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10.1 PROBLEM OVERVIEW

Science—and biology in particular—has a rich tradition in categorical
knowledge management. This continues today in the generation and use
of formal ontologies. Unfortunately, the link between hard data and onto-
logical content is predominately qualitative, not quantitative. The usual
approach is to construct ontologies of qualitative concepts and then anno-
tate the data to the ontologies. This process has seen great value, yet it is
laborious and the success of ontologies in managing and organizing the
full information content of the data is uncertain. An alternative approach
is the converse: use the data itself to quantitatively drive ontology creation.
Under this model, one generates ontologies at the time they are needed,
allowing them to change as more data influences both their topology and
their concept space. We outline a combined approach to achieve this, tak-
ing advantage of two technologies, the mathematical approach of formal
concept analysis (FCA) and the semantic web technologies of the web
ontology language (OWL).

Biology has a rich tradition in classifying knowledge that extends
back to Aristotle (384-322 BCE) (Aristotle 350 BCE) and more recently
to Linnaeus (Linné 1735), Whittaker (1969), and Woese (Woese et al.
1977; Woese et al. 1990). Although these latter examples are primarily
taxonomic, knowledge organization today witnesses efforts across the
breadth of biology in the creation of controlled vocabularies, ontolo-
gies, and knowledge bases (e.g., see online resources at BioPortal.* Open
Biological and Biomedical Ontologies [OBO'], and the National Library
of Medicine?).

Biological ontologies, such as those hosted at BioPortal, tend to be pre-
dominantly axiomatically weak, deep subsumption hierarchies. “Axiomat-
ically weak” means a preponderance of axiomatic subsumption statements
(i.e., subclass of “is a”), and “deep” means successive static relations creat-
ing long, transitive chains of class subsumption. These ontologies are noted

* http://bioportal.bioontology.org,
T http:/fobo.sourceforge.net.
* httpfwww.nlm.nih.gov.
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for their relatively few semantic relationships other than subsumptive
relations between concepts, relative to the number of classes (del Vescovo
et al. 2011).

For perspective, note that the classification system of the Library of
Congress (LC) of 21 top-level classes and a few hundred subclasses pales
in comparison with the 33,000+ entries in the three major ontologies of
Gene Ontology (GO),* not to mention the over 26,000 descriptors and
177,000 supplemental headings in Medical Subject Headings (MeSH?)
and the 1 million biological concepts in the Unified Medical Language
System’s Metathesaurus (UMLS*). While biological classes tend to be
axiomatic and static (i.e., humans conceived the class, named it, and
placed it in the ontology in some relation to other classes), LC’s classifica-
tion system classifies any publication in the realm of human knowledge
by dynamically generating a part of every item’s identifier (the so-called
Cutter number). This is equivalent to dynamically generating a class (the
set of all publications—e.g., physical copies of a book—that share the same
Cutter number) by applying an algorithm to a representative publication’s
properties to generate the class name.

There is, though, a similarity between the LC system and modern bio-
logical ontology creation: the static component of the LC classification—
the 21 classes and their subclasses—was built in the late nineteenth and
early twentieth centuries using the same methodology that predominates
in biology today, a basic methodology of an iterative loop of observation >
induction > model creation » deduction. In this methodology, classifi-
ers (1) observe individuals, conceptualized as instances of more general
classes; (2) propose the existence of classes, often striving for a certain
notion of orthogonality; (3) propose a model (a metaset of classes and
relationships between classes) for the assignment of any assemblage of
individuals into classes; and (4) implement the model on new individu-
als, thereby classifying those individuals according to the rules of class
assignment. The process is then repeated in refining the classification. The
methodology has been productive in biology, but the process is laborious
and prone to artifacts, as we discuss in Section 10.2.1. In this chapter, we
discuss two approaches that yield a different, and data driven, approach to
ontology creation.

i http:waw.geneontolog)r.org
' httpi/fwww.nlm.nih.gov/pubs/factsheets/mesh.htm]
! http:waw.nlm.nih.gov!researche’umls!abuur_umls,html#Metathesaurus
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10.2 VISION FOR THE FUTURE

Our vision for the future is a more integrative, scientific information
environment. To achieve this, our research and technological approach
has been to enable computers to contribute a greater role upstream in
data description, discovery, invocation, and response phases. This helps
to better position scientists for downstream tasks, such as the interpreta-
tion and analysis of data integration products, an area where the human
scientific mind is vastly superior to its machine analogs. But deploy-
ment of computers upstream means that computers need to be able to
access and assess data and services with greater degrees of automation.
Achieving this requires a computational semantics (from the Greek
semaino, which means “to mean,” and semantikos, which means “sig-
nificant”). A computable semantics is achieved in two tiers: the first uses
a nonvariant structural framework with a rigid formal semantics. We
use the technologies of Resource Description Framework (RDF) + Web
Ontology Language (OWL) + Simple Semantic Web Architecture and
Protocol (SSWAP) (Gessler et al. 2009) to produce a semantic web ser-
vices framework. The second tier uses domain-specific ontologies. We
can think of RDF, OWL, and SSWAP as the semantic framework for a
web-based computable language; the content—the concepts that actually
capture domain-specific statements and their derived inferences—are
captured by the use of domain-specific ontologies.

Current-day implementation of domain-specific ontologies—for exam-
ple, biological ontologies such as those at BioPortal—presents a unique set
of challenges for achieving this vision. They can contribute more to bio-
logical integration if we can address the following needs: (1) in ontology
creation, to ensure that an ontology truly does cover the concept space,
minimally and efficiently, and is less susceptible to the conceptual biases
of the creators (even if such biases are unintentional and accepted by the
scientific paradigm of the day); (2) in ontology maintenance, to have for-
mal support for collaborative editing and quality control, whereby the
repercussions of changes to an ontology could be systematized and tested;
(3) in ontology annotation, to allow the definition of ontological classes in
a logical formalism to inform and drive the process of annotation, that is,
assigning individuals to classes; and (4) in ontology deployment, to better
enable ontologies to inform the discovery and engagement of semantic
web services, thereby contributing to dynamic, on-demand data discovery
and integration.

- 7
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10.2.1 Ontology Engineering: Creation and Maintenance

Ontology creation and maintenance are activities of ontology engineering
(GOmez-Pérez, Fernandez- Lopez, and Corcho 2003). Although there is no
single formula for ontology engineering (Ferndndez-Lépez and Gémez-

- Pérez 2002), thoughtful practices have delineated a general process of

an environment study, a feasibility study, specification, conceptualiza-
tion, formalization, implementation, maintenance, and ontology support
activities (formula and terminology from Corcho, Fernéndez.- Lopez, and
Goémez-Pérez 2007; Ferndndez-Lépez et al. 1997; see also Sure, Tempich,
and Vrandecic 2006). The literature on ontology engineering is well devel-
oped. Yet, while surveys of practitioners in the field show general support
for formalized processes, 80% of ontology engineering projects reported
by Simperl and Tempich (2006) did not follow a specific methodology.
Despite the lack of widely adopted methodologies, this general process of
human inspection driving ontology creation is widely practiced. We call
this general process, as outlined earlier, a priori ontology engineering, in
reference to the fact that practices across methodologies share the funda-
mental assumption that ontology engineering should proceed from the
informed, human analysis of a problem and that a goal is a formalization
of this human conceptualization.

Arguably the most prominent biological ontology is GO (Ashburner
et al. 2000). GO is manually constructed and maintained and appears to
follow the pattern uncovered by Simperl and Tempich (2006): a formal
process is followed, but it is not a scientific methodology as demonstrated
by Alterovitz et al. (2010). This work used information theoretic analyses
to report topological and structural inefficiencies in GO. Based on this,
Alterovitz et al. (2010) proposed a small, restricted set of new classes and
relationships. Although their approach was deemed successful in achiev-
ing both an improvement in information theoretic measures and opera-
tional changes (they proposed 14 recommendations to the Gene Ontology
Consortium, many of which have been adopted), the observed effect on
a test case of gene expression results is disturbing: “... these changes sig-
nificantly affected the functional interpretations of 97.5% (P < .001) of the
experimental gene signatures and altered the resulting set of GO catego-
ries by 14.6% on average (p. 130).” In other words, after they improved the
information theoretic properties of the ontology by repositioning classes
in the subsumption hierarchy, scientific interpretations on data annotated
to the ontology changed in 97.5% of the cases. This is disturbing because if
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such a heavily used ontology—one subject to extensive human inspection
and professional use over many years—could be subject to improved topo-
logical changes resulting in sweeping reclassifications of sample data, then
we are left to wonder to what degree the ontology is organizing knowledge
and to what degree it is simply organizing.

The truth is perhaps at neither extreme, but the results suggest that a
more empirical process can yield a more robust and actionable knowl-
edge representation. We also note that although there is a compelling basis
for information theoretic approaches in ontology engineering, we must
still ask how we are to validate their reclassifications. Are there nonin-
formational theoretic criteria that should also be applied? The answer is
yes, since we expect exceptions to information-maximizi ng and entropy-
minimizing routines, for example, because of low sample sizes or system-
atic ignorance of the true, a priori, information model. It appears that the
former was explicitly recognized by the Gene Ontology Consortium, as
one of the terms recommended to be repositioned in the ontology was not
moved due to the low number of extant gene annotations (Alterovitz et al.
2010). The latter—systematic ignorance of the true, a priori, information
model—is always implicitly assumed whenever we apply theoretical mod-
els to real-world data.

We can conclude that GO is susceptible to alternative topologies, yield-
ing new scientifically relevant classifications, but we cannot conclude yet
that these new classifications are optimized over a universe of constraints
relevant to knowledge representation. In a way, then, we have the worst of
both worlds: our annotation of data to concepts is vulnerable to the topol-
ogy of the concepts, but we have no guarantee on the “correctness” of the
concept topology or concept universe itself,

10.2.2 Ontology Annotation

Inbiology, gene annotation is the process of assigning a gene—a delineated
segment of DNA for which there is evidence that it is transcribed—to a
function. Gene annotation is one of the first steps in understanding what
a gene does and what specific genes are associated with various biological
processes. Genome annotation meetings are often called Jjamborees. The
name reflects the activity: knowledgeable, domain experts collaboratively
and manually assign genes to functional categories, weighing a variety of
qualitativeand quantitative evidence to make assignments. Computational
assignment is also well practiced, often based on transfer annotation,
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but the signal-to-noise ratio is low and computational assignments are
accepted as putative until they are supported by experimental evidence.

Currently, for the model plant Arabidopsis thaliana (perhaps the best
studied model plant) less than 20% of predicted genes have laboratory-based
experimental evidence (Goff, pers. comm.). Yet experimental evidence is a
weak bar, because experimental evidence is open world: just because a gene
is implicated in process X, rarely does that mean it is not possible to be
implicated in process Y. So in gene annotation, negation-as-failure does
not apply. Ontology realization—the process of assigning individuals to
ontological classes—is an act ivity of gene annotation. However, axiomati-
cally weak subsumption hierarchies are poorly suited to represent negative
assertions. For example, many biological ontologies have an expressivity
akin to RDF schema (RDFS) semantics for which there exists no notion
of negation, inconsistency, or nontrivial satisfiability (all classes are trivi-
ally satisfiable in RDFS because there are no negation semantics [Cuenca
Grau 2007]). Thus when there is experimental evidence that a gene does
not belong to a class, it is difficult or impossible to represent that informa-
tion in the ontology and the information is lost. Biological ontology anno-
tation is a labor-intensive, human-dominated activity that tends to capture
positive class extension (the set of individuals belonging to a class) based
on a human interpretation of the data, but it misses extensions that could
be derived by negative assertions or inference-derived inconsistencies.

10.2.3 Ontology Deployment

Biological ontologies are recalcitrant to the standards and best practices
of the World Wide Web. This limits their contribution to reuse, as well as
to emerging technologies such as semantic web services. The problem is
threefold. )

First, biological ontologies exist primarily as creations of domain-
specific human knowledge. As such, they adhere to no web standards per
se—they are technology independent; so, for example, there is nothing
inherent about the terms, topology, or naming conventions that makes
the ontologies web aware, Compare this, for example, with OWL DL
(McGuinness and van Harmelen 2004): although the abstract syntax and
semantics of OWL DL is also technology independent—it is driven by the
axioms and theorems of first-order description logic—implementation
standards are tightly linked to web technologies such as international
resource identifiers (IRIs) and RDF.
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Second, biological ontology engineering is monolithic and opaque to
high-throughput, cross effort integration. In general, terms are not formally
defined in relation to other terms in other ontologies: terms are de novo to
separate ontologies, even if they are derivatives or informally dependent
on preexisting concepts. For example, the GO term “Biological Process”
(GO:0008150) is a term in GO and the Cell Cycle Ontology (CCO) term
Biological Process (CCO:U0000002) is a distinct term in CCO, despite
the fact that CCO is by design developed and built from other ontologies,
including GO (Antezana et al. 2009). Regardless of how similar or dissimi-
lar the terms’ semantics are, they reside in different ontologies as separate,
distinct concepts. This creates broad challenges to ontology alignment,
because instead of the ontology authors themselves directly using terms
from other ontologies, or introducing terms via formal semantic relations
to terms in other ontologies, terms are tied tightly to ontology ownership
where alignment then proceeds ex post facto. This is evident at reposito-
ries of ontology alignments* where secondary information resources such
as these mappings are used to describe formal (and informal) alignments
across ontologies. Compare this to the IRI and RDF basis of OWL, where it
is natural to leverage across domains at the point of term declaration under
a formal semantic (e.g, http:r’;’thisWebSite.org/thisOntologyfthisTerm
rdfs:subClassOf, http:/ /thatWebSite.org/thatOntology/thatTerm).

Third, standard ontology packaging practices are not web savvy.
Standard practice is to bundle all terms of an ontology into a single file.
OWL version of CCO is over 300 MB of uncompressed RDF/XML. CCO
terms cannot be independently dereferenced on the web with persistent
uniform resource locators (URLs). Access to ontologies is often via non-
RESTful (REST stands for Representational State Transfer) user inter-
faces (Fielding 2000). Even when access is programmatic and RESTful
(e.g., BioPortal REST services' or EBI services?), the returned content may
be idiosyncratic (e.g., a nonformal semantics, such as arbitrary XML or
HTML). Terms do not use uniform resource identifiers (URIs) for univer-
sal addressing; for example, the GO term “Biological Process” exists as a
GO concept independent of any web address (GO:0008150); as an OBO
term in its 19.4-MB OBO file¢ in the 20.6-MB file on the GO websitef (and

*eg, h[lp:a’a’{)bofoundr)',orgfindex.cgi?show:mappings,

" http://restbioontology.org.

" http://www.ebi.ac.uk/QuickGO.

3 htrp-Jfobo,msourcr:forge.neta’vieww:.n’cboa’obo«’ontolog}a-’gz:n0mic-proteomjcfgcne_onmlogy_edit.oho.
s hltp.-h’www.geneontology.org!omology!obo_format_1 2/gene_ontology_ext.obo.
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other places); as a RESTful, HTML page;* and so forth. When ontologies do
use URISs, they may fail to leverage the underlying web capability of deref-
erencing, for example, the adult mouse brain (ABA) term (#ENT1)' does
not resolve to a representation of the terms semantics but to the human
readable home page of the Allen Reference Atlas. The term’s semantics are
defined at a separate place, in the ontology itself.* The use of the delimiting
hash (#) fragment identifier (e.g., #ENTI), instead of a slash (e.g., /ENTI),
guarantees that no server can satisfy per-term requests, because the hash is
strictly a client-side secondary resource reference (REC 3986, Section 3.5%).
Thus, any server must return the content associated with the reference
prior to the hash (e.g., the entire ontology) even if the user agent requests
just a single term.? These and other factors conspire to render ontologies as
artifacts of human knowledge organization, rather than web technologies.

10.2.4 Vision for the Future: Dynamic, Restful,
Data-Driven Ontologies

How can we address the limitations mentioned in Section 10.2.3? They are
limitations in both ontology engineering and web deployment. We want
ontologies to be more quantitative and “objective,” that is, subject to algo-
rithmic quantification on the utility of their conceptualization. And we
want them to be more informatically aware, such that they leverage the
world’s dominant distributed informatic infrastructure, that is, the web,
to the benefit of data integration. There are ongoing efforts to make bio-
logical data interoperable in the context of the semantic web, for example,
Bio2RDF (Belleau et al. 2008) and KaBOB (Bada, Livingston, and Hunter
2011); this is in part to address the limitations of current approaches to
ontology representation.

Our approach is to invert traditiorial ontology engineering into what we
call “a posteriori” ontology engineering for data-driven science. In a pos-
teriori ontology engineering, one starts with no preconceived concepts.
One canvasses the measurement technologies of the science to delineate
a list of measureable properties. Empirical measurement commences, and
properties of individuals are assigned observed values, Informally, a class
is defined as “the set of all individuals which share the same properties and

o http:ﬁwww.ebi.ac.uka’QuickGOIG'I‘erm?id: GO:0008150,

t http:Hmuuse.brain—map.org!at]as!index.html#ENTL

¥ http:ﬂrest,bioon:ology.orgfbioportalfonrologiesfdown10ad!40133 (API key needed).
$ http:,l’,-’www,apps,ictf_org!rf-:frfc3986.htm]#sec—3,5.

s http:ﬁmouse.brain—map.orgfat]as!index.html#ENT].
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property values.” For continuous values, shared property values encom-
pass binning at an arbitrary resolution. We call this an informal class. The
network of individuals (datum items) clustered according to shared prop-
erty values creates a subsumption network, or more formally a lattice: a
subclass is a class of individuals that have all the same shared properties
and values of its super class, and may be more. This corresponds with an
intuitive notion of a class as a set of individuals sharing common proper-
ties and values. As a second step (see Section 10.4.3), the definition of a
class is formalized to be “the set of all individuals which share necessary
and sufficient conditions.” We call this a formal class. For example, naively,
the class of eukaryotes is the set of all individuals such that their cells have
the property hasNucleus with the value true, or the cellular nuclear enve-
lope has Number of cellular membranes with the value 2, and so forth.
Animals have the properties of eukaryotes and may be more (e.g., are het-
erotrophic); thus animals are a subclass of eukaryotes in a subsumption
lattice built from observed properties and their values.

It may first appear that creating the list of properties has simply shifted
the axiomatic class creation of a priori ontology engineering from classes
to properties, but this is not the case. The property selection is driven by
the measurement methodology—a reflection of the practice and tech-
nology of the day. This decouples preconceived notions of what concepts
should exist to an empirical canvassing of what properties are being mea-
sured. Existential arguments are precluded because the act of measur-
ing itself instantiates the reality of the measurement property and value.
Properties may be grouped into a priori subsumption chains, but this is
not necessary. We will see that subsumption relations on the data itself are
the result of data analysis, rather than the a priori scaffold of knowledge
organization. Annotation (ontology realization) is the algorithmic pro-
cess that creates a subsumption lattice, rather than the product of human
assignment. A posteriori ontology engineering uses the data itself to create
the ontology; thus the ontology is the product, not the assumption. Such
an ontology is both temporal and marginal: it is based on the data used to
construct it. New data may change both the topology and the realization
of the ontology. But the change occurs under the influence of the new data
and thus should be a refinement toward a more encompassing model of
nature, rather than an undirected change in organization.

We examine a process to achieve a posteriori ontology engineering. The
first step uses FCA to create the subsumption lattice from a collection of
data with arbitrary measured properties. This creates unnamed, informal
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classes, that is, groupings of individuals according to shared properties
and values. The second step is to analyze the resultant informal classes for
groupings that are deemed scientifically relevant. This is a manual step
reliant on human assessment. From this, property restrictions are formal-
ized in OWL, owl:Restrictions, which are used to create necessary
and sufficient conditions for formal, named classes. The use of necessary
and sufficient conditions yields class definitions, and thus concepts are
created only to the degree that data support their existence. The existence
of formal classes allows new; unclassified data to be annotated to a formal
knowledge representation framework based on their observed property
values. Lastly, the ontology is deployed web aware, using separately deref-
erenceable URIs and OWL + SSWAP.

10.3 RELATIONSHIP TO OTHER TECHNOLOGIES

10.3.1 Formal Concept Analysis

A key technology in the order theoretical approach is FCA (Ganter and
Wille 1999). FCA produces mathematical methods to represent the hier-
archical relationships and implications present among relational data,
which are represented as sets of objects and their properties. Within math-
ematics, FCA derives from the algebraic theory of binary relations and
complete lattices. Within computer science, FCA is increasingly applied
in conceptual clustering, data analysis, information retrieval, knowledge
discovery, and ontology en gineering (Ganter, Stumme, and Wille 2005).

FCA defines a formal context as a mathematical structure, K = (G,M,I),
where G is a set of objects (individuals), M is the set of attributes (proper-
ties) of those objects, and I € G x M is an incidence relation. The expres-
sion (g,m) € I means that the object g has the attribute . A formal context
can be visualized by a two-dimensional table called a cross table, where the
presence of a cross in a cell indicates that the object on that row has the
attribute on that column. A formal concept is a pair of sets (combination of
objects and attributes) such that every object has every attribute and every
attribute is present on every object. There are often multiple concepts for a
given context. We will provide a detailed example in Section 10.4.1.

FCA as a fundamental technique for both construction and integration
of ontologies has been known for some years. Bain (2002, 2003) investi-
gated using FCA and inductive logic programming as a means to both
identify and create concepts from a formal context. Later, Akand, Bain,
and Temple (2007, 2010) extended the approach to GO such that genes



226 ® Data-Intensive Science

could be annotated to derived classes composed of combinations of classes.
Cimiano, Hotho, and Staab (2005) provided an example of how formal
contexts can be constructed from the output of text parsers. The result-
ing concept lattices compared favorably to the reference ontologies con-
structed manually on the same domains. Joslyn, Paulson, and Verspoor
(2008) used a similar approach, analyzing a larger general language cor-
pus and focusing specifically on taking advantage of linguistic relations
among nouns and verbs to investigate the hypothesis that semantic gener-
ality of terms, as represented by hierarchical relations among them, can be
determined from the analysis of their shared linguistic contexts. Formica
(2006, 2008) first used human-curated ontologies to influence FCA con-
cept similarity measures and then extended the method to substitute
an information content metric on the concepts, removing the need for
human-curated expertise entirely.

10.3.2 Web Ontology Language

A second technology important for data-driven, a posteriori ontology
engineering is OWL (McGuinness and van Harmelen 2004). OWL is
the World Wide Web Consortium (W3C)-recommended technology for
distributed computational logics on the web. W3C is the voluntary sanc-
tioning body of the World Wide Web. OWL is built on URIs, the more
expressive RDF, and the helper technologies of RDFS and XML schema
definition (XSD). With OWL, we address both the construction of neces-
sary and sufficient named classes and the deployment of the ontology onto
the web (via OWLss tight linkage to the web technologies of URIs, RDF,
RDEFS, and XSD).

Unrestricted OWL Full is a higher order description logic. As a
description logic, its entities are “things” (individuals), relations between
things (called properties or predicates), and sets of things (called classes).
Individuals are akin to FCA objects as are properties to FCA attributes.
OWL, like RDF, allows the expression of properties of classes, classes of
properties, and so forth. OWL posses the following important properties:
(1) completeness (all truths can be derived), (2) validity and soundness
(no falsehoods are derived), (3) monotonicity (inferred truths cannot be
later proved not true), (4) nontrivial consistency (no contradictions), and
(5) nontrivial satisfiability (logical possibility of a class containing at least
one individual). But as a higher order logic it is known to be undecidable,
and thus computational inference algorithms are not guaranteed to finish
in finite time with finite resources. Yet a few key restrictions on OWLs use
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and expressivity yield it first order (called OWL DL), and as such OWTL
DL gains decidability. Complexity remains high (finite time could still
be a long time in worse-case scenarios), but in practice many if not the
majority of biological ontologies can be reasoned over in a few seconds
(del Vescovo et al. 2011).

OWL's semantics allows one to construct classes via numerous means:
axiomatically (simply assert the class); by identity (equivalence and differ-
ence); by set operations (intersection, union, complement, enumeration);
by specific value, or universal or existential restrictions on properties
(hasValue, for all ¥, and there exists 3); by cardinality constraints on
properties (minimum, maximum, and exact); by property characteris-
tics (reflexivity, Symmetry, transitivity, and chaining); and so on. This
expressivity allows one to state the necessary and sufficient conditions of
classes (ontological concepts) based on individuals’ observed properties
and yields the resultant ontology amenable to computational analysis. An
analysis using OWL DL in biology is overall highly favorable, with noted
exceptions where DLs fragment of first-order logic (FOL) cannot capture
the full breadth of biological expressivity (Stevens et al. 2007).

10.4 CURRENT STATE OF THE ART

FCA creates a concept lattice based solely on objects and their attributes.
Objects—data—are grouped by virtue of their shared attributes (prop-
erties), and thus these collections of shared properties are essentially
unnamed classes, which grow more general (encompassing more objects)
as one ascends the hierarchies. Thus, a concept lattice maps to a subsump-
tion lattice. Similar to annotations in manually constructed ontologies
such as GO, the process yields data assigned to, or annotated to, classes.
But unlike GO, where a class may exist independent of the scientific data
(e.g., posited by humans as a placeholder), in FCA the classes are derived
automatically and solely from experimental properties of the data.
Furthermore, all classes can be proven to be logically consistent, com-
plete, and “minimal,” in the sense that if there is no data driving a formal
concept’s creation there is no consequent class. Most significantly, while
there is not necessarily any explicit hierarchical structure in the formal
context K, concept lattices derive hierarchical relations among the attri-
butes implicit in the structure of their objects. The resulting concept lat-
tices represent ontological subsumption hierarchies derived from the data.,
The conspicuous missing element in FCA is that classes remain unnamed
(Bain 2002, 2003).
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10.4.1 Formal Concept Analysis Illustration

Consider Table 10.1, a cross table showing a brief excerpt of data given by
Sjoblom et al. (2006). In this table, the objects, G, on the rows are genes
or open reading frames (ORFs)—sequences of DNA that are putative, yet
not confirmed, genes. (For ease of presentation, we use the word gene to
refer to both genes and ORFs). An X’ appears in the column under the
attribute “Breast” if that gene is associated with breast tumors according
to the criteria of Sjoblom et al. (2006; espec. Supplementary Material) and
the attribute “Colorectal” if it is associated with colorectal tumors. The
remaining attributes relate to the cancer mutation prevalence (CaMP)
score. The CaMP score is proportional to “ .. the probability that the num-
ber of mutations actually observed in a gene is higher than that expected
to be observed by chance given the background mutation rate” (Sjoblom
et al. 2006, p. 270). A score of CaMP < 1 is interpreted as evidence that the
gene is not implicated in cancer; CaMP > 1 is a decision point implicating
a gene in cancer. Out of the total 13,023 genes examined by Sjoblom et al.
(2006), 189 have CaMP > 1 and these comprise a class called “CAN-genes”
(candidate cancer genes). The use of CaMP score in Table 10.1 illustrates
both how nontrivial scientific measurements (complex summaries) may
be used as FCA attributes and how continuous variables may be binned on
scientifically relevant thresholds into a discrete cross table.

Identifying relevant patterns such as which collections of genes are
highly, somewhat, or not implicated in breast, colorectal, or both forms
of cancer involves sorting the table by rows and columns multiple times
to move checkboxes together. Some patterns are obvious: all genes are
associated with colorectal cancer. Others are more subtle: every gene
associated with breast tumors is also associated with colorectal tumors,
yet it does not induce disease. This simple example is illustrative, but as
the number of objects and attributes increases (the real data set involves

TABLE 10.1  Cross Table Summarizing Five Attributes
of Two Genes and an ORF

Tumor CaMPpP
Breast Colorectal <1 =1 >1.5
SKIV2L X X X
Coorf29 X X
SLC29A1 X X X

Source: Sjoblom T et al., Science, 314(5797):268-274,
2006. With permission.
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‘thousands of genes) the complexity of permuting and sorting such
tables to find all patterns is combinatorially overwhelming for manual
inspection,

The formal context K on objects (rows: genes) and their attributes (col-
umns: tumor types and CaMP levels) summarizes all possible permuta-
tions of rows and columns to identify maximal rectangles of checkboxes in
its creation of a concept lattice, a semantic hierarchy that dually catalogs
both the collections of objects that have certain attributes and the collec-
tions of attributes that hold for certain objects. An example concept lattice
is shown in Figure 10.1. In the lattice, nodes contain information about
precise facts in Table 10.1, such as the fact that SKIV2L is the only gene
that is both implicated in breast tumors and not disease related. Similarly,
One can examine attributes such as CaMP 2 1 to show that C6orf29 is
disease implicated, but traversing downward we see that so is SLC29A1
(so that C6orf29 has only CaMP > 1, and not CaMP 2 1.5). Going back
the other way, both genes are associated with colorectal tumors and only
colorectal tumors. Finally, information is available about what pairs or
groups of objects and attributes are in common. For example, to see what
SKIV2L and SLC29A1 have in common we traverse upward from both
until we arrive at their join at “Colorecta]” tumor: not only are both genes

implicated in colorectal tumors (though only SLC29A1 is additionally
A%

[
o]

SLC29A1

FIGURE 10.1 Concept lattice for Table 10.1.
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implicated as disease associated) but also that is the only thing they have
in common. '

The example also shows the marginal effect of limited data sets. Among
the genes present in the formal context of Table 10.1 and the concept lat-
tice of Figure 10.1, genes involved in breast tumors “imply” genes involved
in colorectal tumors, that is, breast tumor is below (is subsumed by)
colorectal tumor. Yet this is not true for the full data set (data not shown).
Thus as more data is added, scientific conclusions may also alter, reflect-
ing the new data’s contribution. Yet in marked distinction with the situa-
tion described by Alterovitz et al. (2010) and GO, subsequent changes to
a resultant ontology built from the formal context necessarily reflect the
data’s impact on new knowledge implications, rather than causing a reor-
ganization of a priori concepts.

10.4.2 Hybrid Example Combining Data and an A Priori Ontology

A priori domain ontologies operate by coding the fundamental concepts
and semantic relations of a domain and, as such, they may still contribute
a scaffold for knowledge representation. FCA can leverage data against
this scaffold to further refine the ontologies. Figure 10.2 shows an example
of a small portion of GO, which currently holds over 36,000 such catego-
ries. Each functional category is adorned with some of the gene products
that perform those functions. For example, the gene Mcmd4 in mice per-
forms (nonexclusively) the function “DNA ligation,” and thence by sub-
sumption the functions “DNA-dependent DNA replication,” and so forth.
Such structures need to be maintained manually, which is both difficult
and error prore.

In addition to pure induction of taxonomic structures from underly-
ing relational data, FCA can be used to combine hand-crafted ontological
structures with automatically constructed hierarchical information (see
the studies of Kaiser, Schmidt, and Joslyn [2008a, b] and Guo et al. [2011]
for a more complete formal mathematical consideration). For example,
extant GO annotations can be used as attributes on the data. Consider
again the GO fragment from Figure 10.2, and now use it to construct a for-
mal context by making the objects (rows) the gene products (e.g., Mcmd4)
and the columns GO functional categories (e.g., “DNA ligation”). While
these relationships alone will determine a hierarchical structure using
FCA, the subsumption implications in GO that incorporate its manually
constructed taxonomic structure are represented in the columns.
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The result is an adjustment of the original hierarchy, as shown in
Figure 10.3. Note, for example, that “DNA initiation” is now both a child of
“DNA dep. DNA replication” and a parent of “DNA unwinding,” whereas
before it was only a child of “DNA dep. DNA replication.” This is because
of the great amount of annotation overlap between these categories.
Similarly, “DNA repair” is now a parent of “DNA recombination,” because
of the common annotation with the Lig 1 and Lig 3 genes for mouse.

FCA has limitations. Subsumption only occurs to the extent that
objects share attributes; thus, it is trivially uninformative if objects use dif-
ferent attribute tags for equivalent attribute concepts. If objects represent
ambiguous concepts, they will be associated with sets of attributes that
conflate multiple meanings. Thus, FCA benefits from the consistent use of
a controlled vocabulary. Most FCA algorithms are optimized for discrete

DNA metabolism
] DNA repair @

DNA recombination
kY
by
s
\
\
&Y

kY

Y

Y

DNA-lig 1
LigI
Lig3

MCMea
CDC54/MCM4
CDC46/MCMS
MCM2
MCM3
CDC47/MCM7

FIGURE 10.3 Functional categories of the Gene Ontology fragment from
Figure 10.1 adjusted by their genomic annotations.
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characters. Continuous values can be addressed by first binning values
into a finite set of value ranges or by ranking. Either transformation loses
information. Additionally, as the number of individuals and attributes
grows it is computationally expensive to compute the subsumption lattice.
Finally, subsumption implies necessary but not sufficient conditions, so
FCA alone is not sufficient to generate formal class definitions. Although
none of these limitations appear to be fatal to the use of FCA in ontology
engineering, they do hint that more research is warranted before FCA can
be deployed in a production environment.

10.4.3 Mapping to Classes

From a data-driven subsumption lattice, we now seek to map necessary
relations to formal necessary and sufficient class definitions. We proceed
by examining each class from the FCA subsumption lattice and its shared
properties (attributes). Our goal is to identify those classes that capture
concepts that we value sufficiently so as to name and construct necessary
and sufficient conditions. This may be done manually, or by identify-
ing topological or informationally rich parts of the concept lattice (Bain
2003; Formica 2008). The process is nondestructive (we do not dismantle
the source subsumption lattice); it may be quantitative (e.g., we may use
threshold criteria such as the presence/absence of properties, the size of
class extension, or the position of the class in the lattice), and it may be
qualitative (studying a specific disease drives our relative valuation on
which classes to name). The process may be done statically (once, to pro-
duce an authoritative model of the data) or dynamically (as affected by
specific questions on the data).

10.4.4 Using OWL

Once key concepts are identified, class definition constructs of OWL can
be used to create class restrictions. To create necessary but not sufficient
conditions, we use subsumption, that is,

<owl:Class rdf:about = "&dataOntology;Eukaryota">
<rdfs:subClassOf>
<owl :Restrictions
<owl :onProperty rdf :resource =
”&propertyOntology;hasNucleus“/>
<owl :hasValue rdf:datatype = -
"&xsd;boolean”>true</ow1:hasValue>
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</owl:Restrictions
</rdfs:subClassOf>
</owl:Class>

The above W3C-recommended RDE/XML snippet serialization declares
the class Eukaryota to be a subclass of the anonymous class of all indi-
viduals that have the hasNucleus property with a value of t rue (see the
work of Stevens et al. [2007] for exceptions). Informally, this can be serial-
ized in Notation 3 (N3) without loss of information:

datalOntology:Eukaryota
a owl:Class ;
rdfs:subClassOf |
a owl:Restriction ;
owl:hasValue "true""“xsd:boolean ;
owl :onProperty bropertyOntelogy:hasNucleus

To create necessary and sufficient conditions (a formal class definition),
we use equivalence:

datalOntology:Eukaryota
a owl:Class ;
owl:equivalentClass [
a owl:Restriction ;
owl:hasValue "true""“xsd:boolean ;
owl :onProperty propertyOntoleogy:hasNucleus

Some care needs to be exercised when using equivalence because it is
possible that the restrictions will be uncovered by a DL reasoner to be
equivalent to owl : Thing—the top OWL concept to which all concepts,
properties, and individuals belong. Informationally this is redundant,
whereas computationally it can be expensive: equivalency is transitive, and
thus equivalence to owl :Thing can generate excessive statements that
unnecessarily burden computational analysis. Equivalence to owl : Thing
is informationally vacuous and should be removed.

Yet the key motivation for definitions (necessary and sufficient condi-
tions), versus just subsumption (necessary conditions), is that new, unan-
notated data can be assigned to such classes. Thus, one uses an initial set of
experimental data to construct the FCA concept lattice and the resultant
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ontology to annotate new data under the logical requirements for class
extension. At some point, this new data can also be iterated back to the
FCA step to revise the underlying concept lattice.

From just a few named classes, one can define new classes based on log-
ical relations. For example, consider the property hasNucleatedCell,
which is an object property that connects a subject individual to an object
datum—in this case, the representation of a NucleatedCell, that is, a
cell with a nucleus. Thus, we may define '

dataOntology:Eukaryota
a owl:Class ;
owl:equivalentClass [
a owl:Restriction ;
owl :onProperty propertyOntology:has
NucleatedCell ;
owl :someValuesFrom dataOntology:NucleatedCell
T

The existential quantifier there exists 3 is modeled with OWL con-
struct owl:someValuesFrom. Thus, any individual with the observed
property hasNucleatedCell with a value belonging to the class
NucleatedCell will be assigned to the class Eukaryota;thatis,itisa
eukarydte. We can force the range of hasNucleatedCell to always be
NucleatedCell with the following property definition:

dataOntology:NucleatedCell
a owl:Class.

propertyOntology:hasNucleatedCell
a owl:ObjectProperty ;.
rdfs:range dataOntology:NucleatedCell.

The objects of hasNucleatedCell will be inferred to belong to the
class NucleatedCell if they are not already so declared. Axiomatic
assignment to classes can occur on both the range and the domain.
Depending on our data collection quality control, if we want to state
a priori that anything with the hasNucleatedcell property is axi-
omatically a eukaryote then we can enforce this by adding a global
domain:

dataOntology:NucleatedCell
a owl:Class.
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dataOntology:Eukaryocta
a owl:Class.

propertyOntology:hasNucleatedCell
a owl:ObjectProperty ;
rdfs:domain dataOntology:Eukaryota ;
rdfs:range dataOntology:NucleatedCell .

Axiomatic domains and ranges should be used judiciously because
they force a reasoner to deduce that a datum belongs to the respective
class regardless of other statements. Alternatively, we may choose to define
eukaryote (and thus its class extension) solely a posteriori, in which case
we would not put a domain on hasNucleatedCell but would add a
universal quantifier for all V to Eukaryota, for example,

dataOntology:Eukaryota
a owl:Class ;
owl:equivalentClass [
a owl:Class ;
owl:intersectionOf ([
a owl:Restriction ;
owl:onProperty propertyOntology:
has NucleatedCell ;
owl : someValuesFrom dataOntology:
NucleatedCell
1L
a owl:Restriction ;
owl:allvValuesFrom dataOntology:
Nucleated Cell > ;
owl :onProperty propertyOntology:
has NucleatedCell
1)

In this case, only individuals that have one ormorehasNucleatedCell
property instances of which all values belong to the class Nucleatedcell
would be assigned to the class Eukaryota. Conversely, any individual
assigned to the class Eukaryota is inferred to have at least one instance of
the property hasNucleatedCell, and its value must be a datum belong-
ing to the class NucleatedCell (even if that datum is not identified in the
knowledge base).
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OWL DL reasoning is designed under the open world assumption
(OWA). As such, we cannot syntactically restrict the number of proper-
ties or the number of instances of a property"We can, however, achieve its
logical equivalency with cardinality semantics. For example,

dataOntology:Nucleus
a owl:Class ;
rdfs:subClassOf |
a owl:Restriction ;
owl:cardinality "1"““xsd:honNegativeInteger ;
owl:onProperty propertyOntology:hasNucleolus

The earlier discussion states that individuals that belong to the class
Nucleus also belong to the class of all individuals that have at least one
instance of the property hasNucleolus. The cardinality is 1, and thus if
an individual has more than one instance of the property the reasoner will
infer that the various objects that are the values of the property instances are
semantically equivalent, that is, subject to an owl :sameas relation con-
necting them. This will have cascading inference effects in the knowledge
base. If other data contradict this, then the entire ontological model (knowl-
edge base) is rendered inconsistent. Even if other data does not contradict

» . this, inferring that two objects (the values of multiple hasNucleolus

instances) are the same may yield surprising results. OWL DLs guarantees
of completeness, validity, and monotonicity mean that factual errors can-
not exist in a consistent knowledge base subject solely to first-order reason-
ing. But they may be uncovered when new data is added, a consequence
that would lead to ontological inconsistency. This disruption is considered
a good thing, because as more data is added and subject to a new round of
ontology engineering, the resulting consistent ontology is a growing sys-
tematic endorsement of a true and consistent model of nature, whereas an
inconsistent ontology forces resolution of the conflicting statements. Thus,
there is a characteristic of convergence toward truth—a characteristic that
is shared by the scientific method, even if it is only imperfectly realized.
Once the formal OWL ontology with named classes is constructed, we
can subject it to tests for redundancy (two or more named classes inferred
to be related by owl :equivalentClass), satisfiability (no class is equiv-
alent to owl:Nothing), and closure (all data is realized to at least one
class). We can use the formal ontology to the exclusion of the subsumption
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lattice, or we can use it as a marginal conceptualization on a subset of data.
If the ontology includes necessary and sufficient conditions, we can use it
to annotate new data or use new data to drive a new subsumption lattice
to drive a new ontology.

Procedurally, the subsumption lattice drives the initial can didate classes
to name and define; subsequent modeling allows us to derive formal named
classes based on observed property conditions. If we do not axiomatically
create classes de novo and assign individuals ex situ of the data, then we
practice pure a posteriori, data-driven engineering. There are cases where
we may value a priori knowledge, especially in cases of a priori synthetic
statements in the Kantian sense (Kant 1787). For example, metadata and
higher order logics may lead us to propose axiomatic classes that exceed
the expressivity of OWL DL. In these cases, we pursue a hybrid of a priori
and a posteriori engineering,

10.4.5 World Is Not First Order

An important caveat is that the success of this approach relies on the
power and applicability of first-order description logics. First-order
description logics are more expressive than the deep, static subsumption
hierarchies so common in biology today. But our broader conceptualiza-
tion of the world is not first order: understanding is reliant on higher order
relations where the world cannot be neatly demarcated into mutually
exclusive and exhaustive entities of individuals, properties, and classes.
Even when given first-order constraints, OWL 1.1 DL has a complexity of
NEXPTIME complete [NEXPTIME stands for nondeterministic expo-
nential time: O(2¢™)] (Cuenca Grau 2007), which is “harder” than NP
complete (NP stands for nondeterministic polynomial time). OWL 2 DL
is exponentially harder still (N2EXPTIME) (Kazakov 2008). Language-
weakening constructs such as OWL 2 EL and OWL 2 QL can guaran-
tee PTIME (polynomial time) complexity, but this comes at a cost (e.g.
removing expressivity for the inverse relation or the universal quantifier
for all V). Thus, we do not naively claim that FCA + OWL DL a poste-
riori ontology engineering is sufficient for all knowledge representation;
rather, we offer it as an approach with quantifiable tractability for data-
driven science.

10.4.6 Making Ontologies Web Savvy

SSWAP (Gessler et al. 2009) uses OWL ontologies as the foundation of
a semantic web services platform. SSWAP supports the refactoring of
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ontologies into terms with separately dereferenceable URIs, such that
dereferencing terms returns OWL DL statements about each term.*
Current research is moving in two directions: (1) delivering on guar-
antees on completeness (del Vescovo et al. 2011), and (2) establishing a
resolver service so that the original ontologies will not need to be sepa-
rately refactored.

SSWAP is the underlying technology for The iPlant Collaborative’s
semantic web platform.** It addresses limitations discussed in Section
10.2.3 by using ontology terms as resolvable URIs under a semantic
web services protocol. Thus, ontologies—the conceptual constructs that
describe data—are made instrumental in service description, discovery,
invocation, and response. Semantic web services become the engagement
layer for the underlying data and transformations upon them.

iPlant’s semantic web platform uses transaction-time reasoning to
match data types with service requirements, thereby allowing the con-
struction of semantic pipelines of one service to the next. This matching
is achieved with OWL reasoning. The entities of reasoning are service
descriptions and their data, which are described with biological (or any
third-party) ontologies. Thus, biological ontologies are being brought to
bear on semantic web services a very real production environment. The
missing link is that these biological ontologies are not themselves a poste-
riori reflections on data but exist as a priori knowledge management con-
structs. This makes data annotation burdensome and error prone, thus
hindering the recruitment of data into the larger, semantic web service
framework. .

10.5 CONCLUSIONS AND THE PATH FORWARD

“Prediction is very difficult, especially about the future” (attributed to
Niels Bohr [1885-1962]). We do not know how knowledge representation
will evolve. We do know that current practices have limitations, and we
discuss an approach to better formalize and quantify scientifically driven
knowledge representation. Data-driven, a posteriori ontology engineering
does not replace the a priori ontological construction of concepts from the
empirical realization of individuals to classes (annotation). Rather, it advo-
cates using measureable properties on individuals to simultaneously drive

* http:/lsswapmeet.sswap.info,
! hle:waw.iplantcoflaborative.org!dismverfsemamic-web.
* http:/fsswap.info.
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the concept space, its topology, and its realization. Challenges remain, in
the implementation of FCA, in its mapping to FOL, and in the ability of
FOL DL to suitably capture the relevant facts and relations, Yet the basic
position of letting the data dictate the knowledge representation has prom-
ising characteristics. The most fundamental is a computationally tractable
monotonicity, such that by adding more data we become increasingly con-
fident that the resultant model gains comprehensive breath. It is a charac-
teristic of the scientific endeavor—the pursuit, explicit or otherwise—of
unifying theories, of a model or set of models that are internally consistent
and that together cover the data-driven concept space with an explanatory
and predictive power.

A litmus test for any knowledge representation is the degree to which
it enables actionable, evidence-based decision making. Data-driven,
a posteriori ontology engineering attempts to enable this by allowing
the data to define the conceptualization, rather than vice versa. One may
posit that when data are rare, deduction is underpowered and induction
is a necessary risk. Today, especially in biology, we are entering the age
of commoditization of data generation: data are not rare. This is espe-
cially evident in areas such as high-throughput DNA sequencing (e.g.,
see the study by Nowrousian [2010]). With data, deduction gains power,
whereas induction and abduction (positing explanatory hypotheses
based on informed analysis of the data) gain focus. Thus, data-driven,
a posteriori ontology engineering is aimed at extracting the signal from
the data, utilizing scientific data and measurements on them to drive a
new understanding of the data’s interconnectedness and ultimately their
integration. '
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ABBREVIATIONS
DL: description logic

FCA: formal concept analysis
FOL: first-order logic
GO: Gene Ontology
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IRIL: international resource identifier

LC: Library of Congress

MeSH: Medical Subject Headings

ORF: open reading frame

OWL: web ontology language

REST: representational state transfer
RDF: resource description framework _
RDFS: RDF schema

SSWAP: simple semantic web architecture and protocol
UMLS: Unified Medical Language System
URI: uniform resource identifier

URL: uniform resource locator

W3C: World Wide Web Consortium
XML: extensible markup language

XSD: XML schema definition
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