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ABSTRACT 
 

The analysts in the Engineering Sciences & Applications (ESA) Division at Los Alamos 
have been developing and applying uncertainty quantification (UQ) tools and methods to 
model verification and validation (V&V) and engineering component/system certification 
for several years.  We begin with dissecting the term UQ (uncertainty quantification), and 
demonstrating the roles of model V&V and engineering qualification in overall weapon 
system certification and reliability through various methodologies that have been 
developed.  
 
Three examples of UQ applications are presented, showing various technical challenges 
and solutions in handling uncertainties.  The first is a fundamental model-test comparison 
for a single component and a single output.  However, several different models 
calculations are possible, including a crude “back of the envelope” estimate and three test 
points from a previous experiment.  These are combined using an alternate mathematical 
theory for uncertainty, called possibility theory.  Development of a total uncertainty (TU) 
metric is demonstrated for combining the possibility distribution formed from the models 
with a probabilistic distribution formed from the test data.  The second example is an 
“end-to-end” V&V exercise supported by a test program. It illustrates the use of test 
planning and outlines a set of V&V uncertainty-focused program planning steps.  The 
third example illustrates the various uncertainties involved with a complex modeling 
problem where the observable quantities are not the quantities of importance for the 
models.  Here uncertainties of inference become important.  
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I. Definitions and Dissection of Terms and Concepts  
 
In order to promote improved communications and establish reference points, the 
definitions and terminology used here are defined.  Some of these definitions are 
becoming standardized by activities such as the American Society of Mechanical 
Engineers, Committee on Verification and Validation in Computational Solid Mechanics.  
Others, such as UQ, are specific to smaller groups at Los Alamos.   
 

 Uncertainty Quantification (UQ) is the process of characterizing, estimating, 
propagating, and analyzing various kinds of uncertainty (including variability) for 
a complex decision problem. For complex computer and physical models UQ 
focuses upon measurement, computational, parameter (including sensitivities of 
outputs to input values), and modeling uncertainties leading to verification and 
validation. UQ is an assessment process/activity. Unfortunately the Quantification 
label implies providing a numerical statement. We maintain that a UQ process can 
be followed but that a system level or bottom line assessment need not be 
numeric. Statements such as “the system is certified for its requirements and life 
cycle” are the result of a UQ assessment but contain no numeric evaluation. 

 
 Verification is the process of determining that a model implementation (code 

calculation) accurately represents the developer’s conceptual description of the 
model and the solution to the model (AIAA, 1998). 

 
 Validation (or Model Validation) is the process of determining the degree to 

which a model is an accurate representation of the real world from the perspective 
of the intended uses of the model (AIAA, 1998).  It is the act of quantifying how 
well and under what conditions a model or code matches real systems and thus 
can be trusted in a predictive capacity.  Calculations or models are validated for a 
particular domain of applicability.  

 
 V&V is combined processes of Verification and Validation.  Verification should 

be the prerequisite of Validation.  The boundaries between these two processes 
are not crisply defined.  One may argue that the effect of mesh or grid sizing falls 
in either side. Uncertainties arise from incomplete validation and/or verification 
processes.  Nitta and Logan (2004) characterize this risk in their QRC metric.   

 
Metrics for V&V continue to develop.  For example, Roache’s Grid Convergence Index 
is becoming a standard for estimating grid convergence error in the verification 
community (Roache, 1998a).  For validation, over the last several years the fundamental 
quantity for comparing numerical calculations (y*) to test data (y) has been the difference 
or error between them, or simply e = (y*-y).  Root mean square error, RMSE, or expected 
values, E(e), of these errors have provided aggregate estimators for these differences.  
Chi-squared tests can also be used by designating either y values as observed and y* as 
expected, or vice versa.  However, these metrics are usually calculated without 
consideration of the uncertainties in y and y*.  If probability density functions (PDFs) are 
available for both y and y*, then entropic-based metrics can be utilized at each response 



 

 

value, comparing the overlap of the distributions, f(y) to f(y*).  Kullback Leibler and 
Jeffrey’s J (Baroi, et al., 2004) are two such metrics.  Non-parametric tests for empirical-
based distributions on each y and y* such as Kolmorgov-Smirnoff type tests (Conover, 
1971) are also common practice for determining differences between distributions.  
However, comparing PDFs at each response value, each (yi, yi*) pair, provides the 
comparison at each pair and is not a metric for all the values.  Perhaps one could argue 
for a multivariate solution to accomplish this aggregation, but that is the topic of another 
paper. Our most recent approach is to develop a single validation metric focusing on the 
uncertainties involved, as discussed below in section II.3.   
 
Developing a validation metric first implies consideration of the goals for the validation 
effort.  At Los Alamos, that goal is to certify the nuclear package of the engineered 
weapon systems.  It is the job of the weapons engineering community to deliver a 
nominal, working nuclear package to the physics community.  Certification/qualification 
is therefore done first at the engineering level and then at the physics level, with the 
physics certification conditioned upon the engineering certification.  The same is true of 
reliability; physics reliability is conditioned upon engineering reliability.  The following 
definitions apply to this conditional breakdown at Los Alamos: 
 

 Certification: An assessment of the overall system’s ability to perform. 
Providing a warranty to customers. (Engineering certification ≠ physics 
certification). 

 
 Qualification:  An assessment of a component, subsystem, or individual 

function’s ability to perform. 
 

 Reliability:  The classic textbook definition of reliability is the probability a 
system performs its intended function for a given period of time under specified 
conditions. The NNSA/DOE defines reliability as the probability that, in use, 
detonation with the specified yield occurs at the target for given specified 
conditions and for a specified time—a definition consistent with classic 
reliability.    

 
A common use of reliability by decision makers is to view it as a metric for 
certification/qualification.  Another such metric, common to the National Labs and their 
customers (DoD and DOE), is margin, which is defined as: 
 

 Margin is the minimum of the distance from any assessed condition to its nearest 
performance threshold.   

 
 Performance Threshold is the minimum acceptable condition necessary to 

perform an intended function. A performance requirement is a physical condition 
or configuration required of a product to function. If the product exceeds the 
performance requirement, it does not necessarily perform better, but it may be 
more likely to perform acceptably, thus instilling greater confidence. In general, 
the separation between margin and failure domains (i.e., PT) is defined not as the 



 

 

point where failure occurs, but rather as the point where we are no longer 
confident that the product performs its intended function.  There may be more 
than one PT corresponding to upper and lower thresholds.   

 
 Confidence is a commonly used term whose definitions include words like trust, 

belief, reliance, and certitude.  It is the state of feeling sure (Webster, 1986).  
“Confidence comes from repetition, from the breath of many mouths,” W.B. 
Yates.   
It is interesting to note that confidence also refers to the acts of a swindler, as in 
being duped by a confidence man.  This definition originates from the trust 
elicited from and given to the swindler.   
It is also interesting to note that even the Greeks were unable to precisely (or 
mathematically) define what is meant by confidence.  Outside of the statistical 
context discussed next, there is no modern day definition for the mathematical 
meaning or quantification of confidence.  Therefore, we discourage its use in 
V&V and UQ studies unless defined using the statistical definitions.    However, 
we are willing to note that confidence seems to have an inverse relationship to 
uncertainty, something we do focus upon quantifying. 
In the statistical realm, confidence has a specific meaning in sampling and 
inference when referring to a confidence interval for an unknown parameter (e.g., 
the mean).  The interpretation of a confidence interval is difficult and often 
misused.  Its meaning refers to a sampling process and the calculation of multiple 
confidence intervals for multiple repeated samples.  For example, if one were to 
take 100 samples from a population and calculate 100 95% confidence intervals 
(one per sample) for the mean, then 95 of those confidence intervals would 
contain (cover) the true (unknown) value of the mean.  The ASME (2004) guide 
on validation is considering using statistical confidence interval estimation as a 
validation metric.   
Another statistically based confidence definition is in common use.  The so-called 
confidence level is defined as the complement of a significance level in statistical 
hypothesis testing.  Confidence level is 1-α, where α is the chosen significance 
level or the Type I error1.  

 
Another metric specifically designed for engineering certification/qualification based 
upon margin and the uncertainties associated with determining margin is the Engineering 
Index (EI) (Dolin, et al., 2002): 
 

 Engineering Index is a normalized representation of margin, which primarily 
measures the extent to which an engineered product exceeds its performance 
requirements. 

 

                                                 
1 Type I error is the chance (e.g., 5%) that a null hypothesis is rejected when it should not 
have been rejected, i.e., the null hypothesis is true.  This is a chosen, and therefore, 
controlled error in statistical inference. 



 

 

Physicists at Los Alamos and Lawrence Livermore Labs have defined a similar concept 
for physics certification under the terminology of QMU (Quantification of Margin and 
Uncertainty) and the concept of gates.  These will not be discussed further here.  Instead 
we will focus upon the role of uncertainties and their characterizations, usually referred to 
as quantification.  Uncertainty is therefore defined in the broadest sense as: 
 

 Uncertainty: Everything that is not known absolutely. Aspects of uncertainty 
include variability, imprecision, vagueness, ambiguity, lack of knowledge, 
inconsistencies, conflict, non-specificity, entropy, multiple alternatives, 
inferences, prediction, and the unknown. 

 
This definition highlights the various types of uncertainties present within a complex 
problem such as weapon system engineering certification.  Many mathematical theories 
exist for handling these different types.  These are collectively known as Generalized 
Information Theories (Klir and Wierman, 1999).  There is an on-going development of 
a metric to quantify total uncertainty expressed as an aggregation of the various forms 
of uncertainty.  
 

 Total Uncertainty (TU) is defined as the combination of the two general types of 
uncertainty: irreducible or natural variability (which cannot be reduced, but only 
quantified) and lack of specific information, reducible, (which can be reduced 
with the acquisition of more information). Error, whether numerical / 
computational or mistakes, could be interpreted in either category. Some may be 
familiar with the taxonomy of uncertainties using the terms epistemic (lack of 
knowledge and/or reducible) and aleatory (irreducible).  This taxonomy 
specifically distinguishes statistical (or natural, random) variation from other, 
reducible forms of uncertainty. 

 
 Generalized Information Theories (GITs) are the collection of mathematical 

theories for characterizing different kinds of uncertainties. These include 
measure-based theories such as are evidence theory, possibility theory, fuzzy set 
theory, random intervals, imprecise probabilities, Choquet capacities, and 
probability theory.  These can further be classified based upon their foundations 
from either fuzzy sets or crisp sets.  Each theory has its own set of axioms, 
specifying how to combine sets and measure functions.     

 
 
Having established the use and meaning of the above terms, the sections that follow 
describe some uncertainty quantification (UQ) efforts in engineering V&V activities 
under the ASC program at Los Alamos.   
 

II.  LANL Engineering UQ Activities in V&V 
 
We begin with describing the important roles of V&V and UQ in Los Alamos 
engineering reliability and certification tasks.  These tasks support the ASC program 



 

 

mission to provide leadership in the development, implementation and improvement of 
scientifically rigorous methods for assembling evidence supporting the credibility of code 
calculations and the utility of these calculations for Los Alamos’s mission of stockpile 
stewardship (Doebling, 2004).  Two of the strategic goals for the ASC program at LANL 
are discussed here (Doebling, 2004): 
 Uncertainty Analysis: development and deployment of rigorous methods for 

characterizing uncertainties in calculations and data. 
 Validation Assessment: development and deployment of rigorous methods for 

aggregating evidence on the adequacy of computations with respect to physical 
phenomena.  

 
In the absence of test data, the high level decisions about certification must be made 
utilizing all available knowledge and information.  Heavy reliance is therefore placed on 
expert knowledge and experience, and upon validated calculations and models.  What 
little test data is or can be made available assumes a duality of purpose: 1) using data 
itself for estimating reliability and other decision metrics and 2) using the data for 
validating calculations and models which, in turn, provide additional information for 
estimating reliability and other decision metrics.  This places an additional burden upon 
the importance of V&V efforts.  Care must be taken not to analyze the same data in both 
roles simultaneously, constituting double counting of the same data. 
 
1.  UQ and V&V in Engineering 
 
Figure 1 illustrates a simplified version of UQ activities among the Los Alamos 
organizations and the processes leading to nuclear physics package (system) reliability 
assessment and certification.  The detail under the physics side is left blank, denoted by 
three vertical dots, for focusing on the engineering side.  The multiple, crossing arrows 
indicate the complexity of the use and flow of information and analyses.  Each box 
contains activities requiring UQ and each arrow represents the propagation of those 
uncertainties.  Methodologies and metrics interplay at all levels as well.   
 
2.  Methodologies for UQ 
 
The metrics outlined in Section I are often difficult to calculate because: 

1. Test/experimental data are lacking or sparse. 
2. Systems are complex in structure and functions. 
3. Environments known or tested do not correspond to requirements. 
4. Performance (and therefore performance thresholds) is not well known or 

understood. 
5. Physical models may not be adequate to describe behavior. 
6. System level requirements are not easily translated to lower levels. 
7. Multiple variable (characteristics of interest) interrelationships are not well 

known. 
8. Uncertainties from lack of knowledge are difficult to characterize. 
9. Heavy reliance is placed upon models (which must be validated) and expert 

knowledge (which must be properly elicited). 



 

 

10. All information (e.g., models, knowledge, data, experience) must be utilized and 
combined with the appropriate uncertainties attached.   

11. Performance changes with time (e.g., aging, degradation). 
 
Some of the challenges posed in this list are being partially addressed, and in that 
process, methodologies are being developed.  A few examples include: 

 Enhanced Reliability Methodology (aka PREDICT) is an information 
integration methodology designed to address items 1, 2, 7, 8, 10, and 11 
(Meyer, et al., 1999). 

 Quantitative Reliability at Confidence (QRC) is a risk-based methodology for 
reliability and V&V designed to address items 1, 2, 3, 5, 6, 7, 9, and 11 as 
described in Nitta and Logan (2004). 

 Engineering Index of Goodness for the Enduring Nuclear Stockpile (EIGENS) 
is another information integration methodology designed to address items 1, 3, 
4, 6, 7, 8, 9, 10, 11 (Dolin, et al., 2002). 

While much more development of these, and other, methodologies is required to address 
all the challenges, progress continues.  One of the areas of progress is the concept of 
utilizing different mathematical theories for different kinds of uncertainties.  
 
3.  Predictive Modeling 
 
One of the goals of model formulation (either physical, statistical or computational) is to 
utilize the model for prediction.  Assessing the utility of a model involves addressing 
three interdependent issues (Hemez and Ben Haim, 2002): 

1. Improving the fidelity of test data; the degree of matching between test data and 
calculations (predictions) 

2. Studying the robustness of predictions to various kinds of uncertainties.  This 
requires the concept or determination of a maximum or horizon uncertainty for 
which all models or information sources meet a given fidelity (matching) 
requirement.   

3. Establishing the prediction capability of models in situations where testing is not 
possible. This is also called prediction looseness, referring to the range of 
predictions expected from a family of equally credible models or information 
sources. 

 
A fundamental theorem developed by Ben Haim and Hemez proves that all three of these 
issues cannot be achieved simultaneously in an information-gap decision theory 
framework (Ben Haim, 2001); a non-measure based decision framework characterizing 
ignorance.  At best, one can only achieve success on any two, while sacrificing the third.  
Thus an important tenet of predictive modeling is established, similar to the optimization 
problem of trading off “better,” “faster,” and “cheaper” in project planning and decision 
making.  Trade offs include (Hemez and Ben Haim, 2004): 
 Robustness to uncertainty decreases as (model-to-test) fidelity improves.  Model-to-

test fidelity refers to the degree of matching (“correlation) between test data and 
model / calculations results. Models (and associated) information chosen or tuned to 
better reproduce the available test data are more vulnerable to errors in modeling 



 

 

assumptions, errors in the functional form of the model, and uncertainty and 
variability in the model parameters. 

 Prediction looseness increases as robustness to uncertainty improves.  Prediction 
looseness is a concept related to the range or scatter expected from a family of 
equally credible models.  Models / information made more immune to uncertainty 
provide a wider range of predictions, hence lessened predictive power. 

 Prediction looseness decreases as (model-to-test) fidelity improves. Models / 
information chosen or tuned to better reproduce the available test data provide more 
consistent forecasts, leading to a false sense of assurance or decreased uncertainty. 

 
Similar trade offs can be found in the measure-based quantification of uncertainties (the 
TU metric) described below in the first application, section III.1. 
  
4.  Development of a TU metric for Validation 
 
One of the goals of the engineering activities at Los Alamos is to develop a metric 
(yardstick) for validation.  This metric would incorporate the comparison of calculations 
(models/calculations) to test/experimental data comparing the uncertainties in both.  The 
concept of TU involves the mathematical combination of uncertainties from the data and 
calculation sources.  However models and test data involve more than comparing one 
quantity of interest.  Often, important variable quantities are functions of each other (e.g., 
stress versus strain) or functions of time (pressure versus time). Therefore multivariate or 
multi-dimensional comparisons are necessary to understand the interrelationships among 
these variables, and are a subject of ongoing research and development. 
 
Assessing modeling uncertainty is a daunting task, encompassing uncertainty evaluation 
associated with model choice, model relevance, model domain of applicability, 
parametric uncertainties, input to output sensitivities, multivariable relationships, and 
lack of knowledge.  Some of these (e.g., parametric uncertainties) can be handled with 
probability-based variance.  Others (e.g., model choice) represent a vagueness or 
ambiguity within the decision process that is not easily captured as variability.  For these, 
another kind of mathematical theory is suitable, one that focuses on the possible value of 
model choices.  For the metric development in this section, we shall focus only on two of 
the more prevalent types of uncertainty for the test data and for the model choice–
probability theory and possibility theory, respectively.  
 
The fundamental difference between these two theories of quantifying uncertainty is that 
in probabilistic bodies of evidence all the evidence is concentrated on the singletons of a 
universe of information, whereas in possibilistic bodies the evidence is located on 
collections of nested sets within the universe of information (see Figure 2).  Both 
formalisms are uniquely represented by distribution functions, but their normalization 
requirements are different.  The collection of values in a probability distribution are 
required to add or integrate to unity, while for possibility distributions the largest values 
are required to be unity (a condition called normality).  Figure 3 shows an overlay of both 
distributions. 
 



 

 

These differences in mathematical properties of the two theories make each theory 
suitable for modeling various types of uncertainty and less suitable for modeling other 
types.  For example, probability theory is an ideal tool for formalizing uncertainty in 
situations where event frequencies are known or where evidence is based on outcomes of 
a large number of independent and repeatable trials, or where evidence can be 
summarized by a subjective willingness to bet.  Possibility theory, by contrast, is ideal for 
formalizing incomplete information expressed in terms of vague or ambiguous terms, or 
where evidence supports conflicting events. 
 
To assess the total uncertainty in the process of validation assessment, the hypothesis is 
formulated that total uncertainty metric should scale between two extreme conditions on 
uncertainty, i.e., between the case of no-uncertainty and the case of maximum 
uncertainty.  If a prediction is made on the response of some structural system and the 
level of uncertainty expressed in that prediction is close to the extreme of no-uncertainty, 
then credibility2 in that prediction exists.  On the other hand, if the uncertainty is closer to 
the other extreme, the case of maximum uncertainty, then less credibility exists in the 
prediction.  Of more importance, however, is the development of a “metric of credibility” 
or “confidence” that will scale linearly with the quantified level of uncertainty and, in a 
mathematical sense, measure the degree of closeness. 
 
Suppose we are predicting the value of a variable of interest in a mechanics calculation, 
say the maximum stress in a metal bar.  The case of no uncertainty is defined where all 
information and evidence support only one value of the variable of interest (stress) and 
there is no evidence on all other potential values of that variable.  Probability is 
associated with a value equal to unity on one value of the variable (stress) and zero 
probability on all other potential values of that variable.  The other extreme of maximum 
uncertainty is then defined as the case where all potential values of stress are completely 
possible (i.e., certain) and all potential values of the variable are equi-probable (the case 
of a uniform probability distribution).   
 
In the literature, the forms of uncertainty associated with a possibility distribution are 
those called non-specificity and discord.  Non-specificity refers to a kind of imprecision 
which is connected with sizes of relevant sets of alternatives.  Discord means that there is 
conflict among the various sets of alternatives.  The form of uncertainty associated with a 
probability distribution is a kind of strife, where again there is conflict among the various 
specific values of alternatives.  Probabilistic strife (or conflict) is most often termed as 
entropy, (loge), and it is different from possibilistic discord. In the former, all evidence is 
nested on single values of the variable of interest, whereas the latter supports evidence 
that is nested on collections, or sets, of various values of the variable of interest.  Hence, 
total uncertainty, as used in the context presented here, is defined as the combination of 
possibilistic non-specificity with the probabilistic entropy, or conflict.  The new 

                                                 
2 One could argue that using the term “credibility” is no better than using the word 
“confidence.”  We would agree.  Its casual use (communication with Roger Logan) or 
colloquial use here connotes a qualitative assessment or even a warm, fuzzy feeling and 
is not meant to be quantified. 



 

 

procedure presented here combines these uncertainties. Other combination procedures in 
the literature first reduce the various uncertainties to the bit-level (log2) before a 
combination is performed, or the various uncertainties are used to formulate a data-tuple 
(see Klir and Wierman, 1999). 
 
The development of the total uncertainty begins by first defining an uncertainty matrix, 
A, which contains the possibilistic uncertainty vector in its first column and the 
probabilistic uncertainty vector in its second column. These vectors are formed from the 
possibility and probability distributions (Figure 3).  Each row (π, p pair) corresponds to a 
particular value of the quantity of interest, meaning is it a discrete vertical cut of the 
overlaid distributions.   
 
For a variety of compelling and intuitive reasons (Ross, et al., 2003) a procedure known 
as singular value decomposition (SVD) (Klema and Laub, 1980) was chosen as a means 
to calculate total uncertainty.  Many of these reasons have to do with an analogy of this 
approach to the extraction of modal frequencies from a model of a structure undergoing 
dynamic motion.  In this process modal extraction of frequencies are extracted using an 
eigenvalue analysis of the structure.  The frequencies from the eigenvalue analysis 
represent the total energy of the structure during vibration in its normal modes 
(eigenvectors).  In our analogy for the characterization of uncertainty, the singular values 
of our SVD analysis represent the total energy of the uncertainty in the matrix A, or more 
simply the total uncertainty.   
 
To begin this development, start first with the decomposition of A, an m x 2 matrix of 
columns expressing the two types of uncertainty:  
 

A = 

π1 p1
π 2 p2
π i pi

π i+1 pi+1
π m pm

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

 and A = UΣV T
      (1) 

 
where pi’s are probabilities, πi’s are possibilities, U is an orthonormal m x m matrix 
whose columns are the left singular vectors of A, Σ is an m x 2 matrix containing the 
singular values of A, and V is an 2 x 2 orthonormal matrix whose columns are the right 
singular vectors of A.  Parameter m is the length of the two uncertainty vectors, the 
number of discrete values or vertical cuts of the quantity of interest, such as a peak 
acceleration. 
 
What is of particular interest is the fact that the singular values in the matrix Σ contain the 
“energy” or the total uncertainty of the vectors quantifying different uncertainties 
expressed in A.  The expression for Total Uncertainty, TU, is then given by: 
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i

i=1

m

∑
⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ − 1

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 
, for i = 1, 2,...,m     (2) 

 

where, λmax = π max
2 + pmax

2[ ]−1
, and where σi is the ith singular value in Σ, where, πmax is 

the largest possibility value in the first column of A, and pmax is the largest probability 
value in the second column of A.  Finally, the extreme cases for no-uncertainty and 
maximum uncertainty are given by the expressions, TU = 0, and TU= 2(m-1) (see Ross, et 
al., 2003). An example application of this TU metric is given in Section III below. 
 
The matrix A can be expanded to include other columns, representing other types of 
uncertainties in the validation process, such as model parametric uncertainties. Research 
is ongoing to extend TU based upon this SVD approach to include other mathematical 
theories, such as Dempster Schafer belief functions, fuzzy membership functions, or 
random intervals—all of which can play important roles in the kinds of uncertainties 
experienced in a V&V process.   
 
5.  Outline of a Validation Methodology/Process Focusing on Uncertainties 
 
There have been several validation programs successfully implemented at Los Alamos in 
structural dynamics engineering applications (see Hemez and Ben-Haim, 2002; Doebling 
et al., 2004a, Doebling et al., 2004b and, Anderson, 2002). The focus of these is the 
validation of structural dynamics models. Primarily the interest is in nonlinear response 
models, such as the transient response of structures with multiple component interfaces 
and nonlinear materials. 
 
The engineering modeling and simulation communities have not standardized the steps 
involved for verification and validation.  Many taxonomies and flowcharts are available 
(e.g., Roache, 1998b and Trucano et al., 2002), and there is no need to provide another 
here.  Instead, Table 1 contains a brief outline of considerations and issues involved with 
associated uncertainties. 
 
The background for interpreting Table 1 includes the following statements:  
• The validation of a model can only be defined over a prescribed domain of the 

simulation input parameters.  
• This domain needs to be specified whenever a statement about the model's validity is 

made.   
• The validation process is here defined to begin after the computer code for that model 

has been properly verified.   
• Numerical error evaluation, mesh or grid size and convergence issues, discretization 

issues are all encompassed within the verification process3. 
 

                                                 
3 Verification here refers to code verification and solution verification as described in the 
ASME (2004) guide. 



 

 

Table 1.  Outline of V&V Considerations with a Focus on Uncertainty 
  V&V TASKS    UNCERTAINTY ISSUES 
Define desired phenomena for study  
(initial listing of measured variables, inputs 
and responses for models/calculations, 
covariates related to things measured and 
things calculated) 

Errors of omission of related phenomena 
and variables 
Can measurements be made on all desired 
phenomena?  Can models be formulated to 
completely capture all phenomena? 
 

Define the hierarchical levels for models 
and tests 

Can levels of tests and models be the 
same? 
Assumptions made about specific levels for 
both tests and models. 
 

Define the domain for the phenomena plus 
modeling domain and test / experimental 
domain 

How do these three domains overlap? 
Can tests be performed in the desired 
domain? Can calculations be done in the 
desired domain? 

Model(s) selection  Model choice uncertainty: 
Can any model be truly representative of 
phenomena (aka inference uncertainty)?   
Can multiple models be representative (aka 
modeling uncertainty)? 
What are boundary and initial conditions 
for each model?  Are these realistic? 
Are there faster running, less detailed, 
lower fidelity models? 
Can metamodels be used? 

Computer code implementation of 
model(s). 

What are numerical errors?   
What are discretization errors? 
What are approximations used? 
What are grid and mesh issues? 

Computer code verification Model selection and numerical error 
uncertainties 

Input/output parameter sensitivity study of 
model(s) 
Design of computer experiments study for 
parsimonious code runs4 

What inputs most influence the output 
responses? Variance-based uncertainties 
addressed. 

Dimension reduction, trimming models, 
inputs or outputs to a parsimonious set for 
modeling 

Information can be lost with such 
selections. 

                                                 
4 Parsimonious code runs refers to the process of narrowing down the design space for 
computer runs to a manageable set by taking advantage of parameter and variable 
interrelationships (“correlations”).  For example if there are 10 input variables, but the 
sensitivity study shows only 4 are most influential, then the suite of computer runs would 
be designed around changes in those 4. 



 

 

Planning experiments/tests 
 

Can the needed phenomena be measured 
(inference uncertainty)?  What variables or 
effects can/cannot be controlled/measured? 
Must variable selection be done? 

Design of experiments / tests utilized Can the necessary tests/experiments be 
conducted to aid in model validation? 
Can sufficient tests be conducted to cover 
the variable space?  Must interactions be 
sacrificed to limit number of tests? 

Conduct experiments / tests What are measurement errors? 
Missing or incomplete data. 

Data analysis / feature extraction / 
dimension reduction of test data 

Information can be lost by feature 
extraction and dimension reduction.   
Variance-based data analysis techniques 
(e.g., multivariate techniques) can reduce 
the variable space.  Metamodeling can 
summarize data for model comparison. 

Data analysis / feature extraction / 
dimension reduction of model inputs and 
outputs 

Information can be lost by feature 
extraction and dimension reduction for 
models.   
Variance-based data analysis techniques 
(e.g., multivariate techniques) can reduce 
the variable space.  Metamodeling can be 
used for analyzing model outputs. 

Design code runs for validation Matching calculations to test results for 
multiple variables; inputs and responses. 
Comparison of model(s) to test data; a 
validation metric. 
Uncertainties in both model(s) and data are 
combined. 

Prediction—using models to draw 
conclusions where testing is limited. 

Uncertainties of prediction; extrapolation 
and interpolation come into play. 

 
The uncertainties inherent in the statements or in answering any of the questions in the 
right column may not be easily characterized and may not be conducive to probabilistic 
(entropic, variance-based) uncertainty alone.  To proceed through any decision point 
indicated by these issues, decisions must be made concerning the use of the model(s) and 
data.  These decisions may involve implementing component-level tests or running lower 
fidelity models to gain information (and reduce the uncertainty from lack of knowledge).  
Therefore, an iterative structure of model-test-model-test would be beneficial.  This is 
especially true if the structure of the problem / phenomenon is a complex hierarchy of 
levels.   
 
General uncertainties follow the same principles of implementation as entropic 
uncertainty from probability theory does.  In handling uncertainties, one of these actions 
takes place: 



 

 

 Control the uncertainty (as in a controlled effect in an experiment); 
 Lacking control ability, measure the uncertainty either directly or by 

comparing changes in influential variables; 
 Lacking measurement ability, estimate the uncertainty (based upon general 

knowledge, experience or first principles); 
 Lacking the above, it may be possible and practical to assume the uncertainty 

is unimportant (because it’s magnitude is in the noise level), and document 
that deliberate decision; 

 Lacking all of the above, whether justified or not, the uncertainty is ignored, 
often without any consideration or documentation. 

Unfortunately, the last bullet is the most common practice.  To make an honest 
uncertainty assessment, if the last two bullets is chosen, then the entire V&V process and 
the results are conditioned upon the assumptions or omissions made.  In other words, the 
results are only applicable given those assumptions being true or omissions being 
unimportant.  While that statement sounds obvious, it is most often not explicitly stated 
or considered as part of the V&V activities. 
  
A few terms in Table 1 are worth some discussion, such as metamodeling. Metamodeling 
is used for efficient parameter optimization in a finite element simulation.  A metamodel 
can be a response surface, surrogate model, or any fast-running model built from 
polynomials, sinusoidal functions, splines, neural networks, multivariate analyses (e.g., 
principle components), or general linear/nonlinear model regressions. The primary use of 
metamodeling is to fill in gaps in the parameter when relatively few complex finite 
element (FE) model runs are feasible.  Multidimensional metamodel results are easily 
displayed in three-dimensional graphs as two variables at a time with a response variable 
on the vertical.  The steps for formulating a metamodel can be summarized as:  

 Select candidate set of input parameters.  
 Divide these parameters into a number of levels (numerical values).  
 Perform FE simulation runs at several different combinations of these 

parameter values.  
 Select a level for each parameter for each simulation run, resulting in a matrix 

of input values P (row = run #, column = input parameter). Selection is done 
by design of experiment techniques, utilizing expert knowledge, etc. 

 Obtain output feature value from each simulation run, resulting in a vector of 
feature values (row = run #) F.  

 Use regression techniques to estimate the metamodel coefficients. 
 
In a complex physical problem, the number of phenomena that can be measured 
experimentally or modeled in a calculation is limited by physical problem constraints, 
measurement capability, first principles and theory, and time and money.  To necessitate 
practicality, often variables must be screened and hence eliminated at various stages of 
planning the study.  When there is some choice in the variable selection process either for 
the experiments or the modeling, a formalized selection process provides a logical and 
documented approach for choice.  PIRT (Phenomena Identification and Ranking Table) is 
one such useful model development and variable screening/selection technique (Trucano, 
et al., 2002).  It is based upon fundamental scoring and ranking principles often employed 



 

 

in risk and reliability assessments.  The example in Table 2 (ASME, 2004) illustrates the 
evaluation of four phenomena, categorized by type and ranked according to importance 
to the response of interest and to the level of modeling capability.   
 
 

Table 2. PIRT Example 
Phenomena Phenomena Type Importance to 

Response of Interest 
Level of Model 

Capability 
A Interface High Medium 
B Interface Medium High 
C Loads Medium Low 
D Materials Low Low 

 
PIRT is not the only screening technique for variable selection.  Others include: 

1. Parsimonious general linear statistical modeling of responses 
2. General sensitivity analysis using derivatives or variances 
3. Bayesian variable screening 

 
Those phenomena (as in Table 2) most important for the (multiple) responses of interest 
that also have good modeling capability become important for planning and designing the 
experiments.  This set should ideally be the variables chosen as the treatments or 
quantities varied in the experimental design.  Those not chosen should ideally either be 
controlled (held constant), measured (as covariates), estimated (by some other means), 
assumed to have minimal, unimportant effect on the response, or ignored.  Unfortunately, 
often times the last of these occurs.  The practice of good statistical experimental design 
is not as difficult to implement as one might believe.  For example, while it takes 212 = 
4096 tests for a full factorial experimental design for only 12 factors at two levels (high 
and low) each, just testing the 12 main effects at those two levels requires a minimum of 
13 tests.  This savings in test runs is at the expense of losing all interactions among the 12 
variables.  The trade off between test runs and number of effects (interactions) that can be 
tested is a decision that requires documentation of reasons, including the expert 
knowledge used (or assumed) in arriving at those decisions.  These same experimental 
design issues are relevant to designing the number and types of model calculations as 
well as the experiments. 
 
Design of experiments techniques such as screening designs, Taguchi arrays and 
augmented designs, permit ways of iterating for more tests and models and their 
comparisons when numerous variables and model choices are present.  For example one 
could use a minimal design as described above to explore through the 12 variate space 
using a coarse finite element model to gain understanding and estimate which of the 12 is 
the most influential on the responses.  Then one could augment that design by adding 
more levels of the most influential variables and perhaps use a finer mesh model as well.  
These ideas are often put into practice as described below in the second application.  
Again, proper documentation of the reasons behind the iteration choices is vital for peer 
review and for potential future updating.   
 



 

 

 
III. Some Validation Applications 
 
The three projects described in this section illustrate the various LANL engineering V&V 
activities, including the research challenges.  The first is a fundamental model-test 
comparison for a single component and a single output.  However, several different 
models calculations are possible, including a crude “back of the envelope” estimate and 
three test points from a previous experiment.  The different model calculations are 
combined using an alternate mathematical theory for uncertainty, called possibility 
theory.  Development of a total uncertainty (TU) metric is demonstrated for combining 
the possibility distribution formed from the models with a probabilistic distribution 
formed from the test data. The second example is an “end-to-end” V&V exercise 
supported by a test program.  It illustrates the importance and use of test planning and 
outlines a set of V&V, uncertainty-focused, program planning steps.  The third example 
illustrates the various uncertainties involved with a complex modeling problem where the 
observable quantities are not the quantities of importance for the models.  Here 
uncertainties of inference become important.   
 
1. Hyperelastic Foam 

 
The first application is a case study involving a single component and the crushing of this 
hyperelastic foam from a simple impact loading.  Of interest was a single response 
variable: the computational prediction of the peak acceleration (PAC) within the foam.  
Although experiments were performed on this example (see Figure 4.b), only the 
uncertainties involved in a computational prediction of the peak accelerations were 
considered. A finite element code was used to model the system.   
 
Two types of analyses were performed on the uncertainties. First, probability theory was 
used to assess the uncertainties of the test results for the peak acceleration (PAC). 
Second, possibility theory was applied to various model configurations, whose 
parameters included such variables as friction coefficient, amount of preload applied, and 
impact angles of the drop table (see Figure 4.a). For example, uncertainties from previous 
test results on similar foam, simple first principle calculations, choices of material 
models, equation solvers, and boundary conditions were represented by intervals of 
possible values for PAC. Table 3 contains the interval values of PAC from the various 
models and sources of information.  These six intervals are formulated into a π-DF 
(possibility distribution function) using a method developed in a dissertation by Donald 
(2003).  This method permits weighting the different intervals according to the how each 
model best represents the real physics of the problem.  It then determines values of 
possibility based upon the weights and the amount of overlaps among the six.  That π-DF 
and the corresponding probability density function (PDF) of the test results for PAC are 
plotted in Figure 5. 
 
 
 
 



 

 

Table 3.  Intervals from Different Model / Information Sources 
Model Lower Value 

of PAC 
Upper Value 
of PAC 

SDOF, Material Models [2 cubics] 0.2480 0.2850 
SDOF, Material Models [cubic, bilinear] 0.8570 0.1250 
SDOF, HKS/“ABAQUS” 0.2850 1.6435 
Preload in Bolt [min, max] 1.1943 2.4771 
Hand calculation on I-mv [.01s, .001s] 0.3000 3.0000 
Old test data range from 3 gages 1.2170 1.5940 

 
 
In equations (1) and (2) above, the length of the probability and possibility distributions 
was m = 305.  Using these equations, the total uncertainty is expressed by the 
combination of probabilistic and possibilistic types and is equal to a value of TU = 17.44, 
which is 30% of the maximum uncertainty that the problem could contain (i.e., TUmax = 
58).  What this means is that the problem does contain a level of uncertainty that is closer 
to the case of no-uncertainty than it is to the case of maximum uncertainty.  More 
importantly, if additional analyses on this problem were to be performed, and the value 
for TU decreased below 17.44, this would equate to a situation of improved capability in 
the prediction of peak accelerations.  If additional (more than 6) models or information 
became available and the new TU remained about 30% of its maximum, then this would 
be a situation of robustness to uncertainty.   
 
The fidelity to data or matching of test data to calculations is not explicitly performed 
using the SVD approach.  The overlaps or matching of the PDF and the π-DF 
distributions is explicitly (numerically) incorporated in the decomposition and singular 
value determination, which in turn, determines the value of TU.  No additional measure 
of this overlap or matching is required.  Thus the uncertainties and the matching are 
combined into the single TU metric, an advantage to our approach.  
 

 
2. “End-to-End” V&V Study on the Threaded Assembly 

 
This model validation application explores various techniques for the problem of 
propagating an explosive-driven shock through of a complex threaded assembly joint 
(Doebling et al., 2004).  The steps of the study described below follow the outline of 
V&V uncertainty analysis issues listed in section II.4.  The multi-year study was 
designed in two phases of testing and modeling. The first phase of experiments and 
modeling was designed to simulate acceleration response of component mass simulators 
under this kind of loading.  The lessons learned from Phase I have been used to design 
the experiments and analyses for the next round of tests and modeling, Phase II. 
 
The response of interest is the energy transmission of an explosively driven impulse, and 

                                                 
5 It should be noted that results from simulations of TU indicate that m=30 is considered 
a small vector length for converging to asymptotic results. 



 

 

the mechanics of interest are energy dissipation in various interfaces due to friction and 
preload.  Two test suites of experiments were initially defined: shock response 
experiments and modal experiments. In the shock response experiments the explosive 
charge delivered an applied stress versus time impulses. Accelerometers measured the 
acceleration versus time impulse response.  Measurement uncertainty bands were 
estimated according equipment specifications.  The modal experiments were conducted 
to identify modal frequencies and mode shapes of the threaded assembly. The goal was to 
explore the interaction and dynamic behavior between the main components.  The modal 
test consisted of 33 nodal inputs with seven accelerometer locations on the structure.  A 
micro hammer was used to induce the excitation. Guidance on the frequencies and modes 
was learned from this test suite of experiments.  There currently is no model for test to 
calculation comparison for the modal responses.   
 
Only a small number of tests, four, were allocated for Phase I for the shock experiment 
suite; however, one of the goals was to determine the repeatability of experimental 
results.  Therefore at least two of the tests were replicates.  Even with only four test units, 
two factors could be explored: assembly tolerance (tight versus loose) and manufacturing 
tolerance (tight versus loose).  The four tests were designed as: tests 1&2 as tight-loose, 
test 3 as loose-loose and test 4 as tight-tight.  Responses for the shock experiments 
included time histories with corresponding temporal moments and moving averages, 
power spectral densities with spectral moments and shock response spectra with 
amplitude differences and spectral moments.  Additional analysis included examining 
peak accelerations and fractal analysis of how a signal grows or decays in various time 
scales. Variability in the results was high enough to preclude definitive conclusions about 
the effects and the repeatability. 

 
Another result came from the beginning of the Phase II study, involving the identification 
of phenomena judged to be important to the response, energy transmission through the 
threaded assembly.  This was done using the PIRT technique with the initial table 
containing 50 parameters relating to friction, preload, material properties and load input 
to the structure.  This parameter set was down-selected using engineering judgment 
(rooted in experience with the threaded assembly problem) to 11 parameters, involving 
friction and preloads, and will be further down-selected through a coarse sampling 
parameter sensitivity analysis. (Doebling et al., 2004).  An independent suite of 
experiments was conducted to identify friction coefficients between several parts.  
Variability in the results from these tests was also high, but information was leveraged to 
generate friction uncertainty distributions.  Preload tests were fairly inconclusive due to 
high variability. 
 
At the time of the Phase I experiments (July 1999), the engineers anticipated that the 
modeling of this phenomena was at the limits of simulation ability.  Indeed one of the 
lessons learned from the study was the limited ability to correctly simulate the flow of 
energy through some of the assembly components.  Finite element models were created 
using ParaDyn.  Analysis parameters included preloads, friction coefficients (static and 
kinetic), and loading characteristics.  Modeling of all materials was done in the elastic 
region because the loads in the four experiments were low.  In addition to the concern 



 

 

over accurate modeling of the energy flow mentioned above, concern was also for the 
nonlinearities at the interfaces.  Energy flow is affected by these interfaces. 

 
A statistical response surface metamodel was constructed using polynominals from the 
finite element model results for a reduced parameter space of six dimensions.  This model 
was used for test – analysis comparisons in lieu of running more finite element models.  
An error metric was defined as the distance from each experimental data point to the 
response surface.  The norm was taken over all four experiments as the measure of 
matching between the data and the model results.  There is additional modeling 
uncertainty involved by substituting the response surface model for the finite element 
results from the estimation of the surface itself.  In this variance-based uncertainty 
analysis, the RMSE from the response model fitting was used as an indicator of the 
uncertainty between the estimated surface and the FE models.   
 
With the results and lessons learned from Phase I, the planned Phase II study is designed 
to provide:  
• Updates to the variable and parameter screening were already done using information 

from the friction and preload testing. 
• A finer sampling scheme of finite element model runs to develop the response 

surfaces. 
• Updates to the finite element model. 
• Results from additional experiments, specifically with different loads and parameter 

values, i.e., enough experiments to better characterize replicates. 
• Better estimates for sensitive parameters. 
• A more complete validation. 

 
Because one of the main goals of using models is prediction, Phase II will apply the 
model to complex loads that cannot easily be implemented in the laboratory environment.   
 
3. Inference Uncertainty—Studying Poorly Understood Physics with Poor Testing 
 
Inertial Confinement Fusion (ICF) programs at Los Alamos and other laboratories have 
provided the experimental opportunities to better understand and move towards the goal 
of controlled nuclear fusion.  The decades old idea of controlled fusion was to produce 
commercially available energy that would be “too cheap to meter.”  However, huge 
uncertainties from lack of knowledge of the first principles physics have limited 
mankind’s success in reaching this promise for cheap power.  Part of this uncertainty also 
stems from what we will call inference uncertainty.  Here inference uncertainties arise 
either (1) when quantities that can be measured are not the same as the quantities that can 
be calculated/modeled, or (2) when experimental regimes that can be tested do not match 
those in the real problem where experimentation is prohibited.  An example of the latter 
(2) would be where ICF experiments are used to make inferences about uncontrolled 
fusion.  An example of the former (1) would be to use the diagnostic measurements from 
ICF experiments to define the number of neutrons.   
 



 

 

Before tackling this difficult problem in an application where the first principles are 
poorly understood, let us examine how some inference uncertainties have been more 
traditionally handled.  Classical, statistical inference is characterized by variances.  For 
example, when an experiment is performed, or an observation made, or a sample taken, 
one makes an inference about the entire population of (or set of all possible) tests, 
observations, or samples by what is found in that single test, observation or sample.  This 
inference is possible if that one trial is representative of the population.  The more 
homogeneous the population, the more likely a single representative from it will share the 
same characteristics of the whole.  One commonly utilized way of guaranteeing a good 
representative choice is to make a random selection.  If there is some inhomogeneity, 
then that resulting variation dictates the number of randomly chosen tests, observations or 
samples that one must examine in order to capture the variation of the underlying 
population.  The entire field of statistical sampling is based upon this idea of inference, 
and the uncertainty associated with that inference process is variance-based.     
 
However, even in this fundamental scenario of understanding a population from a limited 
amount of sampling, we can produce the more elusive kinds of inference uncertainties 
described above.  Specifically, one may not be able to measure exactly the quantities or 
conditions of interest in the population.  For example, the status of the US economy is 
“measured” by looking at indices such as the GNP, employment rate, etc.  However, 
these indices are only related to the status of the economy and do not provide a direct 
measure of it.  That relationship (inference) is not known from theory and can only be 
somewhat (uncertainly) characterized statistically using decades worth of data analysis.  
Many statistical variance-based techniques have been employed to model this 
relationship and account for the variance of the inference from the measured to the 
desired (unmeasured).  These include areas of econometric modeling employing variance 
estimate techniques for the inference uncertainties involved.  Instrumental variables, 
variances in predictor variables in statistical models, and Bayesian methods are a few 
such techniques.  However, in this example the data rich environment permits inference 
uncertainties to be characterized as variabilities, even when the underlying theory (for 
model construction) is not well known.    
 
In the fusion example, the theory is not well understood, so the modeling is difficult, and 
the experimental data is not numerous.  Like with the threaded assembly application, time 
histories and integration of those are the quantities that can be measured in ICF 
experiments.  Here experiments that are possible to run do not directly measure the 
quantities of interest. In addition, they are not necessarily in the desired parametric 
regimes (time, temperature, etc.).  Given these substitutions, the uncertainty of inference 
may not be so conducive to variance-based methods.  We are currently engaged in 
understanding the uncertainties of inference in the ICF test regime and then relate those 
to other physics regimes where the first principles theory is not well understood.  How to 
best characterize the uncertainty from inferring one quantity by measuring another and 
the uncertainty of inferring test results in the regime of interest using tests performed in 
another regime is not well established.  If the knowledge about these inferences is so poor 
that only qualitative statements can be made, then perhaps Zadeh fuzzy sets could be 
incorporated.  Perhaps some quantification is known about these inferences but only in 



 

 

the non-specific form of intervals of possible values, indicating a random interval 
approach for uncertainty characterization.  This is a matter of additional research; 
however at this point in time it appears that what little is known must be properly elicited 
from the experts using formal elicitation and analysis methods such as from Meyer and 
Booker (2001).  Once that knowledge is extracted, the appropriate mathematical theory 
for uncertainty quantification should be employed to tackle this difficult problem of 
inference uncertainties.  If the inference uncertainty can be expressed as a distribution 
function within any of the General Information Theories (GIT) for uncertainties, then that 
function can be added as an additional column to the SVD matrix for calculating TU.   
 
 
IV. Future Challenges 
 
We have noted several important issues regarding uncertainty quantification: 
• Uncertainties are of different types on the data and model sides; most of which are 

ignored in the validation process. We have specifically here pointed out modeling 
choice uncertainties and inference uncertainties.  Prediction uncertainty is another 
important one for validation. 

• Uncertainties may not all necessarily be best characterized by probability theory. 
However, many GITs exist and can be utilized. 

• When utilizing different GITs for uncertainties, the research problem becomes how to 
merge these uncertainties within a validation study.  Zadeh’s latest proposal is for a 
unified theory of uncertainty—a challenging task that we have long advocated 
(Zadeh, 2004). Work has already been done on merging fuzzy membership functions 
with probability (Singpurwalla and Booker, 2004).  

• Real world problems are complex in structure, with multiple levels, variables, 
parameters, models, tests, requirements, inputs and responses.  More research work is 
needed to handle all the uncertainties associated with these in an integrated manner. 

  
New uncertainty quantification analysis tools and methods are constantly being 
developed.  We applaud these efforts.  The TU metric presented here, while only in its 
development stage, provides some promise for combining differently characterized 
uncertainties along with incorporating the comparison of test and models.  However, we 
caution that the theoretical development is not yet completed.   
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Figure 1.  Los Alamos Weapon System UQ Activities 
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Figure 2. Singleton Versus Nested Sets: Probability Versus Possibility 
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Figure 3. Probability histogram (grey) and possibility distribution for a quantity of 

interest. 
 
 



 

 

 

 
Figure 4. Shock wave through hyper-elastic foam, (a) the experimental set-up 

and (b) the input and output signals for 10 tests. 
 



 

 

 

 
Figure 5. PDF for the tests and π-DF for the models (PAC is in 103 g’s). 
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