
Computing Hypergraph Homology in Chapel
Jesun Sahariar Firoz∗, Louis Jenkins†, Cliff Joslyn∗, Brenda Praggastis∗, Emilie Purvine∗, Mark Raugas∗
{jesun.firoz,brenda.praggastis,emilie.purvine,cliff.joslyn,mark.raugas}@pnnl.gov, ljenkin4@ur.rochester.edu

∗Pacific Northwest National Laboratory

Seattle, WA, USA.

† University of Rochester

Rochester, NY, USA.

Abstract—In this paper, we discuss our experience in imple-
menting homology computation, in particular the Betti number
calculations in Chapel hypergraph Library (CHGL). Given
a dataset represented as a hypergraph, a Betti number for
a particular dimension k indicates how many k-dimensional
‘voids’ are present in the dataset. Computing the Betti numbers
involve various array-centric and linear algebra operations. We
demonstrate that implementing these operations in Chapel is
both concise and intuitive. In addition, we show that Chapel
provides language constructs for implementing parallel and
distributed execution of the linear algebra kernels with minimal
effort. Syntactically, Chapel provides succinctness of Python,
while delivering comparable and better performance than C++-
based and Julia-based packages for calculating the Betti numbers
respectively.

Index Terms—Chapel, computational topology, hypergraphs

I. INTRODUCTION

In this paper, we discuss the implementation of algorithms rep-

resenting complex network data as hypergraphs and the com-

putation of their homology groups, in particular computation

of the Betti numbers, in Chapel. A hypergraph H = 〈V,E〉
is a mathematical object, similar to a graph, with vertices

V connected by edges E (fig. 1). But hypergraphs are more

general than graphs, in that where graph edges connect pairs

of vertices, hypergraph edges e ∈ E may contain any arbitrary

number of vertices e ⊆ V . In particular, every graph is a 2-

uniform hypergraph. Hypergraph metrics also generalize graph

metrics, so that network concepts like centrality and clustering

coefficients extend in a natural way to hypergraph objects [1].

Moreover, as collections of connected multi-dimensional ob-

jects, hypergraphs are topological objects, and have measur-

able topological properties. In topology, an n-simplex is the

convex hull of any n + 1 points in R
n+1. For example,

a 0-simplex is a single point, a 2-simplex is a filled in

triangle etc. In this paper we discuss the computation of

the topological invariants of hypergraph networks as mea-

sured by homology. These features reveal themselves as

“holes” or “voids” of different dimension. For example, the

hypergraph {{a, b, c}, {c, d}, {b, d}} is a 2-simplex adjoin-

ing an implied 3-clique {{b, c}, {c, d}, {b, d}}, and has a 1-

dimensional hole inside that open cycle; while the hypergraph

2020 Chapel Implementers and Users Workshop (CHIUW 2020). Supported
by the US Department of Energy (DOE) Computational Science Graduate
Fellowship grant DE-SC0020347, and the High Performance Data Analytics
program at the DOE’s Pacific Northwest National Laboratory, operated by
Battelle Memorial Institute under Contract DE-ACO6-76RL01830.

Fig. 1. The Tri-Loop hypergraph has three edges colored red, blue and green.
Its associated ASC has ten edges, which are outlined in grey.

{{a, b, c}, {b, c, d}} consists of two joined 2-simplices, and so

is a 2-dimensional solid with no hole or void. Holes and voids

of different dimension may correspond to data that is missing

or anomalous in some way. In this paper, we are primarily

interested in finding the number of k−dimensional holes in a

given dataset, namely the Betti number k.

Mathematically, to calculate the Betti numbers, we first infer

all relationships internal to the hyperedges by computing

their abstract simplicial complexes (ASC). We identify the

collection of subsets of a specific size k + 1 with a set

of generators for a vector space, Ck, over Z2. We compute

boundary maps, ∂k : Ck → Ck−1, that associate elements of

Ck, which are collections of k dimensional edges, with their

k− 1 dimensional boundaries. The rank, kernel, and image of

the corresponding matrices provide the dimensions and bases

for the homology groups. We can trace the basis elements back

to the data to discover the source of the anomalous behavior

in the network. Our implementation uses the Smith Normal

Form of the boundary matrices M . From this representation

it is possible to read off the rank and compute the desired

homology bases using matrix multiplication. We implement

our algorithms in the Chapel Hypergraph Library (CHGL) [2],

developed to support hypergraph computation at scale.

The paper is organized as follows. We discuss the steps

involved in Betti number calculation with an example in details

in section II. We describe our implementation of the Betti

number calculation in Chapel in section III. We present our

experimental results in section IV. Finally we summarize our

Authorized licensed use limited to: Pacific Northwest National Laboratory. Downloaded on August 23,2020 at 20:32:29 UTC from IEEE Xplore. Restrictions apply.

conclusion and future work in section V.

II. ALGORITHM FOR COMPUTING BETTI NUMBERS

We illustrate the methodology of computing the Betti numbers

with the Tri-loop hypergraph. The Tri-Loop hypergraph, H ,

(Fig. 1) has three edges {A,B}, {B,C}, and {A,C,D}. The

steps for computing the Betti numbers are:

1) Compute the unique abstract simplicial cell complex

(ASC) associated with H . Let X be the hypergraph

with edges given by the set of all non-empty sub-

set of the edges in H . X is an ASC. An edge of

X is called a k−cell, where k= dimension of the

cell = (number of nodes) - 1. In our example, X =

{A,B,C,D,AB,AC,AD,BC,CD,ACD}.
2) Group all the k-cells together. In our example:

0-cells: {A,B,C,D}.
1-cells: {AB,AC,AD,BC,CD}.
2-cells: {ACD}.

3) Compute the boundary matrices, ∂k. Each k−cell has

a boundary that is a union of (k − 1)-cells. The

boundary map is a linear homomorphism (for example,

∂1(AB) = A+B in Tri-Loop). In Tri-Loop, the matrix

representation for ∂1 has rows indexed by the ordered

set of 0-cells, A,B,C,D, and columns indexed by

the ordered set of 1-cells, AB,AC,AD,BC,CD. We

include a 1 if there is a matching subsequence between

(k− 1)-cell and k-cell. For example, ∂1[1, 1] = 1, since

A is contained in AB.

∂1 =

⎡
⎢⎢⎣
1 1 1 0 0
1 0 0 1 0
0 1 0 1 1
0 0 1 0 1

⎤
⎥⎥⎦ (1)

4) Next, we find the invertible matrices Pk, Qk and di-

agonal matrix Sk so that the product Pk∂kQk = Sk.

We also do the same for k + 1. This representation is

the Smith Normal Form of the matrix. Computing the

Smith Normal form of a matrix employs different linear

algebra operations, such as pivot calculation, swapping

rows and columns of a matrix etc 1.

In Tri-Loop the Smith Normal Form for ∂1 is

P1∂1Q1 = S1:

⎡
⎢⎢⎣
1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣
1 1 1 0 0
1 0 0 1 0
0 1 0 1 1
0 0 1 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

1 1 0 1 0
0 1 1 1 1
0 0 1 0 1
0 0 0 1 0
0 0 0 0 1

⎤
⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎣
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0

⎤
⎥⎥⎦

(2)

1A nice description of the procedure may be found here:
http://sierra.nmsu.edu/morandi/notes/SmithNormalForm.pdf

1 proc matmultmod (M, N, mod = 2) {
2 var C : [M.domain.dim(1), N.domain.dim(2)] int;
3 forall (i,j) in C.domain {
4 C[i,j] = (+ reduce (M[i, M.domain.dim(2)]
5 * N[M.domain.dim(2), j])) % mod;
6 return C; }
7 proc swap_rows(i,j,M) {
8 var N = M;
9 N[i, ..] <=> N[j, ..];

10 return N; }
11 proc swap_columns(i,j,M) {
12 var N = M;
13 N[.., i] <=> N[.., j];
14 return N;}
15 proc add_to_row(M,i,j,ri=1,rj=1) {
16 var N = M;
17 N[i, ..] = (ri * N[i, ..] + rj * N[j, ..]) % 2;
18 return N; }
19 proc add_to_column(M,i,j,ci=1,cj=1) {
20 var N = M;
21 N[.., i] = (ci * N[.., i] + cj * N[..,j]) % 2;
22 return N;}
23 proc calculateRank(M) return + reduce
24 [i in M.domain.dim(2)] (max reduce M[.., i]);

Listing 1: Linear algebra operations in Z2 in Chapel

and for ∂2 is P2∂2Q2 = S2:

⎡
⎢⎢⎢⎢⎣

0 1 0 0 0
1 0 0 0 0
0 1 1 0 0
0 0 0 1 0
0 1 0 0 1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

0
1
1
0
1

⎤
⎥⎥⎥⎥⎦
[
1
]
=

⎡
⎢⎢⎢⎢⎣

1
0
0
0
0

⎤
⎥⎥⎥⎥⎦

(3)

5) Then, the Betti number for k = 1 is calculated as:

number of columns of (S1) − rank(S1) − rank(S2) =
5− 3− 1 = 1.

III. CHAPEL IMPLEMENTATION

We have implemented the Betti number computation in the

Chapel Hypergraph Library (CHGL). CHGL provides meth-

ods for constructing distributed hypergraphs and includes a

lightweight runtime on top of Chapel to support efficient

execution of algorithms for irregular applications. The runtime

features include message aggregation using the Chapel Ag-

gregation Library [3], a distributed work queue, termination

detection algorithms, etc. A hypergraph in CHGL is repre-

sented as a data structure that consists of two Chapel arrays

for vertices and edges. Each of these arrays points to the arrays

for every vertex and edge inclusions. Every inclusion is stored

both at the included vertex and at the including edge.

The homology computation, in particular, the Betti number

calculation involves different array-centric and linear algebra

operations, including row and column interchange, pivot cal-

culation, addition of rows and columns, rank computation,

multiplication, and slicing. These operations, implemented

in Chapel (listing 1), are not only concise, but also more

intuitive than in Python (listing 2). While Chapel’s linear

algebra library [4] offers various operations on matrices (such

as singular value decomposition, LU decomposition etc), our

operations are in the Z2 field, so we wrote our own. Note,

Authorized licensed use limited to: Pacific Northwest National Laboratory. Downloaded on August 23,2020 at 20:32:29 UTC from IEEE Xplore. Restrictions apply.

1 def matmultmod(M,N,mod=2):
2 return np.mod(np.matmul(M,N),mod)
3 def swap_rows(i,j,M):
4 N = copy.deepcopy(M)
5 N[i] = M[j]
6 N[j] = M[i]
7 return N
8 def swap_columns(i,j,M):
9 N = swap_rows(i,j,M.transpose())

10 return N.transpose()
11 def add_to_row(M,i,j,ri=1,rj=1,mod=2):
12 N = copy.deepcopy(M)
13 N[i] = np.mod(ri*N[i] + rj*N[j],[mod])
14 return N
15 def add_to_column(M,i,j,ci=1,cj=1,mod=2):
16 N = M.transpose()
17 return
18 add_to_row(N,i,j,ci,cj,mod=mod).transpose()
19 def calculaterank(M):
20 return np.sum(M)

Listing 2: Linear algebra operations in Z2 in Python/Numpy

1 var cellSets : [0..#numLocales,
2 0..#here.maxTaskPar]
3 set(Cell);
4 var taskIdCounts : [0..#numLocales] atomic int;
5 forall e in hypergraph.getEdges()
6 with (var tid : int =
7 taskIdCounts[here.id].fetchAdd(1)) {
8 var vertices = hypergraph.incidence(e);
9 ref tmp = vertices[1..#vertices.size];

10 var verticesInEdge :
11 [1..#vertices.size] int = tmp.id;
12 processCell(
13 new Cell(verticesInEdge),
14 cellSets[here.id, tid]);
15 }

Listing 3: Computation of the ASCs

for example, how the Chapel code for matrix multiplication

is not only extremely concise, but also naturally parallel and

distributed (Listing 1).

To implement the algorithm for computing the Betti numbers,

the first step involves computing the Abstract Simplicial

complexes (ASCs) for each hyperedge (i.e. powerset of each

hyperedge) (listing 3). To do so, we maintain one set per task

per locale to gather the ASCs. Each hyperedge computes the

ASCs in parallel (Line 5).

Next we combine the k-cells generated on each locale. We

employ Chapel’s hashed distribution to map the associative

domain of k-cells to a set of target locales (listing 4).

Once we construct the associative domains of k-cells, we use

this domain as keys of a thread-safe map, allocated on locale

0 to group the k-cells based on their sizes (listing 5). Next we

1 var cellSet : domain(Cell, parSafe=true)
2 dmapped Hashed(idxType=Cell);
3 for cset in cellSets {
4 forall cell in cset with (ref cellSet) {
5 cellSet += cell;
6 }}

Listing 4: Mapping associated domain of cells to locales

1 var kCellMap = new map(int,
2 list(Cell, parSafe=true),parSafe=true);
3 forall cell in cellSet {
4 kCellMap[cell.size - 1].append(cell);
5 }

Listing 5: Map to combine and group the k-cells

1 forall (_kCellsArray, kCellKey)
2 in zip(kCellsArrayMap, kCellKeys){
3 _kCellsArray = new owned
4 kCellsArray(kCellMap[kCellKey].size);
5 _kCellsArray.A = kCellMap[kCellKey].toArray();
6 sort(_kCellsArray.A, comparator=absComparator);
7 }

Listing 6: Sorting each bin of k-cells

perform lexicographical sort of each of the bins containing the

k-cells in parallel (listing 6). For this, we provide a customized

comparator. The forall loop employs Chapel’s zippered

iteration technique.

We code the boundary matrices as 2D block-distributed arrays

in Chapel (listing 7). Computing the Smith Normal Form

involves the array-centric and linear algebra operations listed

in listing 1.

IV. EXPERIMENTAL RESULTS

We have implemented the Betti number computation in the

Chapel hypergraph Library v0.3 [5]. Our code was compiled

with Chapel version 1.20, with --fast flag to enable all

compiler optimizations. We ran the experiments on one of the

compute nodes of an Infiniband cluster, each equipped with a

20-core Intel Xeon processor and 132GB memory. All cores

were involved in the experiments. We compare our implemen-

tation with two other homology packages: Perseus [6] (written

in C++) and Eirene [7] (written in Julia). We report our results

in Figure 2.

The original Smith Normal Form (legend CHGL in fig. 2)

calculation in CHGL maintains a list of matrix transformations

to compute the matrix inverse. These transformations are mul-

tiplied pairwise to find the invertible matrices. In this method,

the number of transformations can vary widely across different

iterations and hence the number of matrix multiplications

varies too. As can be seen from Figure 2, this implementation

is not very scalable, as the number of simplices increases. With

the help of Chapel’s visual profiler, we have confirmed that,

indeed matrix multiplication is the most compute-intensive

kernel in our implementation. To reduce this bottleneck, we

1 class Matrix {
2 ..
3 var D = {1..N, 1..M}
4 dmapped Block(boundingBox = {1..N, 1..M});
5 var matrix : [D] int;
6 ..
7 }

Listing 7: Boundary matrix representation in Chapel

Authorized licensed use limited to: Pacific Northwest National Laboratory. Downloaded on August 23,2020 at 20:32:29 UTC from IEEE Xplore. Restrictions apply.

1 proc add_to_row(M, i, j, mod = 2) {
2 var N = M;
3 N[i, ..] = (N[i, ..] ˆ N[j, ..]);
4 return N;
5 }

Listing 8: Boolean equivalent of add to row operation

Fig. 2. Execution time of CHGL, Eirene and Perseus for Betti number
calculation with k = 1 and k = 2.

have incorporated various optimizations in our code to improve

the performance of the Betti number calculation. First, we

have reformulated the calculation of Smith Normal Form

to eliminate the requirement of performing explicit matrix-

multiplications. Instead, in-place modification of the matrices

are made on-the-fly to find the invertible matrices. With this

optimization, the performance improves significantly (legend

CHGL OP in fig. 2). As a second optimization, since all

of our computations are done in the Z2 field, we opted

for boolean datatype and operations for boundary matrices

instead of integer matrices (legend CHGL BOOL in fig. 2).

For example, the add_to_row operation for a matrix in the

Z2 field translates to executing elementwise XOR operation

(listing 8). Boolean representation of matrices and removing

the requirement of performing matrix multiplications of a list

of matrices delivers the best overall performance.

V. CONCLUSION AND FUTURE WORK

In this paper, we discussed our experience with Chapel for

the Betti number calculation when a dataset is represented as a

hypergraph. Chapel’s succinct syntax and various parallel con-

structs reduce the effort required for implementing complex,

parallel algorithms involving various linear algebra operations.

In terms of performance, Chapel-based implementation of the

Betti number calculation out-performs the Julia-based imple-

mentation. As a future work, we are planning to work with

the Chapel development team to understand the reasons for

the performance gap between Chapel-based implementation

and the C++-based implementation and improve the overall

performance of the Chapel code.

REFERENCES

[1] S. G. Aksoy, C. A. Joslyn, C. O. Marrero, B. Praggastis, and E. A.
Purvine, “Hypernetwork science via high-order hypergraph walks,” 2019,
submitted. [Online]. Available: https://arxiv.org/abs/1906.11295

[2] L. Jenkins, T. Bhuiyan, S. Harun, C. Lightsey, D. Mentgen, S. Aksoy,
T. Stavcnger, M. Zalewski, H. Medal, and C. Joslyn, “Chapel Hypergraph
Library (CHGL),” in 2018 IEEE High Performance extreme Computing
Conference (HPEC). IEEE, 2018, pp. 1–6.

[3] L. Jenkins, M. Zalewski, and M. Ferguson, “Chapel Aggregation Library
(CAL),” in 2018 IEEE/ACM Parallel Applications Workshop, Alternatives
To MPI (PAW-ATM), Nov. 2018, pp. 34–43.

[4] “Linear algebra library in chapel,” https://chapel-
lang.org/docs/master/modules/packages/LinearAlgebra.html, 2020,
[Online; accessed 2020].

[5] “Chapel hypergraph library (CHGL),” https://github.com/pnnl/chgl, [On-
line; accessed 2020].

[6] V. Nanda, “Perseus, the persistent homology software.”
http://www.sas.upenn.edu/ vnanda/perseus, [Online; accessed 2020].

[7] G. Henselman and R. Ghrist, “Matroid Filtrations and Computational
Persistent Homology,” ArXiv e-prints, Jun. 2016.

Authorized licensed use limited to: Pacific Northwest National Laboratory. Downloaded on August 23,2020 at 20:32:29 UTC from IEEE Xplore. Restrictions apply.

