced by the inclusion map between ASCs. It should be
noted that in the sequence of ASCs, each vertex must be unique and consistently
identified.

The appearance and disappearance of classes at various dimensions in this
object can be tracked, resulting in a summary known as a persistence barcode
(alternatively a persistence diagram) D = {D0,D1, . . . , Dp}. For each homology
generator which appears at Kb and disappears at Kd, we draw an interval [b, d]
in the barcode. Taken together is the persistence barcode, which is the collection
of persistence intervals (also called persistence pairs in the persistence diagram).
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This persistent homology framework can be applied to study hypergraphs
directly where a persistence module V is generated from a hypergraph, as
described in [25], by generating a sequence of subset ASC representations of
a hypergraph. However, a limitation of persistent homology is it requires each
subsequent ASC to be a subset of the previous ASC to form the persistence
module as shown in Eq. (5), which means at each step we are not allowed to
remove simplices in the next ASC. There are many cases of real-world appli-
cations where we have a parameterized sequence of ASCs where simplices can
both enter and exit the complex throughout the sequence. To alleviate this issue
zigzag persistence [7] can be applied, which allows for arbitrary subset directions
in the ASC sequence:

K0 ↔ K1 ↔ K2 ↔ . . . ↔ Kn, (7)

where ↔ denotes one of the two inclusion maps: ↪→ or ←↩. A common special
case of this definition is where the left and right inclusions alternate or zigzag.
For most data analysis applications using zigzag persistent we artificially con-
struction a sequence of ASCs taking this form by interweaving the original ASCs
with either unions or intersections of adjacent ASCs. For example, in Fig. 6a we
use the union between the associated ASCs of the original hypergraph snapshots
from Fig. 3. This sequence of interwoven ASCs fulfills the criteria of the zigzag
inclusion map directions as

K0 ↪→ K0,1 ←↩ K1 ↪→ K1,2 ←↩ K2 ↪→ . . . ←↩ K�−1 ↪→ K�−1,� ←↩ K�. (8)

for unions or

K0 ←↩ K0,1 ↪→ K1 ←↩ K1,2 ↪→ K2 ←↩ . . . ↪→ K�−1 ←↩ K�−1,� ↪→ K� (9)

for intersections, where Ki,i+1 = Ki ∪ Ki+1.
The inclusion maps are extended to linear maps between homology groups

resulting in the zigzag persistence module tracking the changing homology of
Eq. (8) or (9) just as was the case for standard persistent homology. Focusing
on the case of the union, the zigzag persistent homology module is

Hp(K0) ↪→ Hp(K0,1) ←↩ Hp(K1) ↪→ Hp(K1,2) ←↩ Hp(K2) ↪→ . . . ←↩ Hp(Kn−1)
↪→ Hp(Kn−1,n) ←↩ Hp(Kn). (10)

The same algebra leveraging the linear maps between homology groups to
track persistence pairs for a standard filtration in persistent homology makes
it possible to compute where (when) homology features are born and die
based on the zigzag persistence module, however some of the intuition is lost.
Namely, we can again track the persistent homology using a persistence diagram
D = {D0,D1, . . . , Dp} consisting of half-open intervals (persistence pairs) [b, d);
however, we now use the indices of the ASCs as the birth and death times instead
of the filtration parameter. For example, if there is one-dimensional homology
(i.e., a loop) that appears at K2 and persists until it disappears at K3, we
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represent this as the persistence pair (2,3). In the case of a class appearing or
disappearing at the union (or intersection) complex Ki,i+1, we use the half index
pair i, i + 1. If a topological feature persists in the last ASC in the zigzag per-
sistence module we set its death past the last index with the pair �, � + 1, where
� is the number of ASCs (without interwoven unions or intersections).

To demonstrate how zigzag persistence tracks the changing topology in a
sequence of ASCs we use a simple sequence of ASCs in Fig. 4, which were derived
from the toy example in Fig. 2 using a sliding window procedure outlined in
Sect. 2.2. As a first example of the application of zigzag persistence to study
temporal hypergraphs we return to our toy example. We used the unions between
ASCs to get the ASCs shown as [K0,K0,1,K1, . . . ,K3,4,K4] in Fig. 6a and the
resulting zigzag persistence barcodes in Fig. 6b. For this example we are only
investigating the topological changes in dimensions 0 and 1 since there are no
higher dimensional features. There are two main changes in the homology of
the ASCs that are captured in the persistence barcodes. For dimension 0, we
are tracking the connected components and how they relate. At K0 we have two
connected components (the 2-simplex as the triangle and 0-simplex as the point).
As such, we set the birth of the two components at the index which they both
appear: 0. Next, at K0,1 the components combine as two conjoined 2-simplices.
The joining of components forces one of the components to die while the other
persists; the smaller of the two components dies (the 0-simplex) dies at the index
0, 1 with persistence interval (0, (0, 1)) shown in the D0 barcode of Fig. 6b. The
combined component never separates or combines with another component again
and therefor it persists for the remaining persistence module finally dying after
K4 or index 4, 5 (shown as the dashed red line) having the persistence interval
(0, (4, 5)) in D0. Moving to dimension 1, we are now interested in showing how
the persistence barcode captures the formation and disappearance of loops in the
persistence module. A loop is first formed in K2 and persists until K3. Therefor,
this feature is represented as the persistence interval (2, 3) in D1 of Fig. 6b. This
example highlights how zigzag persistence captures changes in the topology of a
sequence of ASCs.

Fig. 6. Zigzag persistence module and resulting barcodes for dimensions 0 and 1 for
toy example introduced in Fig. 2.
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Fig. 7. Sequence of ASCs from the sliding window hypergraph snapshots for both union
and intersections. Zigzag persistence barcodes for temporal hypergraph example with
time associated ASCs.

In this work we are interested in the analysis of temporal hypergraphs, and
as such we instead want to have the barcodes track the time at which homology
appears and disappears instead of the indices. To do this we substitute the index
for the average time of the window associated to each ASC as shown in Fig. 7.
For the intermediate ASCs (unions or intersections) we use the average time of
the two windows. The only difference between the ASC sequence in Fig. 6b and
Fig. 7b is that Fig. 7b has the times from the windows associated to the ASCs
when computing the zigzag persistence. As such, the persistence barcode has
time on the horizontal axis with the two intervals in D0 and one in D1 having
the same sources (generators) as described in Fig. 6b.

The resulting barcodes in Fig. 7 shows that both the intersection and union
methods for interweaving ASCs provide similar barcodes. We also found this
same result when applying zigzag persistence to the data sets studied in this
work. For the remainder of this work we will use the union method for studying
temporal hypergraphs using zigzag persistence.

3 Applications

3.1 Social Network Analysis

To demonstrate the functionality of analyzing temporal hypergraph data through
zigzag persistence we use Reddit data with COVID-related subreddits. This data
is known as the PAPERCRANE dataset [5].



Topological Analysis of Temporal Hypergraphs 139

The dataset subset we use spans from 1/20/20 to 3/31/20. This section
captures the initial formation of the subreddits during the onset of COVID-19.
The active subreddits related to COVID-19 in the dataset during this time are
listed in Table 1 with summary statistics on the number of threads and authors.

Table 1. Subreddits related to covid from the PAPERCRANE datatset with number
of threads and authors of each subreddit

Subreddit Active Dates Threads Authors

CCP virus 3/27 - 3/31 169 79

COVID19 2/15 - 3/31 8668 22020

COVID19positive 3/13 - 3/31 1462 6682

China Flu 1/20 - 3/31 55466 62944

Coronavirus 1/20 - 3/31 153025 396427

CoronavirusCA 3/01 - 3/31 2930 5370

CoronavirusRecession 3/19 - 3/31 1574 6548

CoronavirusUK 2/15 - 3/31 8654 10230

CoronavirusUS 2/16 - 3/31 18867 29809

Covid2019 2/16 - 3/31 2437 1531

cvnews 1/25 - 3/31 4233 2181

nCoV 1/20 - 3/31 3949 1902

In this analysis we only use the nCoV subreddit due to its manageable size
and interpretability. The temporal intervals for the edges are constructed from
the author interaction information. We construct edge intervals based on the first
and last times an author posted in each thread. These intervals are visualized in
the top subfigure of Fig. 8.

We set the window size of 1 h with a shift of 15 min. This window size cap-
tures the necessary granularity to see changes in the dynamics of the subreddit.
Applying this sliding window results in 6899 windows. The number of nodes and
edges of each hypergraph snapshot is shown in Fig. 8. This initial data explo-
ration shows that the size of the subreddit initially increases to a peak popular-
ity at approximately two weeks into the subreddit or day 14. After this, the size
steadily decreases. The edge intervals in the top subfigure of Fig. 8 shows that
the majority of intervals are very short, while a few exhibit long intervals lasting
as long as 38 days. This initial exploration does not capture how the shape of
the underlying hypergraph snapshots is evolving.
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Fig. 8. Summary statistics for size of temporal hypergraph snapshots. The top is the
interval associated to each edge (sorted by start time), the middle figure is the number
of edges in the hypergraph snapshots, and the bottom figure is the number of vertices
in the hypergraph snapshots.

There are many questions about the underlying network that can not be
directly answered from these simple summary statistics. For example, is each
thread dominated by unique authors or do many threads share users? Is the
social network dense, centralized, fragmented? Do any of these characteristics
change over time?

Understanding the topological summary of the hypergraph snapshots is
important to understand the type of communication that is occurring. For exam-
ple, many one-dimensional homology features are representative of disconnected
conversations of holes in the communication structure. However, this could be
captured just using the Betti sequence at each snapshot. What the zigzag persis-
tence also captures is the severity of the holes based on their longevity. Consider
a hole in communication that persists for several days. This could be repre-
sentative of a lack of information communication throughout the community.
These summary statistics additionally do not provide any information on how
the threads in the subreddit are related and their longevity. Using zigzag persis-
tence we can capture information about the longevity of communications using
the zero-dimensional homology. A long interval in the zero-dimensional zigzag
persistence barcode is representative of a conversation persisting over a long
period of time. In Fig. 9 are the resulting zigzag persistence barcodes using the
union between the associated ASCs of the hypergraph snapshots.

First, we see that we can capture how fragmented the social network is with
one main component shown in the zero-dimensional barcode that persists for
almost the entire duration of the subreddit. Additionally, the short intervals in
dimension zero are characteristic of other side conversations, which either split
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from or merged into the main conversation or were entirely separate conver-
sations. An example of one of these conversations is shown in the hypergraph
snapshot at day 10 in Fig. 9 where the main component is composed of all of
the threads with exception to one thread between just two authors. Having the
main component suggests that many of the threads in the subreddit share at
least one common author between threads.

We can also demonstrate that the network shows a change in its centraliza-
tion over time. Specifically, during regions where many D1 persistence intervals
are present we know that the network has several loops, which are characteris-
tic of non-centralized social networks. These changes from centralized to non-
centralized social hypergraph snapshots are likely due to the number of authors
active and a bifurcation of social network dynamics. For example, in the snap-
shot at day 10 in Fig. 9 there is a main loop in the main component of the
hypergraph snapshot captured, and the main component does not have a clearly
centralized structure. However, approximately one week later at day 18, there is
a clearly centralized structure to the hypergraph which has no one-dimensional
features. With both a low number of (or no) one-dimensional features and only
one component, the zigzag persistence can give insight into the centralization of
the hypergraph and underlying social network.

Fig. 9. Zigzag Persistence of temporal hypergraph representation of the CCP virus
subreddit with example hypergraph snapshot and associated ASC.

3.2 Cyber Data Analysis

For the analysis of cyber data we use the Operationally Transparent Cyber
dataset (OpTC) [2] created by the Defense Advanced Research Projects Agency
(DARPA). This dataset consists of network and host logging from hundreds of
windows hosts over a week period. The dataset consists of two groups of user
activity: benign and malicious. The malicious activity occurs over a three day
period in which several attacks are executed.
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Our goal is to analyze demonstrate how these attacks show up in the zigzag
persistence barcodes for a hypergraph formation from the data log. The data
log is composed of 64 columns describing each action in the network. In this
section we only use the timestamps, src ip, image path, and dest port, as these
are needed to construct the temporal hypergraph representation of the data we
study using zigzag persistence.

We construct hypergraph snapshots by again using a sliding window proce-
dure, but now the intervals associated to each edge are only time points as the
cyber data only has the time stamp at which the action occurred. We used a
sliding window with width w = 30 min and shift s = 5 min. We chose this win-
dow size based on the duration of malicious activity lasting for approximately
2 h with 30 min windows being fine grained enough to capture the transition
from benign to malicious.

To demonstrate how zigzag persistence can detect a cyber attack we will
look at two instances of malicious activity on two different hosts. Namely, we
investigate two cases of a cyber attack; the first on 9/23/19 from red agent
LUAVR71T with source IP 142.20.56.202 on host 201 and the second on 9/24/19
from agent 4BW2MKUF with source IP 142.20.57.246 on host 501. The first
sequence of attack beings at approximately 11:23 to 13:24 on 9/23/19 and the
second sequence from approximately 10:46 to 13:11.

The hypergraphs were constructed using the destination ports as the hyper-
edges and the image paths as nodes. This formation captures the structure of
the cyber data in the sense that the destination ports as hyperedges capture the
relation between the actions (image paths) used. Additionally, we only use a sub-
set of the full data for a single source IP. By only looking at this sub-hypergraph
we capture information about the specific agent associated to the source IP.

The zigzag persistence barcodes associated the the destination port/image
path hypergraph snapshots for the first sequence of attacks are shown in Fig. 10a.
Before 9:00 there was no cyber activity and as such no barcodes during that
period. The region highlighted in red from 11:23 to 13:24 is the active time of
the cyber attacks. During this region we highlight a specific hypergraph for the
window starting at approximately 12:35 which is exemplary of malicious activ-
ity. Additionally, at approximately 21:50, we show another exemplary window
on standard benign activity. During this activity there are typically only two
singletons which persist over time. A similar pair of hypergraphs for malicious
and benign activity are shown in the second sequence of malicious activity on
9/24/19. However, what is not captured by the snapshots are the dynamics and
quickly changing topology of the snapshots during malicious activity and rela-
tively stationary dynamics and simple topology during benign activity.
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Fig. 10. Zigzag persistence barcodes with example hypergraphs at two windows for
OpTC data during an attack on the 23rd and 24th. The region highlighted in red is
the time the red team agent was activity attacking. (Color figure online)
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Zigzag persistence is able to capture the changing dynamics and topology
that is characteristic of malicious cyber activity. This is shown in both the bar-
codes for D0 and D1 for both sequences of malicious activity as shown in Fig. 10.
Specifically, during malicious activity there tends to be more, short-lived per-
sistence pairs in D0 and the appearance of one-dimensional homology in D1. In
comparison, during benign activity, there is little to no one-dimensional homol-
ogy and little change in the number of components captured through D0.

4 Conclusion

In this work we developed an implementation of zigzag persistence for study-
ing temporal hypergraphs. To demonstrate the functionality of our method we
apply it to study both social network and cyber security data represented as tem-
poral hypergraphs. For the social network analysis we were able to show how
the resulting zigzag persistence barcodes capture the dynamics of the temporal
hypergraphs topology which captures information about the changing centrality
of the hypergraphs through D1. Furthermore, we show that the conversation is
composed of one main component that persists over the entire time period of
the social network we studied. When studying the cyber data we found that we
were able to detect malicious from benign activity with zigzag persistence. Dur-
ing malicious activity we showed that there tends to be persistence pairs in D1

as well as more persistence pairs in D0 in comparison to during benign activity.
Future work for this method includes an investigation of vectorization tech-

niques of the zigzag persistence diagrams for automating cyber security analysis.
We also plan to study how we can leverage the temporal hypergraph represen-
tation and zigzag persistence for detecting bot activity in social network data.
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