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Abstract 
Predictive accuracy is the sum of two kinds of 
uncertainty-natural variability and modeling 
uncertainty. This paper addresses the quantification 
of predictive accuracy of complex simulation models 
from two perspectives. First, it recognizes that there 
is a difference between variability and modeling 
uncertainty; the former can not be reduced with more 
test information, while the latter can. We suggest 
that variability is a natural form of uncertainty that 
can be quantified with probability theory, but that 
modeling uncertainty is a form that is better 
addressed by a theoretical foundation that is not 
based on random variables, but rather random 
intervals. We suggest possibility theory as the 
formalism to address modeling uncertainty. The 
paper discusses the two different methods, and 
illustrates the power of their integration to address 
predictive accuracy with a recent case study 
involving the crushing load of axially loaded metallic 
spheres. 

1. Introduction 
Predictive accuracy can be defined as the degree to 
which a model of a complex system is able to foretell 
the state of that system under conditions for which 
the model has nor been validated experimentally. In 
general, the lack of predictive accuracy that results 
from the random character of a variable, such as in 
games of chance or in the natural variability of things 
due to manufacturing processes, is often termed 
variability. Variability can not be reduced, but rather 
only quantified. The size of grains of sand or the 
specific shapes of a maple leaf are things that exhibit 
natural variability. If we want to predict either of 
these quantities we can only do so in an average 
sense for the population of grains or leaves. There 
have been many numerous, accurate characterizations 
of this form of uncertainty. 

Another form of uncertainty is that due to a lack of 
specific information, and this has been generally 

called uncertain-to distinguish it  from variability. 
There are various forms of uncertainty; uncertainty can 
arise from ignorance, from scare data, from misleading 
data, from unknown biases, or from our inability to 
understand complex systems. Collectively, we shall 
use the term modeling uncertainty to describe these 
various forms of non-random forms of imprecision, 
ambiguity, vagueness or unknowingness. Uncertainty 
and variability generally result in a loss of predictive 
accuracy. The question is how can the predictive 
accuracy of a model be quantified? 

An interesting question arises: how can one contend 
with gaps in knowledge that cannot be represented 
probabilistically or statistically? Examples of the latter 
might include the degree of confidence placed i n  
certain modeling assumptions before they can be 
validated experimentally, or the degree of confidence 
placed in extrapolating laboratory experiments to field 
conditions. Reasonably simplified assumptions are 
often made that render the problem tractable for 
engineering computations or simulation modeling. 
Assumptions are made with respect to the analyst’s 
preferences, the available information, or other factors, 
which are generally approximate and embedded in the 
modeling uncertainty. In addition, engineering 
judgment is commonly involved in checking and 
modifying the predictions to make sure that the system 
behaves satisfactorily in some predetermined sense. 
Moreover, the engineering models are posed such that 
they adhere to necessary functions and to impose 
constraints such as boundary conditions or total 
computation time. 

In this work we have proposed to use possibility theory 
as the mathematical form for characterizing modeling 
uncertainty. We do so for two very good reasons: first, 
this theory contains probability theory as a special case 
and second, the implementation of the theory is 
computationally simple and easy to understand. In the 
simplest sense a possibility distribution arises from the 
random selection of intervals, as opposed to a 
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probability distribution which arises from the random 
selection and ranking of point-valued quantities. 

To illustrate the utility of the possibility theory 
approach we discuss the prediction and modeling of 
the buckling load of metallic, spherical pressure 
vessels, i.e., the crushing capacity of axially loaded 
manufactured marine floats. In this approach we use 
a finite element code to predict the buckling load of 
the spheres in a numerical simulation environment, 
and then comparc both a probabilistic and 
possibilistic assessment of the prediction to tcst 
results gleaned from testing numerous quantities of 
these floats. 

2. Case Study: Traditional Approach 
As mentioned in the introduction, we discuss the 
prediction and modeling of the buckling load of 
metallic, spherical pressure vessels, i.e., the crushing 
capacity of axially loaded manufactured marine 
floats. In the traditional approach we use a finite 
element code to predict the buckling load of the 
spheres, along with a probabilistic simulation tool 
that is used to assess the degree of uncertainty in the 
buckling load as a function of the uncertainty in key 
parameters of the finite element model. 

One hundred marine floats were purchased from a 
commercial vendor [ l ] .  Though the vessels were 
intended to be spherical by the manufacturer, they 
possess variations in their geometry and material 
properties. The classic modeling approach would 
have been to generate a single nominal model of a 
sphere and assert that however this nominal model 
behaved in analysis, so would all the individual 
floats. Since the floats are manufactured units, 
subjected to specified levels of tolerance and quality 
control, they all deviate to some extent from the 
idealized model used in the analysis, and thus the 
uncertainty surrounding the analysis results needs to 
be modeled and quantified. 

2.1 Probabilistic Simulation 
In the numerical simulation of the buckling sphere 
problem the DYNA3D code, a nonlinear, three- 
dimensional dynamic finite element continuum code, 
to conduct the stochastic analysis. There are two 
primary approaches to a probabilistic simulation: a 
direct Monte Carlo simulation, or simpler sampling 
methods (of which there are many ... mean value 

analysis, stratified sampling, response surface, Latin 
hypercube, and advanced mean value analysis to name 
a few). In a Monte Carlo simulation the DYNA3D 
code is run for a single combination of the input 
parameters, which have been randomly sampled from 
pdfs for each of the input variables. For the sphere, the 
input variables would include the sphere radius, 
thickness, modulus of elasticity, yield strength, and 
other material properties. This process is done l o 3  to 
lo6 runs of the DYNA3D code and the output values 
(in this case, the failure load of the sphere when it  
buckles) are stored and plotted in histogram form to 
develop a pdf of the failure variable. Of course, if a 
single run of the DYNA3D code can take say one hour, 
then this method of producing the output, while very 
effective, is simply not practical, unless vast 
computational resources are available at low cost. 

A more effective solution is to use one of the other 
sampling methods. For example, in  a mean-value 
sampling the input distributions are sampled-not at 
random-but at pre-specified values. In this study, the 
values were the mean of each input parameter and 10% 
of the standard deviation above the mean, i.e., at pi and 
pi + 0.10i. If the standard deviation is assumed to be 
10% of the mean, this sampling occurs at p and 1.01~. 
Since the deviation from the mean is so close, we can 
justify a linear mean-value analysis. 

In our study, we looked at 6 parameters in our 
simulation model, such as Young's modulus, radius of 
the spherical float, and thickness of the spherical wall. 
All these parameters were modeled as random 
variables using lognormal distributions. In the mean- 
value analysis there were 7 simulation runs: one with 
all parameters being held to their mean values, one 
each where 5 of the 6 parameters were at their mean 
value and a sixth was at p and 1.01~. The output of 
this simulation is shown in Figure I ,  which is a plot of 
the cumulative distribution function (CDF) of the 
maximum force seen by the sphere at buckling (i.e. the 
output variable). In another simulation the 6 input 
parameters were sampled at the mean (p) and at p 
1.01~. for a total of 13 simulation runs. The result of 
these simulations is shown in Figure 1 as the light- 
curve CDF. The results in Figure 1 show that the 
variance in the output decreases as more points near the 
mean values of the parameters are sampled. 
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Figure 1. Cumulative distribution functions (CDF) 
for traditional solution to the variability in the 
sphere buckling load 121. 

2.2 Some problems in Predictive Accuracy 
The purpose of simulation is obviously to avoid the 
high cost of physical testing and to provide an 
environment where many exploratory iterations and 
tradeoff studies can be conducted. However, in order 
to assess the predictive accuracy of a simulation there 
must be a way to assess the fidelity of its output. 
Experience in comparing simulations with physical 
tests represents the essential knowledge for an analyst 
in being able to assess this fidelity. But, there are 
problems associated with any simulation, that even 
experts have trouble foreseeing. The analyst has to 
make many assumptions to conduct the simulations 
according to intuition and desired economies. For 
example, in our case with the marine floats the 
simulation assumes a loading speed of 5 m/sec. This 
is a tradeoff resulting from the cost of simulation on 
the one hand and the computational noise in the 
resulting data on the other. The actual load speed in 
the testing of the spheres is 5 cm/sec. Unfortunately, 
if a simulation were to use this loading speed, the 
resulting computation would consume many months 
of computer time. Even a load speed of 1 mkec 
takes one week of computer time. Alternatively, 
loading speeds greater than 5 d s e c  produce 
simulation results whose noise obliterates the output 
of interest, hence 5 m/sec is seen as a compromise by 
the analyst. But what is the degradation in simulation 
accuracy when this tradeoff is made? Such an 
assessment can’t be made probabilistically. 

3. Case Study: Possibility Distribution 
Approach 
Previous efforts on the derivation of possibility 
distributions are few, especially in the derivation of 
empirical possibility distributions [3]. Possibility 
theory has long been confused with fuzzy set theory, 

in that possibility distributions were considered to be 
membership functions [4]. Possibility distributions 
were also viewed as resulting from consonant crisp sets 
in fuzzy measure theory. This perception arises from 
Dempster and Shafer’s evidence theory when the 
evidence focuses on consonant support functions [ 5 ] .  

Previous methods for deriving possibility distributions 
[3] do not assist modeling empirical interval data. In 
the case of deriving empirical possibility distributions 
it  is more natural to consider random sets (or intervals) 
and build a distribution based on the original set of 
interval data. This interpretation is more realistic as 
experimental observations are usually recorded as 
ranges of numbers. Joslyn [6]  has developed a method 
that calculates a possibility histogram from random 
sets. Joslyn’s method, however, derives possibility 
measures based on only consistent random sets rather 
than consonunt sets. It is important to note that the 
property of consonance (i.e., nesting of sets) is 
essential in not only calculating possibility measures 
but also for combining two or more possibility 
distributions using interval arithmetic. Donald 171 
developed a new method to take random sets that are 
consisrent and derive from this a consonant set of 
empirical intervals. 

3.1 Possibility Distributions using the New Method 
Many of the assumptions made in the traditional 
approach can be addressed in a less computationally 
expensive, and perhaps more epistemologically 
appropriate, environment using possibility theory. In 
this approach, modeling assumptions like the EOS 
selected, the size of the finite element grid, the type 
and extent of boundary conditions, and the loading 
speed can be implemented into the theory as upper and 
lower bound judgments on the typical assumptions. 
The upper and lower bound levels are represented 
simply as intervals in the theory. For purposes of 
illustration of our method, we considered the following 
ranges for input variables which are not normally 
modeled as random pdfs in conventional reliability 
analysis, but which nonetheless are very important to 
the prediction of the crushing load of the spherical 
vessels: 

I .  Mesh Density: 7,500 elements - 15,000 
elements 
2. Static coefficient of friction - 0.10 - 0.35 
3. Material Model - #24, piecewise linear strain 
hardening - # I  8 power law isotropic elastic plastic 
4. Shell Thickness - varies from 0.57” to 0.43” 
at the pole and equator of the sphere 
5. Loading speed of Platens - IOm/s - 50 m/s 

If we consider the peak crushing load data as non- 
consonant intervals, expressing the imprecision in the 
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data from the outputs of the finite elemcnt code for 
the various choices for variables listed above, we can 
determine the possibility distribution that would 
quantify this modeling uncertainty. Information such 
as this are common i n  the real world wherein they are 
presented as a range of possible numbers given 
within a certain error value. Through the new 
method developed by Donald [7] we compute a 
possibility distribution from non-consonant 
information, for our sphere buckling problem: 

Figure 2. Possibility distribution for output intervals 
relating to the 5 modeling variables 

3.2 Comments about the Possibility Approach 
What is most interesting in Figure 2 is that the region 
represented by x(A)=l, under which a probability 
assessment of the same variables should exist, is 
approximately the same region bounded by the 
probabilistic results shown in the Figure I ,  within f 
2-sigma bounds, even though the same variables 
were not assessed in both methods (i.e., both methods 
assessed variations in thickness, but only the 
probabilistic assessment looked at variations in 
Young's modulus). 

Possibility distributions, such as the specific one 
illustrated in Figure 2. or the generic one illustrated 
in Figure 3, relate to probability distributions in the 
sense that a region of unit possibility spans the space 
of a non-zero probability distribution (e.g. a 
probability density function or pdf], while outside of 
that interval some possibility may still exist in the 
face of conflicting (or dissonant) evidence. As more 
data are acquired, the dissonance (represented by the 
sloping regions of the possibility distribution) 
diminishes and the side boundaries of the possibility 
distribution become steeper. One possible use of 
possibility distributions might be, for example, to test 
whether the predictive accuracy of a model based on 
generic uncertainty data is valid for a model of a 
newly designed component or system. 

possibility 

1 l . O  ,-Tf scal;pdf 
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Figure 3. Relationship between probability and 
possibility distributions 

4. Conclusions 
In this paper we propose the use of the possibility 
distribution approach to affect three main objectives in 
the assessment of the predictive accuracy of simulation 
codes: 

to be used initially for all assessments to determine 
the rcgions into which more focus should be 
placed by subsequent probability computations 
to be used to quantify all variables in the 
simulation for which little or no data exists, or for 
modeling assumptions for which a probabilistic 
evaluation simply is not warranted since the 
underlying structure of the variable is non-random 
to assess those regions of the output where 
dissonance, or disagreement exists in previous data 
or existing analytic judgments or knowledge. 

Using these three objectives we believe that the 
assessment of predictive accuracy can be streamlined 
in terms of cost savings and the efficient use of 
valuable historical data. It also allows for the 
judgments and knowledge of the analyst's making the 
predictions more flexibility in embedding all their 
knowledge-not just the numeric information-into their 
analyses. The' use of historical data to guide our 
analytic judgments has been used primarily in 
establishing a sort of classification of the appropriate 
methods and models to apply to any physical system. 

As a final note, the possibility distribution can 
ultimately be used as a guide in determining how well 
an analyst understands the extent of the relationship 
between modeling uncertainty and variability. We 
surmise that a probability density function (pdf) 
reflects the amount of variability in a simulation. In 
contrast, the possibility distribution reflects the amount 
of predictive uncertain9 (which, again, is the sum of 
variability and modeling uncertainty) in the simulation. 
In Figure 3 we see two different distributions that can 
be used to assess the differences between modeling 
uncertainty and variability. On the one hand, the 
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predictive uncertainty and the variability could be 
almost the same if the aprons on the possibility 
distribution function are have a near vertical slope 
(the pdf is a large part of the possibility distribution). 
On the other hand, the predictive uncertainty and the 
variability could be vastly disparate if the aprons on 
the possibility distribution function are have very low 
slopes (the pdf is a small part of the possibility 
distribution). Hence, in a sort of graphical way, the 
difference in the regions mapped by the variability 
(pdo and the possibility distribution is a quantitative 
assessment of the modeling uncertainty in a problem. 
In this sense, the boundary regions of the possibility 
distribution can be used as a guide about where, 
specifically, we need more information in any 
planned future testing to reduce total uncertainty. 
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