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Abstract—In its most general form, a signature is a unique
or distinguishing measurement, pattern, or collection of data
that identifies a phenomenon (object, action, or behavior) of
interest. The discovery of signatures is an important aspect
of a wide range of disciplines from basic science to national
security for the rapid and efficient detection and/or prediction of
phenomena. Current practice in signature discovery is typically
accomplished by asking domain experts to characterize and/or
model individual phenomena to identify what might compose a
useful signature. What is lacking is an approach that can be
applied across a broad spectrum of domains and information
sources to efficiently and robustly construct candidate signatures,
validate their reliability, measure their quality, and overcome the
challenge of detection – all in the face of dynamic conditions,
measurement obfuscation, and noisy data environments. Our
research has focused on the identification of common elements of
signature discovery across application domains and the synthesis
of those elements into a systematic process for more robust
and efficient signature development. In this way, a systematic
signature discovery process lays the groundwork for leveraging
knowledge obtained from signatures to a particular domain or
problem area, and, more generally, to problems outside that
domain. This paper presents the initial results of this research by
discussing a mathematical framework for representing signatures
and placing that framework in the context of a systematic
signature discovery process. Additionally, the basic steps of this
process are described with details about the methods available to
support the different stages of signature discovery, development,
and deployment.

I. INTRODUCTION

A signature is a unique or distinguishing measurement,
pattern, or collection of data that detects, characterizes, or
predicts a target phenomenon (state, object, action, or be-
havior) of interest. By definition, a signature has a reliable
correlation to its target and consequently becomes extremely
useful for anticipating future events by detecting precursor
signatures, such as circumstances that may lead to a cascading
power failure in an electrical grid; diagnosing current con-
ditions by matching observations against known signatures,
such as the monitoring of a computer network for security
events; or analyzing past events by examining signatures left

behind, such as the forensic analysis of pathogens or other
biological threat agents. Such analyses can contribute to larger
signature libraries which in turn serve as a resource for future
anticipation and characterization.

Because of their value, significant effort has been expended
to discover reliable signatures for specific applications. This
discovery is typically accomplished by asking domain experts
to characterize and/or model the phenomenon to identify
salient features that might compose a useful signature. Such
inquiry is generally undertaken for a specific problem domain
and the resulting signatures are typically chosen and character-
ized by trial and error. We believe that current methods are in-
efficient, and can frequently produce sub-optimal results. More
importantly, these “one-off” signature development efforts may
overlook novel and unconventional features that could be used
to form highly effective signatures.

This paper describes our work towards the generalization
and formalization of the signature discovery process. Develop-
ment of this process is based on broad literature research, user
interviews, and hands-on experience through our Signature
Discovery Initiative research investment (http://signatures.pnnl.
gov). The following sections present a brief introduction to
the concept of a signature, an overview of our generalized
process for signature discovery, and examples of the signature
discovery process to real-world applications.

II. SIGNATURE SYSTEMS

In order to develop a generalizable process for signature
discovery, we require a robust and generalizable definition of
a signature. This section outlines our framework for signatures
as transformations from events to measurements to features to
categorical labels and associated uncertainties.

Let E denote a collection of events of a certain problem
domain of interest. These events are instances of interest that
could possibly occur in nature; e.g., the multiple expression
levels of genes, the varying concentration levels of impurities
in a chemical substance, the wide range of packet contents
found in cyber networks, etc. In general, we can think of E
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and the other sets as consisting of a cross-product of certain
dimensions, or some phenomenon of nature which can be
represented or recorded: a quantity, quality, or some other
state. Dimensions have mathematical types; e.g., boolean,
categorical, or scalar. We will refer to the cross-products in
E as dimensional sets, although they can also be thought of
as data tensors. Note that while R

n is a perfectly acceptable
dimensional set, a dimensional set can also represent a highly
heterogeneous collection of variables of various mathematical
types.

The particular signature problem domain determines the
purpose of the signature and the type of its output, defined as
L, which denotes a set of labels as illustrated in the following
examples. This set L is typically discrete, with finite |L| =
K ∈ N; however, this discreteness is not a requirement. For
the simplest binary signature used in threat detection problems,
L is Boolean with L = {l1, l2} = {threat, no threat}. If the
problem is a classification problem (with many finite classes),
then L will be finite, categorical (or numerical), and have a
possible partial or total ordering. However, some problems
(e.g., signatures for the prediction of vessel direction) require
continuous probability density function outputs. In such cases,
then L is a collection of functions with probability properties.
Given a label � ∈ L, we presume there exists a set of events
that truly corresponds to �. To simplify the discussion, we will
assume that the label set is chosen such that there exists a truth
function τ defined on E . Therefore, for every label � ∈ L there
exists a subset E� = {e ∈ E : τ(e) = �}, and E� ∩ E�′ = ∅,
the empty set, for every �, �′ ∈ L that satisfies � �= �′. For
example, in an explosives detection signature, if p = explosive
material present, and n = explosive material not present, so
that L = {p, n}, then τ is the truth detection function. In most
applications, the truth function is unknown to us and we seek
to discover it through the processes described below.

Given these definitions, a signature system is a collection
of mappings that, when combined together, will equal or ap-
proximate the truth mapping. The first mapping μ is a process
that observes an event and then produces a measurement, i.e.,
a random variable. The mapping μ can arise from a sensor, a
measurement device, or any other type of data collector that
maps events into raw data. Let M denote the measurement
dimensional set of the raw data, and thus μ : E −→ M.
In many applications, analysis begins with the identification
of M, since a measurement device or observation channel is
provided a priori.

In general, raw data are not used directly in the discovery
of the signature. Instead, we seek another transformation η
that processes the raw data by extracting salient, informative
data (called features) from the raw measurement data. Let F
denote the dimensional set of features that η produces. Thus,
η : M −→ F . The final mapping is a classifier δ : F −→
L, which maps features to a label. The composition of these
mappings is designed to approximate the truth mapping; i.e.,
τ̂ ≡ δ ◦ η ◦ μ ≈ τ .

Rather than map directly to L, it may be preferable for
the classifier δ to map to an uncertainty space, P = [0, 1]K ,
that is associated with the label set, so that an element �p ∈
P is a vector of numbers each in [0, 1]. It is common, but
not necessary, to interpret the vectors elements as probabilities
of the corresponding label � ∈ L, so that they sum to one.

Hence, the classifier δ is modified to output a vector of pairs
((�1, p1), (�2, p2), . . . , (�K , pK)) such that each � ∈ L has a
corresponding score or probability, p ∈ P . Let δP : F →
LK × P denote this type of classifier.

In summary, the set of mappings that describe a signature
system can illustrated by the diagram:

Events
μ→ Measurements

η→ Features
δ→ (Labels, Probabilities)

The generality of the framework defined here provides value
in abstracting processes of arbitrary complexity from a variety
of problem domains. For example, as the dimensional sets and
spaces are mapped into each other, the number of dimensions
of a subsequent set is not determined by those of the prior.
Thus, “multi-INT” [1] signatures can be developed through
processes wherein five distinct measurements can result in two
features, which in turn map to three labels. Furthermore, this
generalizable framework offers the reuse of transformations
across domains; e.g., processes from biology can be mapped
into processes from cyber security by identifying their common
mathematical structure, independent of the different nature of
their observables, labels, and analytical processes.

III. THE SIGNATURE DISCOVERY PROCESS

Our research has focused on the identification of common
elements of signature discovery across application domains and
the synthesis of those elements into a systematic process for
more robust and efficient development of the signature system
components described in the previous section. A systematic
signature discovery process lays the groundwork for leveraging
knowledge obtained from signatures to a particular domain or
problem area, and, more generally, to problems outside that
domain.

Fig. 1 illustrates our proposed systematic process for sig-
nature discovery. This process was developed by surveying the
signature development literature. The literature survey yielded
over 1000 peer-reviewed articles with a signature discovery
focus; a subset of 100 of these papers were selected for
more in-depth analysis. The papers from this subset fell pre-
dominantly into the following domains: disease identification
and prognosis, chemical or biological forensics, cyber-related
signatures, and semantic-based signatures. After inspection of
the complete survey list, it was possible to prioritize analysis
of articles based on the level of detail presented and focus on
the signature development process as opposed to application
of the developed signature.

To date we have reviewed the literature in each of the
aforementioned domains and at three levels of detail (example
references provided): standard signature development prac-
tices [2]–[5], original scientific research related to signature
development and discovery [6]–[11], and detailed interaction
with researchers to document nuances of specific signature
discovery process. Works that provided sufficient detail to
their process allowed us to break down each step docu-
mented into a context diagram that detailed inputs, outputs,
and activities/processes. Through this process, it was possible
to identify, group, and order common steps into a notional
signature discovery process. For those works that did not
provide a detailed account of the approach taken by the
researchers, it was possible to map the activities that were
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Fig. 1. A schematic representation of the proposed systematic and generaliz-
able signature discovery process. See text for more information on each step
of this process.

detailed to the signature discovery process and determine if
there were activities or steps not identified in the process.
The following sections describe each step of this process and
briefly provide highlights from the state-of-the-art in methods
for implementing these steps.

A. Specify problem

1) Specify target phenomenon of interest: The process of
signature discovery begins by specifying a particular target
phenomenon of interest. While this step may seem obvious,
the explicit specification of a target is important because it
determines the event space E that defines the domain of our
signature system mappings. Targets can be divided according
to the top-level structure of the Basic Formal Ontology [12]
into continuants, objects that exist at a snapshot in time, and
occurrents, processes that unfold over an interval of time.
Example continuant targets include objects such as a type
of tumor, a particular class of vessel or vehicle, a type of
explosive or explosive residue, etc. Example occurrent targets
include activities such as an intrusion on a computer network,
trafficking of drugs, nuclear proliferation processes, etc.

2) Specify purpose: The purpose of a signature is defined
by two characteristics: the size of the label set L and the
relationship in time between the target and the detection of the
signature. The simplest signature purpose is detection where
L includes two mutually exclusive labels such as the binary

signature example used earlier where L = {threat, no threat}.
More complicated characterization signature purposes in-
volve L with multiple labels, including the possibility of a
continuum of labels; e.g., for characterizing the concentration
of a component in a complex chemical mixture. The purpose
of a signature is further defined by the relationship in time
between the signature target and the detection of the signature.
A signature purpose is prognostic if the signature is used to
detect or characterize targets in the future; e.g., signatures to
determine the outcome of a disease or the likelihood of a power
failure. Conversely, signatures are forensic if the signature is
used to detect or characterize targets in the past; e.g., the
attribution of origin for a biological threat agent or the analysis
of computer network events that lead to a loss of service.
Finally, a signature purpose is diagnostic if the signature
is used to detect or characterize targets in the present; e.g.,
characterizing the current state of a power grid or determining
the presence or absence of a tumor.

B. Identify and select observables

Once the problem has been specified, the next steps are
to define variables and parameters surrounding the problem
and the required solution. Key issues include the nature of
the signature purpose (e.g., to detect, characterize, or predict
within a given amount of time, cost, and certainty) and the
nature of the target phenomenon (e.g., the temporal and spatial
location of the phenomenon, the environment, and the dynam-
ics of these elements). Exploration of the target phenomenon
and signature purpose establishes the parameters under which
a set of possible observables may then be identified.

The best practices for facilitating this creative ideation
process are not well understood. For several problem types,
it is highly desirable to bring together a group of experts
representing diverse backgrounds, fully describe the problem
to them, and let them identify and select possible solutions. The
most prevalent group ideation method is brainstorming, a prin-
ciple first codified by Osborne in 1953 [13]. The brainstorming
process is based upon the idea that a small group (five to seven
people) working on a problem should outperform an individual
by producing more diverse or alternative perspectives that
lead to a greater variety of ideas. Additionally, brainstorming
assumes that “social facilitation,” which is the process of
intellectual stimulation via group interaction, should result in
individuals performing better and therefore improve overall
group productivity. However, other group processes introduce
several challenges to the brainstorming process [14]–[16].
The first challenge is production blocking, where individ-
uals forget or withhold their ideas while others take turns
speaking or where a few people dominate discussions and
limit the participation and contribution of others. The second
is evaluation apprehension, which is the fear of how ones
ideas will be perceived by the group. The third challenge is
social loafing, which entails reduced effort by some members
within a group and/or the lack of individual accountability.
The fourth challenge is performance matching, described
both as pressures for conformity and/or a tendency to match
ones level of performance with others in the group, usually
resulting in lower performance. Several studies, critiques, and
variations on the original Osborn method have emerged over
the years to address these problems. However, only a few
studies have examined group ideation and creativity focusing
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on real problems with real stakeholders in the context of
multidisciplinary teams and scientific examination or discov-
ery [16]–[22]. Recently, electronic brainstorming tools have
emerged to alleviate some of the negative behaviors described
above, though they introduce a different set of challenges and
have had mixed results [22]–[24]. Despite ongoing advances
in brainstorming and related techniques, stimulation and facil-
itation of the creative process leading to the identification and
selection of observables remains a very challenging step in the
signature discovery process.

In addition to brainstorming methods, experimental design
[25], [26] can be a useful technique for identifying and
selecting observables that may be related to the phenomenon
of interest. Many signature development problems have mea-
surement spaces with high dimensionality. Developing the
signature for such problems requires thoroughly exploring the
feature space to cover the intended bounds of the signature and
exhaustive exploration can often be infeasible. Experimental
design methods such as fractional factorial designs [27] and
Plackett-Burman methods [28] can be used to simultaneously
obtain adequate data coverage based upon the signature de-
velopment objectives and manage factorial explosion of the
signature development parameter space. Variable selection
techniques [29], [30] can be used to identify variables in
existing datasets when further experimentation is not possible
or relevant.

C. Specify measurements

The identification of observables determine the types of
events e ∈ E to be included in the signature system. The
next step in the signature system is to identify the measure-
ment principles and instruments μ that allow these events
to be mapped into data or measurements. Selection of a
measurement system is not a simple process and many pos-
sible strategies could be applied to a given observable with
specific choices guided by operational or cost constraints. The
multiplicity of choices and the importance of other constraints
motivates the iterative process outlined in Fig. 1, with signature
quality assessment (Sec. III-E3) playing an essential role in the
process. After the measurement process has been identified
for each observable variable, the observational unit must be
clearly identified. The observational unit is the entity that is
measured (i.e., observed) whose data and resulting signature is
used to detect, predict, or identify the phenomenon of interest.
For example, if the goal of the signature were to predict the
onset of a disease in humans, each patient under study would
be an observational unit.

The strength of the signature depends on the quality of
the sample S ⊂ E of observational units and the extent to
which it generalizes to the population of interest, which for
our purposes, is the same as E . The choice of E , in large part,
is determined by the purpose of the signature. In situations
where a representative sample is desired, traditional statisti-
cal sampling techniques such as simple random, systematic,
stratified, or clustered sampling [31] may be appropriate.

D. Assess and explore data

For each observational unit or instance in the sample e ∈ S ,
the measurement process μ will produce data χ ∈ X ⊂ M,

i.e., χ = μ(e). The signature system transforms these data
into features through the mapping η. Careful exploratory data
analysis [32] is an important step in identifying features. When
the measurement space M has a high dimension, data and
dimensionality reduction processes can be very important. For
example, with continuous components, dimensionality reduc-
tion techniques such as principal components analysis [33] can
be employed to identify potential features and structure within
the data. When one or more of the components of M are
not continuous, subsetting the data according to the levels of
the categorical types and making plots that are conditioned
on those levels [34] can be especially helpful. Clustering
[33] is often a useful technique for uncovering patterns and
relationships in data.

Feature extraction, i.e. constructing η, is arguably the
most crucial and difficult aspect of the signature construc-
tion process. Typically, η will reduce the dimensionality [35]
of the data, which inevitably sacrifices some information.
Consequently, constructing η is especially challenging when
signature events are rare, as it would be easy to discard the
essential information required to detect the phenomenon of
interest. The objective in constructing η is analogous to the
concepts of statistical sufficiency and completeness [36]: we
want η(X ) to contain as much of the salient information about
τ as it possibly can (sufficiency) while avoiding superfluous or
unneeded information (completeness). Data mining techniques
[29], [37] can be useful in developing η. If the events in E
are time-dependent, smoothing methods like splines [38] or
local regression [39] can be useful. For data with a variety
of mathematical types, generalized linear [40] and nonlinear
[41] models may also be applicable, as they can accommodate
responses and predictors of virtually any mathematical type.

E. Develop signature

The final steps of the signature discovery process involve
the development and application of the signature, iterating
based on decisions about the signature quality and suitability
for deployment.

1) Construct signature: Having developed a suitable fea-
ture extraction process η and set of features, the next step is to
construct a classifier δ or δP . There is a wealth of classification
and machine learning techniques that have been developed
simultaneously in the statistics [29], [42] and computer science
[43] communities, respectively, which may be used to construct
δ. We have observed that Bayesian networks [44] can be
very useful in developing classifiers when many or all of the
components of E are not continuous. Bayesian networks have
the additional advantage of high user interpretability, which
assists in the adoption and application of the signature system
by end users.

The process of constructing δ is an interactive one, where
the classifier is trained using a training set T ⊂ S and
then tested using a preferably distinct testing set, T ′ ⊂ S;
i.e., T ∩ T ′ = ∅. Training typically entails estimating, or
learning, the parameters that govern the functional form of δ.
There are various approaches to learning, including supervised,
unsupervised, semi-supervised, and active [45]. Having trained
the classifier δ, the estimate of truth relation, τ̂ is complete
and the full signature system is available for validation and
application to new measurements.
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2) Detect signature: Signature detection is the application
of the signature system to actual problem datasets: the series
of transformations from events to labels and probabilities.
Many issues associated with the detection process have been
addressed in the steps above. However, the “real world” appli-
cation of signature systems often raises additional challenges
that need to be considered during the development process.
Measurement data produced in and used by the signature
system can vary in its quantity and complexity. A popular
example is the “big data” problem [46], [47] where appli-
cations present data with challenges in “volume, velocity,
and variety” [48]. Such challenges often require deliberate
choices for feature extract η and classification δ algorithms that
can handle diverse, large, and high-throughput datasets. For
example, signatures for power grid characterization can involve
millions of data streams and require scalable algorithms. Some
applications offer different challenges in signature detection:
measurement data may be sparse and the application of the
signature must be robust to missing or incomplete information.
For example, forensic signatures must often reach conclusions
based on limited data and require algorithms and approaches
that can infer or impute missing data [49], [50]. Finally,
the security domain often faces unique challenges in data
obfuscation and falsification and requires signature systems
that can, at a minimum, detect such activities and, ideally be
robust to such interference.

3) Assess signature quality: Our objective in assessing
signature quality is to measure the extent to which a signature
system achieves its intended purpose. To that end, we have
developed a formalism based on decision theory [51] and
multi-attribute decision science [52], [53]. We explain our
approach to assessing signature quality in terms of fidelity,
risk, cost, and any other attributes of importance related to the
deployment and use of the signature system.

Fidelity refers to how well the signature system de-
tects, predicts, or characterizes the phenomenon of interest.
It includes metrics such as sensitivity, specificity, positive
predictive value, precision, accuracy, and receiver operating
characteristic (ROC) curves [42], [54], [55]. These fidelity
metrics attempt to assess how well τ̂ approximates τ .

Risk refers to the assessment of likelihoods and con-
sequences associated with decision errors which may arise
during signature detection. For instance, when the phenomenon
of interest is binary (e.g., threat, no threat), calculating risk
helps evaluators balance the tradeoff between false positives,
which may impede the flow of traffic or commerce, and false
negatives, which increase exposure to threats.

Cost refers to the resources expended to develop, deploy,
and/or utilize the signature system. Examples include the
cost of signature systems, training, maintenance, consumable
reagents, and labor.

Other attributes include any other factors or criteria that
may distinguish one signature system from another that are
not already accounted for by fidelity, cost, or risk. Examples
include the time required to collect, process, and analyze
samples, human safety, ease of use, system portability, policy
considerations, etc.

These four components of signature quality provide a
basis for guiding investigators in their assessment of signature

systems. Not all of them may be relevant for a particular
assessment; only the attributes that are most appropriate should
be selected to evaluate a given system. Suggested criteria to
use when selecting the set of attributes can be found in [56].

The assessment of signature quality begins by listing (or
calculating) the possible outcomes of the signature systems
in terms of attributes of interest for each system, followed
by a comparison of the system in terms of its performance
with respect to each attribute [52]. For example, suppose some
signature system (call it τ̂1) is better than another system, τ̂2,
for at least one attribute, and that τ̂1 is at least as good as
τ̂2 with respect to the remaining attributes. Then τ̂2 would be
considered inferior to τ̂1 and would be removed from future
consideration. This process can be repeated for each signature
system until all inferior systems are identified. Those signature
systems that remain constitute the “Pareto” [57] or “efficient”
frontier [53] and form the optimal set of signature systems to
choose from for a given application.

Once the single attribute utility functions are identified,
they can be aggregated in a linear or multiplicative fashion
to form an overall utility function that measures the quality
of the signature system. This utility function can then be
used to calculate the expected utility for each system under
comparison. It may also be used to assess the error associated
with the choice of S . Specifically, the overall utility function
may be used instead of the traditional loss function when
performing cross-validation or bootstrapping [29]. An example
of this is provided by Sego et al. [58]. While cross-validation
is a powerful statistical technique, caution must be exercised
in its application to ensure that realistic comparisons are
made between the test and training data. For example, in
the validation of signatures with temporal components, cross-
validation should not be performed in reverse time; the training
data should only include events prior to the test data.

F. Iteration and convergence

The signature discovery process described above is de-
signed to be iterative, converging to a final signature (and by
extension, its corresponding signature system) if it achieves
predetermined, measurable criteria. These criteria or attributes
are determined, in part, by the technology readiness level
(TRL) [59] of the signature system. For TRL 1 to 3, the
criteria may be less rigorous and focused primarily on the
fidelity of the signature system. For higher TRLs, operational
considerations informed by stakeholders become increasingly
important and would be reflected in the criteria. If there are two
or more signature systems under consideration, the extent to
which we value one criterion or attribute over another will be
required to determine which system is good enough. A useful
tool for quantifying the extent to which we value one criterion
over another is multi-attribute utility theory [53], a cornerstone
of signature quality metrics methods described above (see Sec.
III-E3).

IV. EXAMPLE APPLICATIONS

Through a review described above (Sec. III), we identified
several articles from the literature that illustrate the signature
discovery process shown in Fig. 1.
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A. Prognostic breast cancer signatures

The first example application is based on signatures for
prediction of clinical outcomes for breast cancer through gene
expression profiling by van’t Veer et al. [11] to determine the
best treatment for patients by predicting clinical outcomes of
non-nodal breast cancer. The process detailed by van’t Veer
et al. is outlined below and closely matches other genomic
analysis process examined in our literature review [7], [10].

1) Specify problem: This study focused on the development
of prognostic signatures to determine the best treatment for
patients by predicting clinical outcomes of non-nodal breast
cancer.

2) Inventory observables: Gene expression was identi-
fied as the primary observable and selected for this study.
Additional patient-specific information such as tumor type,
patient age, and patient outcomes were required observables
for signature creation and validation.

3) Specify measurements: Measurements of gene expres-
sion profiles were performed on a subset of tumor samples
with and without non-nodal breast cancer using microarray
methods.

4) Assess and explore data: Data were processed for
background correction and normalization and gene expression
features were extracted using agglomerative hierarchical clus-
tering.

5) Develop signature: The microarray signature was con-
structed with unsupervised and supervised clustering tech-
niques resulting in a collection of 70 gene expression levels.
Patient outcome was predicted through calculation of an odds
ratio that utilizes a multivariate model based in part on the
correlation with the microarray signature along with clinical
parameter correlations. Quality was assessed through leave-
one-out cross-validation and analysis of external data not used
in the signature construction.

The resulting signature showed good classification accu-
racy and will allow physicians to pursue courses of action
appropriate to the predicted outcome.

B. Chemical forensics signatures

The second example application is based on trace contam-
ination signatures in chemical agents and their precursors for
the purpose of forensic attribution [8], [9], [60]. The steps
detailed by Fraga et al. [8] for developing such signatures
are outlined below and closely follows the signature discovery
process outlined in Fig. 1.

1) Specify problem: This study focused on the development
of forensic signatures to assist in the attribution of origin for
nerve agent chemical precursors.

2) Inventory observables: The impurities present in chem-
ical samples were identified as the primary observables and
selected for this study, documentation of suppliers of the
unique stocks were also required for signature creation and
validation.

3) Specify measurements: The mass and retention time of
impurities, measured by liquid chromatography mass spec-
trometry, were used for the forensic signature.

4) Assess and explore data: Spectra generated in the mea-
surement step were analyzed for peaks utilizing a matched
filter tool. An initial data reduction step using the XCMS
mass spectrometry metabolite profiling software [61] reduced
the number of peaks by selecting those appearing in more
than 90% of analyzed samples. Impurity peak features were
extracted by hierarchical cluster analysis followed by non-
negative matrix factorization to identify the most discriminat-
ing impurity profiles for sample matching.

5) Develop signature: The signature was constructed via k-
nearest-neighbor clustering techniques that were used to match
unknown samples to the impurity profile features. Quality was
assessed by matching against signal-averaged test samples.

The resulting signature showed high accuracy in clas-
sification of chemical sample origin and will serve as an
important tool in forensic analysis of chemical agents of
unknown origins. The examination of this work provided a
unique opportunity to examine a signature discovery process
from peer reviewed literature and then validate the mapping to
the generic process through interviews with the researchers.

C. Signatures for computer executable file forensics

The final example is constructed with the primary source
being direct input from researcher interviews about methods
described in another paper in this workshop [62]. The focus
of this work is the examination of signature creation for
sequence-based phenomena. While the underlying sequence-
based signature development technique is broadly applicable
to a variety of such phenomena, the specific application
under examination was the identification computer executable
file types. This signature development concept is based on
transforming instructions (opcodes) in each executable to
an alphabet scheme that can take advantage of the well-
developed sequence alignment and identification tools used in
the genomics and proteomics domains. The signature discovery
process steps used in this project are outlined below.

1) Specify problem: This study focused on the development
of signatures for the characterization and identification of
executable files.

2) Inventory observables: The instruction set from exe-
cutable files were identified as the primary observables. Ad-
ditional observable information included known identities and
version histories of executable files for testing.

3) Specify measurements: The instruction path for each
function in an executable is translated to a protein representa-
tion. These protein representations are then compared to one
another using a local alignment algorithm (BLAST) that has
been encoded into a high-performance version called Scal-
aBLAST [63]. ScalaBLAST produces similarity scores and
confidence measures for the alignments of any two executable
file protein representation. These similarity scores form the
measurements used for signature development.

4) Assess and explore data: Average linkage (hierarchical)
clustering is performed on the output of the ScalaBLAST
calculations and analysis is performed to determine the appro-
priate clustering parameters and to confirm that each cluster
is well defined. Each resulting cluster is labeled as a family
of similar functions that forms the features used for signature
construction.
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5) Develop signature: The final step in the signature de-
velopment process is to determine consensus regions of each
family by performing multiple alignments on each family using
the MAFFT algorithm [64]. It is possible to identify more than
one potential consensus region for each functional family and
therefore construct more than one signature for each family.
Quality of the signature is assessed by using the ScalaBLAST
local alignment algorithms to determine the uniqueness and
strength of each signature.

V. CONCLUSION

In addition to the specific steps of the signature discovery
process described in this paper, our research has also been
guided by a few key postulates. First, we believe that the
most useful signatures are human-interpretable such that the
logic of the signature and its classification output can be
understood by the analyst or decision-maker. “Black box”
signatures without such interpretability can provide good sta-
tistical fidelity; however, they often lack the confidence of the
end-user and can be difficult to troubleshoot or analyze when
performance deteriorates. On the other hand, signatures that
are amenable to human analysis are more likely to be adopted
and can be useful in a wider range of activities; e.g., for the
identification of additional useful observables and the guidance
of additional data collection. Second, we believe that the most
useful signatures are generally “multi-INT” in nature; i.e.,
composed of features from multiple observables. Signatures
built from multiple observables (and associated measurements)
often have the advantage of higher statistical fidelity and ro-
bustness to noise, interference, and missing data. Of course, the
inclusion of multiple measurements often implies additional
cost; however, approaches like the signature quality metrics
methods (Sec. III-E3) can help determine the right balance
between the number of observables, measurements, cost, and
the desired signature fidelity.

This paper provides an overview of the domain-
independent signature development process developed through
the Signature Discovery Initiative (http://signatures.pnnl.gov)
along with some simple examples to illustrate its use in real-
world problems. Several companion papers in this workshop
provide specific details on the various methods developed to
support the steps of this process. Our primary objective with
the development of this process and its supporting method-
ologies is to improve signature discovery by making it more
reproducible and robust. Additionally, the generalizable nature
of this process across several domains offers the opportunity
for the reuse of the signature discovery/development method-
ologies by identifying the steps common across disciplines.
Ultimately, the goal of this research, and the larger Signature
Discovery Initiative, is to reduce the time and cost for the
discovery and deployment of new signatures in whatever
domain the signatures may be required.
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