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Abstract

We address the question of how to identify and

measure the degree of intelligence in systems.

We de�ne the presence of intelligence as equiv-

alent to the presence of a control relation. We

contrast the distinct atomic semioic de�nitions

of models and controls, and discuss hierarchi-

cal and anticipatory control. We conclude with

a suggestion about moving towards quantitative

measures of the degree of such control in systems.

1 Introduction: A Control

Theory Framework for Intel-

ligence

We consider some of the challenges presented in

the white paper designed to prepare for this con-

ference [13]. I take the fundamental question to

be \How can we as external observers measure

the degree of intelligence in a target system?"

One approach is to invoke the typical lists

which can characterize intelligent behavior, in-

cluding adaptability, complexity of internal mod-

els, problem solving ability, etc. But what is

fundamental to each of these? For example,

adaptability is the ability to adjust responses

to make them appropriate under variable condi-

tions. Problem solving is the ability to come to

�Prepared for the 2000 Workshop on Performance

Metrics for Intelligent Systems.

a correct choice about actions to achieve a par-

ticular goal, hereby solving the problem. And

�nally, complexity of internal models must al-

ways be considered as relative to their ability to

predict the outcome of future behaviors.

Thus can see that fundamental to all of these

is the idea that intelligence requires the ability

of a system to make appropriate decisions given

the current set of circumstances [1, 2, 3]. On

analyzing this a bit further, we can identify the

following necessary components:

Measurement: The ability to know the current

set of circumstances.

Decision: The freedom to choose between one

of many posibilities.

Goal: The possibility that the choice made will

be either appropriate or inappropriate rela-

tive to a goal state.

Action: The ability for the decision to a�ect ex-

ternal and future events, in order for them

to be either closer to or further away from

the goal.

2 Intelligence as Semiotic Con-

trol

We note the similarity to the scheme of an intel-

ligent system as outlined in the conference White
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Paper [13]. This requires a \loop of closure" con-

sisting of six modules: a world interface, sensors,

perception, a world model, behavior generation,

and actuation. We understand this situation as

the existence of a semiotic control system. We

know briey outline the theory of semiotic sys-

tems.

2.1 Semiotic Models and Controls

There is a rich literature (eg. [5, 15, 17, 18, 19]),

traceable back to the founders of systems theory

and cybernetics in the post-war period [4], which

has tried to construct a coherent philosophy of

science based on two fundamental concepts:

� Models as the basis not only for a consis-

tent epistemology of systems, but also as an

explanation of the special properties of liv-

ing and cognitive systems.

� Control systems as the canonical form of

organization involving purpose or function.

While controls and models are distinct kinds of

organization, what they share is a common ba-

sis in semiotic processes, in particular the use of

a measurement function to relate states of the

world to internal representations. Perhaps for

this reason there has been some ambiguity in

the literature about the speci�c nature of con-

trols and models, and more importantly how the

interact. This has led to confusion, for exam-

ple, about the role of feedback vs. feedforward

control, and endo-models within systems vs. exo-

models of systems.

Consider �rst a classical control system as

shown in Fig. 1. In the world (the system's en-

vironment) the dynamical processes of \reality"

proceed outside the knowledge of the system.

Rather, all knowledge of the environment by the

system is mediated through the measurement

(perception) process, which provides a (partial)

representation of the environment to the system.

Based on this representation, the system then

chooses a particular action to take in the world,

which has consequences for the change in state

of the world and thereby states measured in the

future.
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Figure 1: Functional view of a control system.

To be in good control, the overall system must

form a negative feedback loop, so that distur-

bances and other external forces from \reality"

(for example noise or the actions of other exter-

nal control systems) are counteracted by com-

pensating actions so as to make the measured

state (the representation) as close as possible to

some desired state, or at least stable within some

region of its state space. If rather a positive

feedback relation holds, then such uctuations

will be ampli�ed, ultimately bringing some crit-

ical internal parameters beyond tolerable limits,

or otherwise exhausting some critical system re-

source, and thus leading to the destruction of the

system as a viable entity.

Now consider the canonical modeling relation

as shown in Fig. 2. As with the control rela-

tion, the processes of the world are still repre-

sented to the system only in virtue of measure-

ment processes. But now the decision relation is

replaced by a prediction relation, whose respon-

sibility is to produce a new representation which

is hypothesized to be equivalent (in some sense)

to some future observed state of the world. To

be a good model, the overall diagram must com-

mute, so that this equivalence is maintained.

As outlined here, models and controls are dis-

tinct and atomic kinds of organization. We have

argued [8] that this capability begins with living

systems, and perhaps de�ned the necessary and

su�cient conditions for living systems.
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Figure 2: Functional view of the modeling rela-

tion.

2.2 Hierarchical Control

Of course, all of the relations described here are

a great deal more complex in real intelligent sys-

tems. In particular, usually controls and models

are considered together. This concept is fully de-

veloped elsewhere [7, 9]. We now summarize the

primary results of these considerations.

First, the classical view of linear control sys-

tems theory [14] is recovered by introduced a

\computational" step which plays the role of cog-

nition, information processing, or knowledge de-

velopment. Typically, extra or external knowl-

edge about the state of the world or the desired

state of a�airs is brought to bear, and provided

to the agent in some processed form, for example

as an error condition or distance from optimal

state. So now measured states are manipulated

and compared to a goal state.

In particular, we are impressed by Bill Pow-

ers system for hierarchical control [15, 16, 6],

which he has succesfully generalized to explain

the architecture of neural organisms. As shown

in Fig. 3, he views the computer as a compara-

tor between the measured state and a hypothet-

ical set point or reference level (goal). This then

sends the second representation of an error signal

to the agent. He also explicitly includes reference

to the noise or disturbances always present in the

environment, against which the control system

is acting to maintain good control. For us, these

are bundled into the dynamics of the world.

Another great virtue of Powers' control theory
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Figure 3: A Powers' control system.

model is its hierarchical scalability. Fig. 4 shows

such a hierarchical control system, containing an

inner level 1 and the outer level 2. The �rst key

move here is to allow representations to be com-

bined to form higher level representations. In

the �gure S1 and S2 are low distinct level sensors

providing low level representations R1 and R2 to

the inner and outer levels respectively. But R1

is also sent to the higher level S3, and together

they form a new high level representation R3.

The second step is the ability for the action of

one control system to be the determination of the

set-point of another, thus allowing goals to de-

composed as a hierarchy of sub-goals. In the �g-

ure, the outer level uses R3 to generate the action

of �xing the set point of the lower level. Note

how this recovers Meystel et al's \Feature 10" of

multiscale knowledge representation where the

action of a lower level system is actually the goal

of an upper level system [13].

Notice also that the overall topology of the

control loop is maintained. While ultimately the

lower level is responsible for taking action in the

world, it is doing so under the control of the com-

parison of a high-level goals against a high-level

representation. Neural organisms especially are
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Figure 4: Hierarchical nesting of Powers' control

systems.

systems of this type, low-level motor and percep-

tual systems combining to accomplish very high-

level tasks. And of course, determination of the

outermost goal is not included within Powers'

formal model.

2.3 Anticipatory Control

While familiar to us as a standard engineering

discipline, a number of researchers are pursuing

the applicability of this kinds of semiotic control

[12]. It is also being generalized to a number of

other engineering [2] and scienti�c domains.

However, our normal sense of control combines

it with models, which are used to aid in decision-

making by predicting future states of anticipated

actions, using prediction of future events to guide

actions. This is what Ashby refers to as \`cause

control" [4], or Rosen as \anticipatory" [17], or

Klir as feedforward [10]. In this architecture an

endo-model embedded within a control system is

used to make a decision as to which action to

take, and thus acts in the role of the agent. It is

this view which most dominates our conception

of the nature of control in general.

However, this architecture is actually highly

complex and special. It is shown in Fig. 5, where

now the agent is replaced by an inner system

which is both a model and a control system (the

arrows have been reected diagonally to make

the graph planar and ease the drawing). This

inner system is a control system in the sense that

there are states of its \world", its \dynamics",

and an \agent" making decisions.

However, it is also a model in that the states

of its \world" are in fact representations, and

its \dynamics" is actually a prediction function.

The inner system is totally contained within the

outer system, and runs at a much faster time

scale in a kind of modeling \imagination". The

representation R from the sensors is used to in-

stantiate this model, which takes imaginary ac-

tions resulting in imaginary stability within the

model. Once this stability is achieved, then that

action is exported to the real world.

Note that the outer control loop here is simple,

lacking computation. In Powers' terms, there is

no set point which the state of the internal model

is being compared to. But this could be present

in a slight elaboration where an imaginary mea-

surement is taken from \world0" and compared

to some set point. The outer error signal would

then be fed to change the imagined actions inside

the model until stability is achieved.

3 Tests for the Presence of

Control

Thus we have now transformed the original ques-

tion of \how do we measure intelligence?" to

\How can we as external observers determine

whether a target system manifests control rela-

tions with its environment?" and \How can we

then measure the degree and modalities of that

relation?" I would then o�er some ideas based

on the work of Powers and his colleague Rick

Marken [11, 15, 16].
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Figure 5: Anticipatory control.

They address the question from the follow-

ing perspective. Control relations, in virtue of

the stability of the controled variables in the en-

vironment, have many of the characteristics of

other equilibrium phenomena. Both the thermo-

stat and the ball rolling to a stop at the bottom

of a hill evidence this kind of stability behavior.

In the �rst case, the ball does not want to roll

down the hill, but in a very real sense, the ther-

mostat does want to regulate its \perception" of

the state of the room temperature.

So how can we distinguish a complex dynamic

equilibrium from a control relation? Powers and

Marken do this distinguishing on the basis of

what they call The Test. It involves the sys-

tem acting in a way which is counter to physical

law: if the ball failed to roll down the hill, we'd

be surprised, thus we hypothesize that such a

ball is manifesting a control relation. Similarly,

we would normally expect a room to come to

equilibrium with its environment. When it does

not, and we believe our dynamical model, then

we would hypothesize the presence of a control

device, and we might investigate and discover a

thermostat. The \intelligence" of such systems

is based on their manifesting a semiotic relation

which has been selected by evolution or by de-

signers, allowing the system to \choose" to act

counter to physical law.

Now the rub is that this Test thereby requires

the prior presence of a model of what the sys-

tem should be doing, so that we can be surprised

when it fails to do so. Thus our recognition of a

control relation in an exogenous system requires

of us an exogenous model of reality, whether or

not the system has any endogenous model itself.

4 Towards a Measure of

Control-Based Intelligence

So now, given this semiotic control-based view

of intelligence, we wish to go on and attempt to

quantify and characterize the degree and kind of

control relations present. Thus the problem of

measuring intelligence revolves around our abil-

ity to measure:



� The amount of phenomena under control;

� The number of environmental distinctions

measured by the system;

� The complexity of modalities of measure-

ment and control;

� The complexity of the environmental variety

available to the measurement and control of

the system;

� If hierarchical control is present, what is the

depth of the hierarchy of control; and

� If anticipatory control is present, what is the

complexity of the internal, endogenous mod-

els?

No doubt in both real and designed systems

these are all related to each other in complex

ways. However, each of these quantitative terms

is e�ectively a statistical information measure,

a measure of variety or freedom. Thus th are

ammenable to information-theoretical measures

like entropies, based on quantities of variety, dis-

tinctions, and constraints which a control system

can recognize in its environment and then act on

in appropriate ways.
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