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1 Introduction

This is an expository paper working through the details of some categorical equivalences, and
non-equivalences, between a-priori different, but closely related, notions of a hypergraph cate-
gory. The paper is intended to be self-contained, and is written for an audience not familiar with
category theory, but potentially interested in category theory as a tool for processing of hyper-
graphs in a computational pipeline. As such, it ”turns the crank” on some details usually left to
the reader by literature. Some of the arguments are at times slightly non-standard, and from a
mathematical perspective, even aesthetically unpleasing, in order to make a closer connection to
the way information is represented in an implemented system and to reduce reliance on familiar-
ity with categorical concepts. Most of these categories are just the category of Dorfler-Waller[2]
with different representational choices. At the time this work was written we were unaware of
the incidence-based approach of Grilliette and Rusnak [3], which has some advantages from a
category theory perspective and is only touched on here in Section 6.2.

Roughly, a category consists of objects, along with structure-preserving transformations, called
morphisms. The basic idea behind category theory is that the transformations between objects,
the morphisms, are the meaningful structure the category, not the structure defined on the objects
themselves. Category theory allows us to formalize a notion that two categories are ”not different
in any way that matters”, or in the parlance, categorically equivalent. More generally, category
supports the formal notion of a functor, which maps structure in one category to another. Category
theory allows us to understand how and when changes in the way objects are represented and/or
transformed will lead to meaningful changes in mathematical structure, allowing us to ignore, or
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as desired, litigate, changes in representational structure. 1

2 BLUF

The following five categories of hypergraphs are equivalent:

1. The category HG of hypergraphs as triplets (V,E, I) (Example 5.3),

2. The category OHG of hypergraphs as triplets (V,E, I), where V and E are ordered and I is
a matrix (Example 5.5),

3. The category HGBINREL of hypergraphs which are binary relations (Example 6.4),

4. The category HGBMAT of hypergraphs which are boolean matrices (Example 6.2),

5. The category BIC of hypergraphs as bicolored graphs. (see Definition 6.13).

We provide definitions and arguments of the above statements. We also introduce some general
category theory notions and language, intended to be helpful to the novice and for review but not
a substitute for a complete treatment.

We discuss some issues involving slight variants of the definitions which in some cases do and
in some cases do not affect the nature of our category. For example, distinctness requirements
between edges and vertices do not affect any categorical structure (Proposition 6.7), but the choice
of how morphisms are defined does (Proposition 6.8).

3 Hypergraph Definitions

In this section, for simplicity, we assume all sets are finite.

Definition 3.1. A hypergraph H is a triple (V,E, I) consisting of

• A set of vertices V ,

• A set of edges E, and

• An incidence function I : V × E → {0, 1}.

We say v ∈ e if I(v, e) = 1.

The dual hypergraph H∗ of H is the hypergraph (E, V, I∗), where I∗ : E × V → {0, 1} is
defined such that I∗(e, v) = I(v, e).

Notes and Variants:

1. One may take V and E to be totally ordered sets, and define I using a matrix.
1Special thanks to William Grilliette, who read an early draft of this work and suggested corrections to proofs.
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• A (finite) totally ordered set is an ordered pair (X, f), where X is a (finite) set and
f : {0, . . . , |X| − 1} → X is a bijection.

• Some would argue that in Definition 3.1, I is already a matrix; it just has rows and
columns indexed by (unordered) sets rather than by natural numbers. When working
with graphs, it is common to speak informally about an “adjacency matrix” even when
no order on the vertices has been specified. Below, the distinction is made explicitly to
help sort out these issues.

• Sometimes E is additionally taken to be an indexed family of subsets of V , that is
ej = {v ∈ V |I(v, ej) = 1}. In this case the structure of the incidence function and matrix
I can be constructed from E as I|V×e = χe, where χe is the characteristic function on
the subset e of V .

• Similarly, one can define a function f : E → P(V ) that maps edges to subsets.

2. [1] uses totally ordered sets, with edges as subsets. The choice whether or not to order
vertices and edges is inessential unless the orders have some particular use. Defining
incidences rather than edges makes the dual a bit easier to work with. In particular, the
double dual of a hypergraph H is H when we define it by incidences, whereas under the
hyperedge-defined variant the most natural way to define the dual makes H∗∗ only naturally
isomorphic to H. See [1] for the hyperedge-based definition of the dual. This (category
theory) argument will be made precise later.

3. This definition does not require that V and E be disjoint. It is neither necessary, nor does it
hurt to assume, that vertex and edge sets are disjoint because we decide the roles of objects
before computing incidences; one may replace V and E with V ×{0} and E×{1} respectively
if disjoint sets are needed. The category of hypergraphs is equivalent to the (sub)category
of hypergraphs with disjoint vertex and edge sets; see Proposition 6.7. Overloading the
meaning of “v ∈ e” to capture incidence does admittedly present some confusion since the
phrase can be interpreted in two ways, with different resulting meanings. When there is
danger of confusion, the language “v is a vertex of edge e” removes the ambiguity.

4. In [1], vertices and edges can be equal (depending on what the undefined term “elements”
means) but edges are specified by index within the indexed family, which disambiguates the
intended role.

Some definitions referred to in [1] do not allow duplicate hyperedges. To talk about such hyper-
graphs, one option is to copy the terminology for graphs:

Definition 3.2. A simple hypergraph is a hypergraph such that for any e1, e2 ∈ E, the functions
I(·, e1), I(·, e2) : V → {0, 1} are equal only when e1 = e2.

Discussion: The term graph is often used somewhat loosely. A simple graph:

• is not a multigraph: multiple edges with the same vertex sets are not allowed,

• does not admit edges which connect a vertex to itself.

It is reasonable to use multihypergraph, or vertex-multi hypergraph to explicitly indicate that multi-
ple edges can have the same vertices, dual-multi hypergraph, or edge-multi hypergraph to indicate
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that multiple vertices can have the same containing edges, and multi, dual-multi hypergraph or
edge and vertex multihypergraph (or just, hypergraph) to indicate both.

Note that a simple hypergraph need not have a simple dual hypergraph, so one may need to say
“dual simple”, “simple, dual simple”, “vertex simple”, etc. as appropriate.

We will mostly not be concerned with self loops, but for completeness, here is one way to define
them for hypergraphs:

Definition 3.3. A hypergraph with self-loops is a triple (V,E, I), with V a vertex set, E an
edge set, and I : V × E → N.

The hyperedge-based variant of this incidence-based definition replaces the sets that comprise
edges E with multisets. Along with this change, the definition of the dual in [1] needs to be
altered to account for multiplicity (in a way that makes it compatible with our I∗), or else the double
dual won’t be isomorphic to the original hypergraph.2 Unlike the property of being simple, if a
hypergraph has self-loops, so does its dual, as there are multiple incidences between the same
vertex and edge.

Duplicate incidences can be represented by extending the domain of the incidence function from
{0, 1} to N, if only the number of incidences is needed, or by an indexing set if it is necessary to
define properties (functions) on the individual incidences.

4 Some related structures

In this section, assume all sets are finite.

Definition 4.1. A binary relation R on sets X and Y is a subset R ⊂ X × Y with the notation
R(x, y) indicating that (x, y) ∈ R. Equivalently, one may define R via its characteristic function
χR : X × Y → {0, 1}, with χR(x, y) = 1 iff (x, y) ∈ R.

Example 4.2. The triple (X,Y, χR) is a hypergraph.

Definition 4.3. An m× n boolean matrix M is a function M : {1 . . .m} × {1 . . . n} → {0, 1}.
The transposeMT ofM is the functionMT : {1 . . . n}×{1 . . .m} → {0, 1} such thatMT (a, b) =
M(b, a).

Example 4.4. The triple ({1 . . .m}, {1 . . . n},M) is a hypergraph.

Definition 4.5. Let G = (V,E) be a directed or undirected graph or multigraph. A bipartition
on G is a pair of subsets V1 ⊂ V , V2 ⊂ V , such that:

1. V1 ∩ V2 = ∅,

2For non-experts, taking the dual is analogous to swapping the roles of edges and vertices in a hypergraph; we want
this notion to be meaningful, as well as involutive: the dual of a hypergraph should be a hypergraph, and the dual of the
dual should be the original hypergraph, possibly up to some structurally insignificant representational choices, or more
precisely, up to categorical equivalence.
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2. V1 ∪ V2 = V ,

3. For every edge (v1, v2) ∈ E (in the simple graph case: {v1, v2} ∈ E), v1 ∈ V1 iff v2 ∈ V2.

A bipartite (multi)graph is a graph which admits a bipartition. A bipartitioned (multi)graph is a
bipartite graph with a choice of bipartition.

Notes:

1. Non-empty graphs with self-loops cannot admit bipartitions.

2. Bipartitions are in one-to-one correspondence with bicolorings, introduced in [5]. In particu-
lar, a bicoloring is the characteristic function of one of the subsets V1, V2 in the bipartition.

Example 4.6. The graph G has an adjacency function AG : V × V → {0, 1}.
If G has a bipartition into vertices V = V1 t V2, the triple (V1, V2, A

G|V1×V2) is a hypergraph.

Generally one intends here that G is undirected. If G is directed, we can define three hypergraphs,
in general non-isomorphic, and the duals of these, using edges from V1 to V2, edges from V2 to
V1, or both:

• (V1, V2, A
G|V1×V2),

• (V1, V2, (A
G)T |V1×V2),

• (V1, V2, A
Ḡ|V1×V2), where Ḡ is the minimal graph containing G such that AḠ is a symmetric

function.

The above hypergraph construction is well-defined (and if G is directed, all three constructions are
well-defined) even when G is not bipartite. All that is required is a pair of vertex sets V1, V2.

Example 4.7. The neighbor hypergraph (V, V,AG) is a hypergraph with the same vertices as G,
and a hyperedge for each maximal collection of vertices that share a particular common neighbor.
The identity of that neighbor distinguishes multiple, otherwise identical hyperedges.

5 Categories and equivalences

5.1 Categories

The purpose of this section is to lay out the definitions and propositions required to prove the
equivalences in the next section. The propositions stated are all standard; proofs may be found in
an introductory category theory text such as [4].

Consider the following variant of Definition 3.1, the definition of a hypergraph:

Definition 5.1 (definition of a totally ordered hypergraph). A vertex-and-edge-totally-ordered
hypergraph H is a triple (V,E, I) consisting of

• A totally ordered set of vertices V = {v1, . . . , vm},
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• A totally ordered set of edges E = {e1, . . . , en}, and

• An m× n matrix I, called the incidence matrix, taking coefficient values in {0, 1}.

We say vi ∈ ej if Ii,j = 1.

The dual vertex-and-edge-totally-ordered hypergraph H∗ of H is the hypergraph (E, V, IT ).

Category theory addresses the question of whether differences between objects are essential in
the following way: a collection of objects is associated with a collection of transformations (of some
sort) between those objects. The behavior of these objects is given by the transformations we may
perform on them. If a transformation is reversible, the objects are not different in structure.

This is the formal definition of a category:

Definition 5.2 (Definition of a category). A category C is a triple C = (C0, C1, ◦), consisting of:

1. A class of objects C0,

2. A class function C1 assigning each a, b ∈ C0 to a set C1
a,b, called the set of morphisms

from a to b, or arrows from a to b,

3. A class function ◦ assigning to each triple (a, b, c) of elements of C0, a set function
◦a,b,c : C1

a,b × C1
b,c → C1

a,c, which is

(a) associative: (f ◦ g) ◦ h = f ◦ (g ◦ h), and

(b) has identity: for each a ∈ C0 there exists ia ∈ C1
a,a such that for all b ∈ C0 and all

f ∈ C1
a,b, g ∈ C1

b,a, ia ◦ f = f and g ◦ ib = g.

Small points:

1. Care is required in mathematics to avoid paradoxes when collections of objects are defined
notionally, for example, when we wish to treate the collection of all graphs as an object.
The use of the term “class”, as distinct from “set”, is necessary to avoid paradoxes in these
situations. For those doing applied work, the necessity is generally present only when laying
out definitions and notions; the distinction between classes and sets often plays no role in
the work that is eventually done.

2. We use a composition convention which is different from the composition of functions con-
vention used many places in mathematics. Our convention is called composition of arrows.
Composition of arrows preserves the left-to-right order of transformations for left-to-right
readers. The choice is a minor convenience or a minor inconvenience depending on context..

3. ia is unique: if i′a is an identity morphism for a, then ia = iai′a = i′a.

4. Indices are often dropped when they can be safely inferred from context.

Example 5.3. The category HG of hypergraphs (Definition 3.1) with hypergraph morphisms. See
the definition immediately below.
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Definition 5.4. Let H1 = (V1, E1, I1), H2 = (V2, E2, I2) be hypergraphs.

Given e ∈ E1, let fV (e) denote fV ({v ∈ V1|v ∈ e}) (recall that v ∈ e has nonstandard meaning
defined via the incidence function), and for e ∈ E2 V (e) denote the set {v ∈ V2|I2(v, e)}.
A hypergraph morphism f : H1 → H2 is a pair of functions fV : V1 → V2 and fE : E1 → E2

such that for each e ∈ E1, fV (e) = V (fE(e)). In other words, fV maps the vertices of a
hyperedge e surjectively to the vertices of its image hyperedge fE(e).

Example 5.5. The category OHG of totally ordered hypergraphs, with hypergraph morphisms.

One may well ask, shouldn’t we have required that the morphisms in this category respect the
orders on the vertices and edges? The answer is that this is only necessary if the orders on the
vertices and edges are structure that we wish to preserve. It turns out that order preservation is
not a very natural property for hypergraph maps; we know of no application for hypergraph maps
which preserve vertex and/or edge order, beyond the trivial but occasionally useful observation
that constructing an isomorphism between hypergraphs is a far easier problem when the vertex or
edge order is fixed.

As a follow-up, one may ask, if the order isn’t preserved, why did we include it in the definition at all?
The example is pedagogical, and is intended for those working within an information processing
pipeline, who may not be free to jettison currently-inessential structure which may be needed later.

Category theory’s focus on morphisms as the carriers of object structure frees us somewhat from
the need to be fussy about the exact representational choices made within our objects. We can
choose what is and isn’t important by our choice of morphisms.

An example of a vertex order which provides inessential structure that is nonetheless worth keep-
ing is provided by set-system hypergraphs which are connected to a simplicial complex construc-
tion. The vertices in a simplicial complex are typically ordered, in order to construct oriented
simplicies and thus a homology functor, but the choice of order only affects the homology functor
up to a choice of basis in the codomain space. Given a simplicial map between two simplicial
complexes, the orders on the vertices determine choices of basis for the homology map but they
do do not determine whether or not a map is simplicial. The order is, from a structural stand-
point, inessential, and therefore morphisms are not required to preserve it, but it is also needed
for computations so we keep it as part of the object structure.

Example 5.6. In Definition 5.4, we could replace the requirement fV (e) = V (fE(e)) with the
following: fV (e) ⊂ V (fE(e)), giving a new category HG′. In other words, the vertices {v1, . . . , vn}
of a hyperedge e need to be mapped by fV to vertices of fE(e), but not surjectively; fV (e) can be
properly contained in vertices of fE(e). This is different than the requirement, considered in [5]
that fE be surjective.

Note: HG′ is either, depending on the notation being used, the category REL of relations and
morphisms of relations, or the double part of the double category REL of sets and relations.

5.2 Isomorphisms
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Definition 5.7. Let C be a category, a, b ∈ C0. An isomorphism is a morphism f : a→ b such
that there exists a morphism f−1 : b→ a such that f ◦ f−1 = ia, f−1 ◦ f = ib. f−1 is said to be
the two-sided inverse for f . If such an f exists, a and b are said to be isomorphic objects.

Isomorphic objects are not structurally different in any way; it turns out that any object property on
a one can describe via arrows between objects also holds for the isomorphic object b by passing
through the isomorphism.

Isomorphism is an equivalence relation on objects, and divides the objects of a category into
equivalence classes,3 called isomorphism classes.

Example 5.8. A hypergraph isomorphism f : (V1, E1, I1)→ (V2, E2, I2) is a hypergraph morphism
in which both fV and fE are bijections. The inverse hypergraph morphism is (f−1

V , f−1
E ).

Example 5.9. In example 5.6, brief consideration shows that if (fV , fE) is an isomorphism in HG′,
fV and fE are bijections. Since fV (e) ⊂ V (fE(e)) and f−1

V (V (fE(e))) ⊂ V (f−1
E (fE(e))) = V (e),

V (e) and V (fE(e)) must also have the same cardinality, so edges are mapped surjectively to edges
of the same size. Thus any isomorphism in HG′ is also an isomorophism in HG. Conversely, an
isomorphism in HG is also an isomorphism in HG′. Thus HG and HG′ have the same objects, and
the same isomorphism classes of objects. They are, however, different categories, as shown in
Proposition 6.8.

5.3 Functors and natural transformations

Two issues frequently occur when we describe the “same” class of objects with two different for-
malisms:

1. Each description leads to isomorphism classes with many equivalent objects,

2. There isn’t a good way (or any way) to match objects bijectively between the formalisms.

Above, a hypergraph (Definition 3.1) only becomes associated with a (particular) binary matrix
when we choose an ordering on the vertices and edges. In Definition 3.1, we have no canonical
way to assign a boolean matrix to a hypergraph, and in Definition 5.1, we do. But does the
difference matter?

The answer, it turns out, is that it may or may not, depending on whether the morphisms we care
about (the ones “in our category”) are required to preserve order.

To discuss relations between categories, we must have a way to relate them. A functor is a
“morphism between categories”. It sends objects to objects, and arrows to arrows in a way that
respects composition and identity.

Definition 5.10. Let C and D be categories. A functor F : C → D is a pair (F 0, F 1) such that:

1. F 0 is a class function that assigns each a ∈ C0 to F 0(a) ∈ D0.

2. F 1 is a class function assigning each pair a, b ∈ C0 to a class function F 1
a,b : C1

a,b →

3This is the same not-defined-here use of “class” as above.
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C1
F 0(a),F 0(b).

3. (Identity) For all a ∈ C0, F 1(ia) = iF 1(a).

4. (Associativity) For all a, b, c ∈ C0, f : a→ b, g : b→ c, F 1(f ◦ g) = F 1(f) ◦ F 1(g).

Example 5.11. For any category C, the identity functor Id : C → C sends objects and morphisms
to themselves.

Definition 5.12. Let F : C → D and G : D → E be functors.

The composition of functors F◦G is the pair ((F◦G)0, (F◦G)1), where (F◦G)0(a) = F 0(G0(a)),
and (F ◦G)1

a,b(f) = G1
F 0(a),F 0(b)(F

1
a,b(f)).

Proposition 5.13. F ◦G is a functor.

Example 5.14. The (quasi)category CAT of categories, with categories as objects and functors
as morphisms.

We have to say “quasicategory” because there are too many category object classes to form a
class without creating a paradox.

Example 5.15. For any category C, for each object a, choose an isomorphic object a′ and an
isomorphism ηa : a → a′. Then there is a functor F : C → C such that each F 0(a) = a′ and for
each a, b ∈ C0, F 1

a,b(f) = η−1
a ◦ f ◦ ηb.

The previous example can be thought of as a deformation of the identity functor by isomorphisms
on the objects.

Definition 5.16. Let F : C → D, G : C → D be functors. A natural transformation η of functors
from F to G is a family of morphisms ηa : F 0(a) → G0(a), one for each a ∈ C0, such that for
each a, b ∈ C0 and each f ∈ C1

a,b, ηa ◦ G(f) = F (f) ◦ ηb. A natural isomorphism is a natural
transformation η for which each ηa is an isomorphism.

If η is a natural isomorphism from F to G, the maps η−1
a give a natural isomorphism η−1 from G to

F .

The previous equality is often expressed in the form of a commutative diagram.

F (a) F (b)

G(a) G(b)

F (f)

ηa ηb

G(f)

The convention for commutative diagrams is, any two compositions of morphisms with the same
source and target are equal.

Example 5.17. In Example 5.15, F is, by construction, naturally isomorphic to the identity functor.
In particular the maps ηa define a natural isomorphism from Id to F .
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Definition 5.18. Two categories C and D are equivalent if there exist functors F : C → D and
G : D → C such that F ◦G and G ◦ F are naturally isomorphic to identity functors.

Below, we’ll often prove this directly; constructing the functors helps understand how to translate
from one formalism to another.

Because this definition is a bit notionally cumbersome, we’ll use an alternate, equivalent defini-
tion of equivalence that is intuitive and eleminates the need to understand the details of natural
transformations.

Definition 5.19. A full functor is a functor F such that each F 1
a,b is surjective.

A faithful functor is a functor F such that each F 1
a,b is injective.

An essentially injective functor is a functor F : C → D such that for each a, b ∈ C0, if F 0(a) ∼=
F 0(b), then a ∼= b.

An essentially surjective functor is a functor F : C → D such that for each d ∈ D0, there is an
object c ∈ C0 such that F 0(c) ∼= d.

A functor is essentially bijective if it is both essentially injective and essentially surjective.

Proposition 5.20. Categories C and D are equivalent if and only if there exists a full, faithful,
essentially bijective functor F : C → D.

Example 5.21. Given any category C, a skeleton CSKEL of that category can be constructed as
follows: choose one object from each isomorphism class C0, and construct the full subcategory
CSKEL containing the choices. The inclusion functor is then full, faithful, and essentially bijective,
so C is equivalent as a category to CSKEL.

6 Equivalent hypergraph categories

6.1 Minor variants

Proposition 6.1. Categories HG and OHG are equivalent.

Proof. For each set X, choose a canonical total ordering, producing a totally ordered set Xe.
Given a permutation π on elements of X, let Xπ denote the totally ordered set that results from
applying π to Xe. Note that every total ordering of X is Xπ for some π.

Let F : OHG → HG be the forgetful functor, i.e. F 0(Vπ, Eφ, Iφ,π) = (V,E, I), where I is the
incidence function induced from Iφ,π. The morphisms on OHG are just hypergraph morphisms on
the underlying sets for vertices and edges; let F 1 send morphisms to themselves.

Since each F 1
a,b is a bijection, F is a full, faithful functor. If F 0(a) ∼= F 0(b), then there is a permuta-

tion of objects (and underlying permutation map) that takes a to b. Thus F is essentially injective.
F is surjective on objects and thus essentially surjective. By Proposition 5.20, OHG and HG are
equivalent as categories.
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Discussion: This equivalence is really the simplest possible; in OHG we have decorated the ob-
jects in HG with an extra property, an ordering function, which we don’t use in the definition of the
morphisms.

Definition 6.2. Let HGBMAT be the full subcategory of HG consisting of hypergraphs con-
structed from boolean matrices, as in Example 4.4.

Proposition 6.3. HGBMAT ∼= HG as categories.

Proof. Since HGBMAT is a full subcategory, the inclusion functor is full, faithful, and essentially
injective. Given any hypergraph, it is easy to construct an isomorphic hypergraph in HGBMAT , by
ordering its vertices and edges in some way and computing the corresponding incidence matrix.
Thus the inclusion functor is essentially surjective. By Proposition 5.20, HGBMAT ∼= HG.

A binary relation is a triple (X,Y,R) where R ⊂ X × Y . For each relation R on X,Y there is
a characteristic function χ(R) : X × Y → {0, 1}, and for each incidence function I on X × Y a
characteristic subset χ−1(I) = I−1(1). Binary relations on V ×E and hypergraphs really only differ
in that instead whereas the relation defines a subset of X × Y ; the hypergraph incidence function
defines the characteristic function of a relation.

Definition 6.4. Define a morphism of binary relations f : (X1, Y1, R1) → (X2, Y2, R2) as a
pair of functions (fX , fY ), fX : X1 → X2, fY : Y1 → Y2 such that (fX , fY ) is a morphism of
hypergraphs (X1, Y1, χ(R1))→ (X2, Y2, χ(R2)).

Let HGBINREL be the category of binary relations and morphisms of binary relations.

Proposition 6.5. The categories HG and HGBINREL are equivalent.

Proof. Define F : HG → HGBINREL such that F 0((X,Y, I)) = (X,Y, χ(I)) and morphisms are
fixed.

Then F is a functor and has a strict inverse: let G similarly send (X,Y,R) to (X,Y, χ−1(R)) and
fix morphisms. Then both double compositions are identity functors on the nose.

Thus HG and HGBINREL are equivalent.

In Definition 6.4, we could define morphisms directly in terms of relations R1 and R2. Unless
we have an independent notion of what morphisms should be for binary relations, the way this
translation is performed is to choose morphisms in such a way that F 1 can be constructed so as
to give an equivalence.

The result of this re-expression is a pair of maps fX : X → X ′ and fY : Y → Y ′ that form a
morphism of relations (X,Y,R) and (X ′, Y ′, R′) if for all y ∈ Y , fX({x ∈ X|(x, y) ∈ R}) = {x ∈
X ′|(x′, f(y)) ∈ R′}.
For binary relations, this formulation is odd, as it is not symmetric in X and Y . In particular the
dual given by switching Y and X is not a functor.

A more natural-seeming choice for a morphism of relations is this: a morphism of relations
(X,Y,R) and (X ′, Y ′, R′) is a pair of functions fX : X → X ′ and fY : Y → Y ′ such that for
all (x, y) ∈ X × Y , (x, y) ∈ R ⇒ (fX(x), fY (y)) ∈ R′. If we translate this requirement back into
hypergraph language this condition is just Example 5.6.
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Definition 6.6. LetHGt be the complete subcategory ofHG consisting of hypergraphs (V,E, I)
in which V and E are disjoint.

Proposition 6.7. HGt and HG are equivalent categories.

Proof. Define F : HG → HGt as follows: Given (V,E, I) ∈ HG0, let

F 0((V,E, I)) = (V ⊗ {0}, E ⊗ {1}, Ī),

where Ī : (V × {0}, E ⊗ {1})→ {0, 1} such that Ī((v, 0), (e, 1)) = I(v, e).

Given f : (V1, E1, I1)→ (V2, E2, I2), f = (fV , fE), define

F 1
(V1,E1,I1),(V2,E2,I2)(f) = (fV × id{0}, fE × id{1}),

It is easily checked that F is a functor, and the following hold:

1. If V t E = ∅, F 0((V,E, I)) ∼= (V,E, I)). Thus F is essentially surjective.

2. An isomorphism g : F 0((V,E, I)) → F 0((V ′, E′, I ′)) is the image of an isomorphism f :
(V,E, I)→ (V ′, E′, I ′). Thus F essentially injective.

3. F 1 maps morphism sets bijectively, and is thus a full, faithful functor.

By Proposition 5.20, HG and HGt are equivalent categories.

6.2 Lax hypergraph categories

All of the above proofs work if the replacement of HG wih HG′ from Definition 5.9 is propagated to
the other definitions. One obtains categories OHG′, HG′BMAT , etc. which are equivalent to HG′.

Proposition 6.8. HG and HG′ are not equivalent as categories.

Proof. 4 A bit of consideration makes it clear that there’s no obvious way to construct a functor
which is both full and faithful. However, the flexibility of our notion of equivalance works against us
here; there’s no guarantee that an equivalence would map objects in a one-to-one or onto man-
ner so it’s hard to show we can’t form an object-correspondence in any way that the morphisms
respect. The typical way to prove inequivalence of categories is to find properties of morphisms
which are invariant under equivalence and show that they are different in the two categories. The
following definitions are all preserved when one passes through an equivalence of categories; we
leave the proofs as exercises.

Definition 6.9. In a category C, a morphism f : b→ c is monic if for any object a and any two
morphisms g, h : a→ b, whenever g ◦ f = h ◦ f , h = f .

4In response to an incorrect proof in an early draft, the following approach was suggested by William Grilliette.
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Let Hv = {{v}, {}}, a hypergraph consisting of a single vertex v and no edges. Such a hypergraph
exists in both HG and HG′. Given a monic hypergraph morphism f : H1 → H2, in either category,
if H1 has multiple vertices we can construct maps g, h : Hv → H1 which map v to any desired
vertex in H1. If g, h are different, g ◦ f and h ◦ f must be different. Thus a monic morphism must
map vertices injectively in both HG and HG′. A similar argument shows that monic maps map
hyperedges injectively in both categories, and that these two conditions are sufficient to guarantee
that f is monic in either case.

The maps themselves, however, are different between the two categories, because we don’t need
to map the vertices of each edge surjectively in HG′.

Definition 6.10. In a category C, a morphism f : b→ c is epic if for any object a and any two
morphisms g, h : a→ b, whenever f ◦ g = f ◦ h, h = f .

Similar consideration shows that in either category, a morphism is epic if it maps both vertices and
hyperedges surjectively.

Definition 6.11. A morphism which is both monic and epic is a bimorphism.

In HG, every bimorphism f : H1 → H2 is an isomorphism, which can be seen as follows. Suppose
f is a bimorphism. Then f is both monic and epic. Thus, every hyperedge of H1 is mapped by f
to a hyperedge of the same cardinality in H2 with an associated bijection on the vertices. We can
invert the map by inverting the vertex map along with the associated edge map.

In HG′, however, a bimorphism f : H1 → H2 is not guaranteed to map the vertices in edge e1

to the complete set of vertices in edge fe(e1). For example, the hypergraph consisting of a single
isolated vertex and single 0-hyperedge maps via a bimorphism to the graph consisting of a single
vertex and single 1-hyperedge. This map is not an isomorphism because we cannot construct an
inverse map; we can’t map an edge containing an element to an empty edge. Thus HG′ 6∼= HG.

6.3 Bicolored graphs

Definition 6.12. A bicolored graph is a tuple G = (V,E, c), where (V,E) is an undirected
graph and c : V → {0, 1} is a coloring of vertices such that for any (v1, v2) ∈ E, c(v1) 6= c(v2).
A (surjective) bicolored graph homomorphism f : (V1, E1, c1) → (V2, E2, c2) is a (surjective)
graph homomorphism such that for each i ∈ {0, 1}, f(c−1

1 (i)) ⊂ c−1
2 (i). In other words, a

homomorphism that preserves colors.

Definition 6.13. In [5], the category BICS (which is there called BIC) is defined as the cate-
gory of bicolored graphs, with surjective bicolored graph homomorphisms.

We use the notation BIC to define the category of bicolored graphs, with (not necessarily
surjective) bicolored graph homomorphisms.

The natural correspondence between bicolored graphs and hypergraphs is to map hypergraph
vertices to one color of bicolored graph vertex, edges to the other color, and incidences to edges.
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Under this mapping, however, our notion of hypergraph homomorphism does not line up with the
morphisms in either of these categories. In the non-surjective bicolored homomorphism, there is
no guarantee that the vertices of an edge will be mapped surjectively to the vertices of an edge.
In the surjective bicolored homomorphism, the map is required to be surjective on vertices.

The point of requiring surjectivity on vertices is to ensure that the dual hypergraph construction is
a functor. For this purpose, a slightly weaker condition would be sufficient.

Definition 6.14. The neighborhood N(G, v) of a graph G = (V,E) at v ∈ V is the induced
subgraph of G containing all vertices v′ contained in an edge e which also contains v.

Let f : G1 → G2 be a graph homomorphism, with G1 = (V1, E1). We say that f is locally
injective (surjective) at a vertex v ∈ V1 if the induced map fv : N(G1, v) → N(G2, f(v)) is
injective (surjective).

Definition 6.15. Given a hypergraph H = (V,E, I), define its associated bicolored graph
GH = (V

⊔
E, I, c), with I ⊂ V

⊔
E × V

⊔
E such that (x, y) ∈ I iff

• x ∈ V , y ∈ E and I(x, y) = 1, OR

• x ∈ E, y ∈ V and I(x, y) = 1,

and c : V
⊔
E → {0, 1} such that c−1(0) = V , c−1(1) = E.

Conversely, given a bicolored graph G = (V,E, c), define the hypergraph

HG = (c−1(0), c−1(1), χ, where χ : c−1(0)× c−1(1)→ {0, 1} such that χ(v, e) = 1 iff (v, e) ∈ E.

Proposition 6.16. The above constructions give a bijective correspondence between bicolored
graphs and hypergraphs.

Definition 6.17. Given a hypergraph morphism f : H1 → H2, f = (fV , fE), fV : V1 → V2, fE :
E1 → E2, define φH1,H2(f) : V1

⊔
E1 → V2

⊔
E2 such that f = (fV

⊔
fE).

Proposition 6.18. φH1,H2(f) is a bicolored graph homomorphism GH1 → GH2 .

Proof. For simplicity of notation when referring to disjoint copies, assume Vi and Ei are already
disjoint.

Preservation of colors of vertices is obvious. For v ∈ V1 = c−1(0), e ∈ E1 = c−1(1), suppose (v, e)
is an edge in GH1 . This holds if and only if v and e are incident in H1. Then fV (v) and fE(e) are
incident in H2, because hypergraph homomorphisms preserve incidences. Thus (f(v), f(e)) is
an edge in GH2 . Thus φH1,H2(f) is a graph homomorphism. Thus φH1,H2(f) is a bicolored graph
homomorphism.

Proposition 6.19. Let G1 = (V1, E1, c1) and G2 = (V2, E2, c2) be bicolored graphs, and let f :
G1 → G2 be a bicolored graph homomorphism. Then f = φHG1

,HG2
(f̄) for some hypergraph

homomorphism f̄ : HG1 → HG2 if and only if f is locally surjective on c−1
1 (1).
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Proof. Suppose f is the image f̄ : HG1 → HG2 under φ. Then f must be locally surjective
for all e ∈ c−1

1 1, as this is the image the condition that vertices of hyperedges must be mapped
surjectively to vertices of mapped hyperedges by f̄ . Conversely, suppose f is locally surjective on
c−1

1 (1). Let V1 = c−1
1 (0), E1 = c−1

1 (1), V2 = c−1
2 (0), E2 = c−1

2 (1). Define fV : V1 → V2 such that
fV = f |V1 , fE : E1 → E2 such that fE = f |E1 . Then f = φHG1

,HG2
((fV , fE)). Using the same

notations as in Definition 5.4, we have, for E ∈ E1

fV (e) = fV ({v ∈ V1|v ∈ e}) = fV ({v ∈ V1|(v, e) ∈ I1} = {v ∈ V2|(v, f(e) ∈ I2}

since f is locally surjective. But

{v ∈ V2|(v, f(e) ∈ I2} = V (f(e)).

Thus f̄ = (fV , fE) is a hypergraph morphism.

Definition 6.20. Let BICLS1 be the category of bicolored graphs, with morphisms f : (V1, E1, c1)→
(V2, E2, c2) which are locally surjective on c−1

1 (1).

Proposition 6.21. HG and BICLS1 are equivalent as categories.

Proof. Define F = (F0, F1) : HG → BICLS1 such that F0(H) = GH , and given f : H1 → H2,
F1(f) = φH1,H2(f).

Then
F1(IdH) = F1((IdV , IdE)) = IdV tE = IdGH

.

Also,

F1(f ◦ g) = F1((fV ◦ gV , fE ◦ gE)) = (fV ◦ gV ) t (vE ◦ gE) = (fV t fE) ◦ (gV t gE) = F1(f) ◦ F1(g).

Thus F is a functor. Since F0 is a bijection on objects and F1 is bijective on morphism spaces, F
is fully faithful and essentially surjective. Thus F is an isomorphism of categories.
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