
Towards a Multiscale Approach To
Cybersecurity Modeling

Emilie Hogan, Peter Hui, Sutanay Choudhury, Mahantesh Halappanavar, Kiri Oler, Cliff Joslyn
Pacific Northwest National Laboratory

Richland, WA
{emilie.hogan, peter.hui, sutanay.choudhury, mahantesh.halappanavar, kiri.oler, cliff.joslyn}@pnnl.gov

Abstract—We propose a multiscale approach to mod-
eling cyber networks, with the goal of capturing a view of
the network and overall situational awareness with respect
to a few key properties — connectivity, distance, and
centrality — for a system under an active attack. We focus
on theoretical and algorithmic foundations of multiscale
graphs, coming from an algorithmic perspective, with
the goal of modeling cyber system defense as a specific
use case scenario. We first define a notion of multiscale
graphs, in contrast with their well-studied single-scale
counterparts. We develop multiscale analogs of paths and
distance metrics. As a simple, motivating example of a
common metric, we present a multiscale analog of the
all-pairs shortest-path problem, along with a multiscale
analog of a well-known algorithm which solves it. From
a cyber defense perspective, this metric might be used
to model the distance from an attacker’s position in the
network to a sensitive machine. In addition, we investigate
probabilistic models of connectivity. These models exploit
the hierarchy to quantify the likelihood that sensitive
targets might be reachable from compromised nodes. We
believe that our novel multiscale approach to modeling
cyber-physical systems will advance several aspects of
cyber defense, specifically allowing for a more efficient
and agile approach to defending these systems.

I. INTRODUCTION
Modeling large cyber-physical systems is an inher-

ently daunting task [7]. With the size of larger enterprise
networks approaching the order of millions of nodes
or greater, cyber defenders may, in practice, prefer to
analyze their network at different scales and different
levels of abstraction and granularity. For instance, com-
munications between machines within a subnet might be
thought of as comprising the lowest level of granularity,
while subnet, local-area-network, and enterprise-level
abstractions can be viewed as composing successively
higher hierarchical levels. One benefit to abstracting the
network at multiple levels of granularity in this manner
is the ability to summarize certain network metrics at
higher hierarchical levels in a more efficient manner,
effectively gaining efficiency while trading off a certain
degree of precision in exchange. In particular, under
an active cyber attack, defenders of large networks
encompassing millions of nodes may, in some cases,
be willing to accept a coarse approximation of certain

network metrics in lieu of precise measurements if it
can be shown that the former can be obtained more
efficiently than the latter.

To this end, this paper summarizes some initial re-
sults of research performed as part of Pacific Northwest
National Laboratory’s Asymmetric Resilient Cybersecu-
rity research initiative towards using a multiscale view
of the network with the intent of achieving an efficient
approximation of the system’s state while trading off
some level of precision in the process, with the intent of
gaining an asymmetric advantage over a potential cyber
attacker. With this said, it is important to note that the
ultimate use of the concepts we develop here is to aid in
the efficient analysis of cyber systems for cyber defense.
However, before doing so, the theoretical foundations
and algorithms for multiscale graphs must be first
developed, and to this end, the vast focus of this paper is
on laying out these mathematical preliminaries, leaving
cyber-based applications of these formalisms for future
work. The main contributions of this paper are to present
some initial results on foundations and rudimentary
algorithms over multiscale graphs, with the underlying
intent of ultimately using this theory to model cyber
systems. The rest of the paper proceeds as follows:
Section II presents multiscale graphs, an analagous
definition of paths in these graphs, a multiscale variant
of the well-known Floyd-Warshall algorithm [5], and
discusses progress towards a software library imple-
menting these concepts as well as preliminary timing re-
sults demonstrating the potential efficiency gained when
using these methods. Section III discusses the notion of
reachability in multiscale graphs, and presents a notion
of probabilistic reachability intended to quantify the
likelihood of a node’s compromise within a network
under attack. Section IV concludes.

II. MULTISCALE GRAPHS AND SHORTEST PATHS
The concept of a multiscale graph is not particularly

complicated, or even a completely new one — see, for
instance [1], [3], [4], [6], [8]. At its simplest level, one
can view a multiscale graph as a traditional graph paired
with a hierarchical partition of its nodes. Figure 1
shows a simple example of a 3-level graph. Informally,
we view a multiscale graph as a traditional (“single-

978-1-4799-1535-4/13/$31.00 ©2013 IEEE 80

cliff
Text Box
Hogan, Emilie and Hui, Peter and Choudhury, Sutanay and Halappanavar, M and Oler, Kiri and Joslyn, Cliff: (2013) "Towards a Multiscale Approach to Cybersecurity Modeling", in: 2013 IEEE Int. Conf. on Technologies for Homeland Security (HST 2013), pp. 80-85, IEEE, https://doi.org/10.1109/THS.2013.6698980

A

B

C

D E

FG

H

IJ

1
2

3

1

1
2

2

1 2

15

20

100

10
20

(a)

A

B

C

D E

FG

H

IJ

1
2

3

1

1
2

2

1 2

15

20

100

10
20

(b)

a
g
g
(1
0,
20
)

agg(15, 20, 100)

(c)

agg(agg(10, 20), agg(15, 20, 100))

(d)

Fig. 1: An example constructing a multiscale graph.

scale”) graph combined with a hierarchical partition,
in which the nodes are successively partitioned into
supernodes at each level. In the example shown in
Figure 1, the base (level-0) graph consists of 10 nodes,
A through J . In the figure, (a) shows the base (level-0)
graph, which can be viewed as a traditional (single-
scale) graph consisting of nodes and edges. (b) shows
the process of creating a two level multiscale graph by
identifying A,B, and C into one (blue) node, D,E, F,
and G into another (green) node, and H, I, and J into a
third (red) one. (c) shows the resulting 2-level graph. (d)
shows the result of identifying the green and red nodes
into a single (black) node to create a 3-level multiscale
graph. The edges between supernodes are defined by an
abstract aggregation function, which takes the weights
of all edges between component subnodes, and returns
a single weight between the supernodes (e.g. min, max,
mean). Formal definitions follow (and are necessarily
brief due to space constraints):
Definition 1 (Hierarchical Partition over V). Let V be
a set of vertices. Then a hierarchical partition over V ,
Π = {Π0,Π1, . . . ,Πk}, is defined as follows:

(i) Πi is a partition of V for all i = 0, . . . , k,
(ii) Πi is a refinement of Πi+1 for all i = 0, . . . , k−1,

i.e., elements of Πi are partitioned, forming ele-
ments of Πi+1, and

(iii) Π0 = {{v}|v ∈ V } and Πk = {V }.
Note. A hierarchical partition over V forms a chain in
the partition lattice of V [2].
Definition 2 (Multiscale Graph). A multiscale graph G
is a tuple 〈V,E,w,Π, f〉, where
• V is the set of vertices
• E ⊆ V × V is the set of edges
• w : E → R is the weight function mapping

edges to their weights
• Π = {Π0, ...,Πk} is a Hierarchical Partition

over V , and
• f : R→ R is the aggregation function
The hierarchical partition Π defines a set of graphs

G = {G0, ..., Gk}, forming a hierarchy as follows:
• G0 = (V,E,w) = (V0, E0, w0)
• For all i > 0, Gi+1 = (Vi+1, Ei+1, wi+1) is

the graph formed by identifying all vertices in
a set πji+1 (where Πi+1 = {π1

i+1, ..., π
n
i+1})

into a single vertex which we name πji+1 ∈
Vi+1. Edges (v, w) ∈ Ei, where v ∈ πji and
w ∈ πki are contracted into a single edge
(πji+1, π

k
i+1) ∈ Ei+1, with corresponding edge

weights are defined by f .
• Gi is called the level-i graph.

Having now defined our concept of multiscale
graphs, we shift our attention to the multiscale analogs
of two very basic graph concepts — paths and path
distance. Informally, the basic idea is that for two nodes
πji , π

k
i ∈ Πi in the hierarchy, the length of a path

between the nodes, w(πji , . . . , π
k
i), is the sum of the

edge weights along the path, plus the length of the
worst case (longest) level i − 1 path through each
of the intermediate supernodes (under the assumption
that all intermediate supernodes along the path are
themselves fully connected— we revisit this assumption
in Section III). As usual then, the distance between
πji and πki , δ(πji , π

k
i), is the length of the shortest

path between πji and πki . The result is a pessimistic
definition, giving a worst-case approximation of the
length of the path from any subnode of πji to any
subnode of πki . More formally, we give a very natural
extension of the traditional definition of path length,
incorporating diameters, ø(π`i), of the supernodes along
a path as given by the following recursive definition:

δ(πji , π
k
i) =

min(w(p) : πji
p
 πki) if ∃ path p,

πji to πki
∞ otherwise

(1)

w(πji , ..., π
k
i) =

n−1∑
r=1

w(πpri , π
pr+1

i) +

n∑
s=1

ø(πpsi) (2)

ø(π`i) = max
πr
i−1,π

s
i−1∈π`

i

δ(πri−1, π
s
i−1) (3)

Equation 1 defines the length of the shortest path
between two nodes, equation 2 defines the weight of
a specific path— identical to the traditional definition
of pathweight, but now incorporating the diameters of
the nodes as well, and equation 3 defines the diameter
of a node.

These equations, then, give rise to a pair of algo-

81

rithms, shown in Algorithms 1 and 2, for computing our
multiscale version of Floyd-Warshall’s algorithm [9],
[11]. The algorithm is precisely the standard version
of the algorithm, with the following exceptions:
• Algorithm 1, Line 6: we now account for the

diameters of the nodes when initializing the d
matrix

• Algorithm 1, Line 12: we subtract the diameter
of the intermediate node; without doing so,
this diameter would be counted twice when
calculating the weight

• We include Algorithm 2 to recursively compute
the diameter of the supernodes. The recursion
terminates at the lowest level of the hierarchy.

Algorithm 1 Multiscale Floyd-Warshall

1: d = a |V |× |V | array of minimum distances initial-
ized to ∞

2: for i = 1 to |V | do
3: d[i][i] = 0
4: end for
5: for each edge u, v do
6: d[u][v] = w(u, v) + ø(u) + ø(v) {ø computed

using Algorithm 2}
7: end for
8: for k = 1 to |V | do
9: for i = 1 to |V | do

10: for j = 1 to |V | do
11: if i 6= k and k 6= j then
12: n = d[i][k] + d[k][j]− ø(k)
13: if n < d[i][j] then
14: d[i][j] = n
15: end if
16: end if
17: end for
18: end for
19: end for
20: return d

Up to this point, we have predicated our discussion
on the assumption that by trading off some degree of
precision, a multiscale, hierarchical view of the network
(graph) provides the opportunity to gain efficiency in
exchange. We next show informally how this can be
the case in some situations. Due to space constraints,
we defer a more thorough analysis for later work.
Notation. Let T (i) be the time complexity of Algo-
rithm 1 on a graph at level i of its hierarchy. For the
sake of this discussion, we assume that at each level
of the hierarchy, nodes are partitioned equally, and let
Nm = |Πm| be the number of nodes at level m of the
hierarchy.
Example 1. The three-level multiscale graph in Figure
1 has N0 = 10, N1 = 3, and N2 = 2.

Consider a three-level hierarchy. T (1), the time to
run Algorithm 1 on the first level of the hierarchy is

Algorithm 2 ø: Compute the diameter of the given
supernode
g : The supernode of which we are computing the
diameter

1: d = MFW (g) {MFW = Multiscale Floyd-
Warshall, computed using Algorithm 1}

2: max = −1
3: for i = 1 to |V | do
4: for j = 1 to |V | do
5: m = d[i][j]
6: if m 6=∞ and m > max then
7: max = m
8: end if
9: end for

10: end for
given by

T (1) = O
((N0

N1

)3
·N1

)
︸ ︷︷ ︸

(1)

+O(N3
1)︸ ︷︷ ︸

(2)

= O
(N3

0

N2
1

)
+O(N3

1).

Quantity (1) gives the time required to run Floyd-
Warshall on each of the N1 nodes, each consisting of
N0

N1
vertices, and quantity (2) gives the time required to

run Floyd-Warshall at level 1.
Similarly, computing the values at the second level

would require a running time of

T (2) = T (1) +O

((N1

N2

)3
·N2

)
+O(N3

2)

= O
(N3

0

N2
1

)
+O(N3

1)︸ ︷︷ ︸
T (1)

+O
(N3

1

N2
2

)
+O(N3

2).

And in general, computing the values at the n’th
level requires a running time of

O

(
n∑
i=1

(N3
i−1
N2
i

+ N3
i

))
.

As one would expect, then, the overall running time
depends on how nodes are partitioned into groups at
each level. For example, consider a system in which the
Ni nodes at the i’th level are partitioned into roughly√
Ni groups. In a three-level system, then, we have that

N1 = Θ(N
1
2
0), N2 = Θ(N

1
2
1) = Θ(N

1
4
0), and hence

that the running time of Algorithm 1 is given by

T (2) = O
(N3

0

N0

)
+O(N

3
2
0) +O

(N 3
2
0

N
1
2
0

)
+O(N

3
4
0)

= O(N2
0).

which gives an asymptotic improvement over N3
0, the

running time of (traditional) Floyd-Warshall over the
base graph. Certainly a more rigorous, extensive anal-

82

ysis is required to show the precise conditions under
which Algorithm 1 gives asymptotic improvement in
running time, but due to space constraints, we leave
our analysis at this example. The point here is to show
that there are situations in which a multiscale view
of the network, coupled with multiscale variants of
algorithms such as Floyd-Warshall, hold the potential
for gaining improved efficiency in exchange for reduced
precision. We leave a formal analysis of exactly when
these conditions hold for future work.

We conclude this section with a brief note on an
implementation in progress as part of our larger effort
towards developing OpenMSG, an open source, multi-
scale graph library. Specifically, we have an initial C++
codebase which implements Algorithms 1 and 2.

As a compelling argument demonstrating the poten-
tial improvement using our proposed multiscale meth-
ods, Figure 2 gives a concrete comparison of our imple-
mentation on a 3-level multiscale graph to the traditional
version on the corresponding flat graph. Specifically,
timing measurements were taken over varying sizes of
two classes of randomly generated graphs, with the mul-
tiscale versions partitioned to three hierarchical levels,
with the Nn nodes at level n partitioned into O(

√
Nn)

supernodes (as in the above discussion).The first of
these graph classes is that of a scale-free network (i.e.,
one whose degree distribution asymptotically follows a
power law), and is intended to show performance of
our library over a sparse graph. The second class of
graphs are Erdős-Rényi random graphs (with parameter
0.5, indicating a probability of 50% of an edge between
two vertices), and is intended to show performance over
dense graphs.

The results show significant performance gains in
this case; the best cases (both sparse and dense graphs
of 103 vertices) yield improvements on the order of 3-4
orders of magnitude, while the largest cases (sparse and
dense graphs of 104 vertices) complete in approximately
2 seconds in the multiscale case, and take in excess of 24
hours in the flat case. As a side note, these graph sizes
are comparatively small in context; for example, cyber
networks can conceivably exceed millions of nodes in
larger networks.

While these numbers should not be entirely sur-
prising given the comparative time complexity of the
respective algorithms, these results nonetheless exem-
plify the potential drastic improvement in running time
attainable when taking a multiscale view of the system
as compared to a flat view of the same network. The
measurements were taken on a 2.1GHz, 32-core AMD
Opteron processor with 64GB RAM, running RedHat
Linux.

III.REACHABILITY
Up to this point, we have focused exclusively on the

notion of paths and path distance within a multiscale
graph. We now shift our attention to the related notion

of reachability. Specifically, by shifting to a multiscale
view of the system, the precise definition of reachability
within the network is no longer clear.

To this end, we define the question of multiscale
reachability in the following manner: Given two supern-
odes, πji and πki , are all nodes within πki reachable from
all nodes within πji ? If there is no path from πji to πki
in Gi then clearly the answer is “no”. The converse
does not hold, however — connectivity between πji and
πki does not imply that all subnodes of πji and πki are
necessarily connected. Figure 3 gives an example — in
this figure, π0

i is reachable from π2
i , but not all vertices

in π0
i are reachable from π2

i . Briefly, our motivation
behind this question can again be viewed in terms of
cyber system defense. For example, if a machine on
subnet A is known to have been compromised, a cyber
system defender may want to gauge the probability that
the intruder could have compromised a system on subnet
B as well.

To this end, we formulate the notion of reachability
in a probabilistic manner: given supernodes πji and πki
what is the probability that a randomly chosen vertex
within πji can reach a randomly chosen vertex within
πki ?

A. Probabilistic Reachability
In Section II we did not discuss the possibility of

ø(πki) = ∞. If the set of edges within πki forms a
disconnected graph then the diameter at that vertex
will be infinity. However, it is still possible to have a
path that goes through this vertex with finite weight.
For example, in Figure 3 the length of the shortest
path, as calculated in Algorithm 1, is infinity since
ø(π1

i) = ø(π3
i) = ∞. For some pairs of vertices in

π0
i and π2

i this path length of infinity is correct, but for
other pairs there is a finite length path. After making
this observation, it seems that a probabilistic argument
is needed to be able to say, for example, The length of
the shortest path from an arbitrary vertex in π0

i to an
arbitrary vertex in π2

i is infinity with probability p and
some finite value with probability 1− p.

We propose two approaches to this probabilistic
reachability. In both, we restrict to the case where we
have three levels in a hierarchical partition over V ,
Π = {Π0,Π1,Π2}. Partitions Π0 and Π2 are given
as in Definition 1. Each supernode, πi1 ∈ Π1, consists
of connected components {V i,m1 }`im=1. In Figure 3 the
connected components within π1

1 and π3
1 are shown.

1) Probabilities based on edge density
The first approach is based on the sizes of the

supernodes and connected components within each su-
pernode, and the edge density of the graph. We will
compute the probability that an arbitrary v ∈ πj1 can
reach an arbitrary w ∈ πk1 given that there is an edge
(πj1, π

k
1) ∈ E1. Notice that the subscript here is 1

indicating that we are at level-1. However, this approach

83

of Vertices
1000 5000 10000

Multiscale Sparse (Scale-Free) 0.67s 1.31s 2.41s
Dense (Erdős-Rényi) 0.49s 0.74s 2.73s

Flat (Single-scale) Sparse (Scale-Free) 373.17s 60000s > 24h∗
Dense (Erdős-Rényi) 2793.59s > 24h∗ > 24h∗

∗ indicates run was terminated prematurely due to excessive running times

Fig. 2: Timing results comparing traditional (single-scale) Floyd-Warshall vs. an implementation of our multiscale
variant on two classes of randomly generated multiscale graphs. Of particular note is the improvement in running
time gained when running the multiscale algorithm over the traditional version.

will generalize to an arbitrary level.

Pj,k := P
[
v ∈ πj1

p
 w ∈ πk1

∣∣∣ (πj1, π
k
1) ∈ E1

]
.

In order for this event to occur we must have some vr in
the same connected component as v, and ws in the same
connected component as w such that (vr, ws) ∈ E0.
Say that v, vr ∈ V j,m1 and w,ws ∈ V k,`1 . Then the
probability above is equal to

Pj,k = P
[
∃vr ∈ V j,m1 ,∃ws ∈ V k,`1 : (vr, ws) ∈ E0 |

(πj1, π
k
1) ∈ E1

]
.

Let’s abbreviate the first event, before the conditional,
as E[j,m; k, `]. Now we can calculate Pj,k based on
E
[
|V j,m1 |

]
, the expected value of the size of a con-

nected component, for each j, |πj1|, |πk1 |, and the edge
density p = |E0|

(|V0|
2)

. First we rewrite Pj,k using Bayes’

theorem.

Pj,k =
P
[
(πj1, π

k
1) ∈ E1 | E[j,m; k, `]

]
P [E[j,m; k, `]]

P
[
(πj1, π

k
1) ∈ E1

]
In the numerator, the conditional probability is 1 be-
cause of how E1 is created from edges in E0. So, we
can rewrite Pj,k as follows.

=
P
[
∃vr ∈ V j,m1 ,∃ws ∈ V k,`1 : (vr, ws) ∈ E0

]
P
[
(πj1, π

k
1) ∈ E1

]
=

1− P
[
∀vr ∈ V j,m1 ,@ws ∈ V k,`1 : (vr, ws) ∈ E0

]
1− P

[
(πj1, π

k
1) /∈ E1

]
=

1− (1− p)E[|V j,m
1 |]E[|V k,`

1 |]

1− (1− p)|πj
1||πk

1 |

It’s not difficult to show that E
[
|V j,m1 |

]
is simply the

average size of the components in πj1, for any j.
From this we can calculate the probability of general

reachability by finding a level-1 path and taking the
product of the probabilities on each edge. Now, there
are likely multiple level-1 paths, and it’s possible that
the path with the highest probability is not the shortest

π01

π11

π21

π31

c00

c10
c20

V 1,0
1

V 1,1
1

V 3,0
1

V 3,1
1

V 3,2
1

Fig. 3: Example graph for demonstrating reachability
option described in Section III-A2.

distance path.

2) Probabilities based on connected components in Π0

This approach is based on the interplay between con-
nected components within G0, {c`0}, and the partitions
{πj1}nj=1. The basic idea is being able to travel along
connected components that span multiple partitions. So,
we must first precompute connected components on the
lowest level of the hierarchy.

1) Compute the connected components of G
2) Create a bipartite graph, B = ({πj1} ∪ {c`0}, F),

where (πj1, c
`
0) ∈ F if πj1 ∩ c`0 6= ∅.

3) Edges, (πj1, c
`
0) ∈ F , are weighted with the prob-

ability of being in connected component c`0 when
in partition πj1.

w(πj1, c
`
0) =

|πj1 ∩ c`0|
|πj1|

For example, consider the graph in Figure 3 where
the partitions are given as the circled sets of nodes,
π0
1 , . . . , π

3
1 . The connected components are identified by

the colors of the vertices. Vertices colored blue are in
c00, purple vertices are in c10, and orange is c20. Given
this we can create the bipartite graph described in step
3 above. This graph is found in Figure 4.

Now that we have this bipartite graph we can calcu-
late probabilities for reaching a vertex in one partition

84

π01 π11 π21 π31

c00 c10 c20

2/5

3/5
4/7

3/7

1/2

1/2

7/11
4/11

Fig. 4: The bipartite graph representing the intersection
between partitions and connected components.

from a vertex in another. Notice that a path of length
two in the bipartite graph from πj1 to πk1 represents a
possible way of traveling from partition j to partition
k. For example, consider the path π2

1 → c20 → π1
1 .

This represents starting at a vertex in partition π2
1 ,

traveling through connected component c20, and ending
up in partition π1

1 . We can then use the probabilities
on the edges of the bipartite graph to calculate the
probability of reaching any vertex in π1

1 from any vertex
in π2

1 on the given path. Any longer path would mean
that we transferred traveled through more than one
connected component. This cannot happen, therefore we
can restrict our attention only to paths through B of
length two.

Choose an arbitrary vertex in π2
1 , then the first edge

in our chosen 2-path through the bipartite graph tells
us that there is 1

2 probability that we are on a vertex in
connected component c20. Then, when we travel along
that connected component into partition π1

1 the next
edge tells us that we have 3

7 probability to be on an
arbitrarily chosen vertex in π1

1 . Therefore, given v2 ∈ π2
1

and v1 ∈ π1
1 we have 1

2 ·
3
7 = 3

14 probability of reaching
v1 from v2 via connected component c20. Similarly, the
path π2

1 → c00 → π1
1 has probability 4

14 . The bipartite
graph tells us that these two paths are the only way to
reach from a vertex in π2

1 to π1
1 so we can say that the

total probability is

P[v2 ∈ π2
1 → v1 ∈ π1

1] =
3

14
+

4

14
=

1

2
We can formalize this process (for undirected

graphs) as follows. Given two partitions, πj1 and πk1 , find
the set of their common neighbors in B. This will be
the connected components that intersect both partitions.
Add together the product of the probabilities along each
2-path πj1 → c`0 → πk1 to get the total probability of
reachability.

P
[
v ∈ πj1 → w ∈ πk1

]
=∑

c`0∈N (πj
1)∩N (πk

1)

w(πj1, c
`
0)w(c`0, π

k
1).

This method has the advantage of knowing that we
have considered all possible paths since we can only
look at 2-paths through B. However, it relies on being
able to precompute connected components in G0, a
possibly computationally intensive step.

IV.CONCLUSION
We have laid out some initial theoretical foundations

underlying multiscale graphs, ultimately intended for
use in computing efficient approximations of network
metrics in a cyberdefense setting. While the vast bulk
of the paper has been devoted to these mathematical
formalisms, we have alluded to ways that these meth-
ods can be used in such applications. For example,
our algorithm for computing multiscale shortest paths
at at any level of the hierarchy, could be used to
determine distance of a cyber-attacker to a sensitive
resource. Furthermore, we have shown empirically that
at least in some situations, our methods can lead to
drastic improvements in running time. We have also laid
the groundwork for computing a probabilistic notion
of reachability, providing analysts with a method of
gauging the likelihood that a sensitive machine has been
compromised. Clearly, this is only the beginning. How
can these methods be used on network data? What
are some other use case scenarios that could benefit
from a multiscale view? And how can these concepts
be used to define, for instance, a multiscale notion
of clustering coefficients and centrality? These are all
important questions which we plan to address as our
next steps.

REFERENCES
[1] James Abello. Hierarchical graph maps. Computers & Graph-

ics, 28(3):345–359, 2004.
[2] Garrett Birkhoff. Lattice Theory. Colloquium Publications,

American Mathematical Society, 1995.
[3] Aaron Clauset, Cristopher Moore, and Mark EJ Newman.

Structural inference of hierarchies in networks. In Statistical
network analysis: models, issues, and new directions, pages 1–
13. Springer, 2007.

[4] Aaron Clauset, Cristopher Moore, and Mark EJ Newman.
Hierarchical structure and the prediction of missing links in
networks. Nature, 453(7191):98–101, 2008.

[5] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Intro-
duction To Algorithms. MIT Press, 2001.

[6] Sivarama P Dandamudi and Derek L. Eager. Hierarchical in-
terconnection networks for multicomputer systems. Computers,
IEEE Transactions on, 39(6):786–797, 1990.

[7] Patricia Derler, Edward A. Lee, and Alberto Sangiovanni
Vincentelli. Modeling cyber-physical systems. Proceedings
of the IEEE, 100(1):13–28, January 2011.

[8] S. Ferrari, M. Maggioni, and N.A. Borghese. Multiscale ap-
proximation with hierarchical radial basis functions networks.
Neural Networks, IEEE Transactions on, 15(1):178–188, 2004.

[9] Robert W. Floyd. Algorithm 97: Shortest path. Communications
of the ACM, 5(6):345, June 1962.

[10] Jeremy Siek, Lie-Quan Lee, and Andrew Lumsdaine. The
Boost Graph Library. http://www.boost.org/libs/graph/, June
2000.

[11] Stephen Warshall. A theorem on Boolean matrices. Journal of
the ACM, 9(1):11–12, January 1962.

85

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 3.6000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 3.6000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryList_V1
 qi2base

