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Abstract

We provide a conceptual analysis of ideas and principles from the systems theory discourse which underlie Pattee’s
semantic or semiotic closure, which is itself foundational for a school of theoretical biology derived from systems
theory and cybernetics, and is now being related to biological semiotics and explicated in the relational biological
school of Rashevsky and Rosen. Atomic control systems and models are described as the canonical forms of semiotic
organization, sharing measurement relations, but differing topologically in that control systems are circularly and
models linearly related to their environments. Computation in control systems is introduced, motivating hierarchical
decomposition, hybrid modeling and control systems, and anticipatory or model-based control. The semiotic relations
in complex control systems are described in terms of relational constraints, and rules and laws are distinguished as
contingent and necessary functional entailments, respectively. Finally, selection as a meta-level of constraint is
introduced as the necessary condition for semantic relations in control systems and models. © 2001 Elsevier Science
Ireland Ltd. All rights reserved.
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1. Introduction

Consider the most central questions of modern
interdisciplinary science, or ‘‘natural philosophy’’,
including the following:

� How do we understand the use of the concepts
of order, organization, complexity, informa-
tion, etc., in systems of various types? How can
they be characterized and measured?

� What is the nature of information as distinct
from matter and energy in the natural world,
how does it arise, and how is it incorporated
into systems?

� How can these concepts be used to create
interdisciplinary scientific theories finding com-
mon structures and evolutionary processes in
socio-technical, ecological, psychological, bio-
logical, and physical systems?

� Prepared for a special issue of Biosystems on the Physics
and Evolution of Symbols and Codes, a festschrift for Howard
Pattee.
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When we consider these questions in general,
and then in specific systems across the full cosmic
range of time scales, the problem of the origins of
life appears to provide a central focus. It is here
that we first see the appearance of the controlled
organization of matter, of evolutionary processes
leading to a cascading hierarchy of increasing
complexity at emergent levels above the physical,
of the codification and use of information in
systems, and of control and modeling processes
internal to systems.

It has been proposed in the modern biosemi-
otics school that the problem of the origins of life
is equivalent, or at least coextensive, with that of
the origins of control, semiotic relations, or sym-
bolic or semantic information (Deely, 1992;
Hoffmeyer, 1996; Joslyn, 1998). In this context,
concepts of statistical (Pattee, 1973), semantic
(Pattee, 1982, 1995), or semiotic closure has pro-
vided a central touchstone not only for theoretical
biology, but also in systems theory and cybernet-
ics for understanding the broader series of evolu-
tionary systems.

The linkage of concepts and literature from
general systems theory and cybernetics on the one
hand, and semiotic theory on the other, is quite
welcome, as it serves to elucidate ideas from both.
For example, the relationship of systems and in-
formation theoretical concepts of organization
and complexity benefit greatly when combined
with those of semantics, meaning, and interpreta-
tion from semiotics. Perhaps the best place to see
this synthesis is the rich literature (e.g. Powers,
1973; Turchin, 1977; Rosen, 1985; Campbell,
1987; Cariani, 1989; Rosen, 1991; Joslyn, 1997;
Cariani, 1998), traceable back to the founders of
systems theory and cybernetics in the post-war
period (Ashby, 1956), which has tried to construct
a coherent philosophy of science based on two
fundamental concepts:
� Models as the basis not only for a consistent

epistemology of systems, but also as an expla-
nation of the special properties of living and
cognitive systems.

� Control systems as the canonical form of orga-
nization involving purpose or function.
While controls and models are distinct kinds of

organization, what they share is a common basis

in semiotic processes, in particular the use of a
measurement function to relate states of the world
to internal representations. Perhaps for this rea-
son there has been some ambiguity in the litera-
ture about the specific nature of controls and
models, and more importantly how they interact.
This has led to confusion, for example, about the
role of feedback vs. feedforward control, about
endo-models within systems vs. exo-models which
we as observers construct of systems, and about
the various forms and natures of circular
causality.

In this paper, we seek to explicate the nature of
control and modeling relations in systems of all
types, as a first step to understanding their origin,
development, and evolution. We begin by laying
out the conceptual foundations of any control
system from a semiotic perspective. We contrast
the control relation with the modeling relation,
which forms the other canonical semiotic relation
between a system and its environment. These
share the fundamental semiotic measurement, or
perception, functions, but are contrasted by their
linear and circular topologies, respectively. Hy-
brid and hierarchical representations are devel-
oped, casting the modeling relations within the
context of an active control system.

The relations present in control systems and
models can be understood in terms of the funda-
mental cybernetic concepts of variety and con-
straint among classes of phenomena. We will see
how semiotic concepts such as syntactic and se-
mantic relations can be understood as forms of
constraint in this relational sense. What is espe-
cially interesting is when there is the ability for a
constraint to be itself variable at a higher level of
analysis. This allows recovery of selection as a
form of constraint on a pragmatic basis (whether
through natural evolution for survival or by hu-
man design to perform functions we desire),
which is the hallmark of semantic relations and
the presence of a semiotic system.

Finally, after unpacking these concepts to this
level, we are able to come to a better understand-
ing of the concepts at stake in various formula-
tions of semantic or semiotic closure.
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2. Preliminaries

We begin with some preliminary consider-
ations.

2.1. Complementarity of models

Below we explicate the nature of semiotic rela-
tions, and models and controls in particular.
These concepts are so fundamental to the modern
cyber-semiotic perspective that it is difficult to do
this in a ‘‘foundationalist’’ way, separating the
axioms cleanly from the conclusions. In particu-
lar, we use the concept of a ‘‘model’’ below in at
least three complementary ways. First, models in
the abstract sense are explicated in Section 3.1.
Then, ‘‘endo-models’’ are introduced in Section
5.3 as internal components of complex control
systems, which anticipate future states.

But in addition, it should be understood that
we agree with Sebeok (1988) that semiotics de-
mands or creates an overall ‘‘cybernetic theory of
modeling’’ wherein all knowledge (including, for
example, this paper) is seen as a form of model-
building on the part of organisms and subjects.
Thus in particular, each of the concepts explicated
and diagrammed below is understood to be itself
an ‘‘exo-model’’, constructed by an abstract ob-
server (a surrogate for the author), of some par-
ticular representation or view of a hypothetical
class of systems.

2.2. Diagrammatic approaches and category
theory

Our approach is inspired in some ways by the
direction of Rosen (1991) and others ho have
suggested category theory was a new canonical
language for systems theory (Goguen, 1991) and
relational biology (Louie, 1985). They assert that
category theory’s invocation of relational con-
cepts and graph theoretical and graphical (in the
sense of visual) representations is more appropri-
ate than set theory for representing the complex
relations in systems (Joslyn, 2001). While we do
not use category theory per se, we do make our
arguments here using primarily abstract, but semi-
formal, diagrams representing relations of various

types. We hope that further consideration can
lead to a more formal treatment in the future.

2.3. Perspecti�e on semiotics

Our approach is fundamentally from within the
discourse of systems theory and cybernetics and
its perspective on information theory as a poten-
tial grounding for a universal science (Klir, 1991).
However, we believe that semiotics is required to
be injected into that discourse to provide a richer
perspective on the use and nature of information
in descriptions of real systems. We acknowledge
the value of the post-modern perspective on ‘‘sec-
ond order cybernetics’’ and its emphasis on the
necessary relativity of all descriptions to a collec-
tion of coherentist observational frames provided
by interacting subjects. But similar to Umpleby
(1989), we also remain committed to the value of
formal foundations which describe aspects of real-
ity for the accomplishment of particular purposes
to some level of accuracy or specificity. As such
we draw our semiotic grounding not from any
particular school or theory, but liberally from
modern approaches which attempt to merge semi-
otics with formal representations of information,
as in the work of Eco (1979), Dretske (1982), and
Meystel (1996).

2.4. Systems foundations

Our approach is rooted in general systems the-
ory, which seeks to describe the general classes of
relations which systems can have with their envi-
ronments. We recognize (Joslyn, 1995, 2000) both
the ‘‘structural’’ view of systems as holistic collec-
tions of interacting parts (as in the multi-dimen-
sional relational approach of Mesarovic and
Takahara (1988)); and the ‘‘constructivist’’ view
which avoids concepts of existing entities with
objective attributes, instead defining a system as a
bounded region of some (perhaps abstract) space
which functionally and uniquely distinguishes it
(Spencer-Brown, 1972; Goguen and Varela, 1979).
Both views entail an explicit expression of the
concept of the boundary or distinction between
system and environment, and thus in all instances
we consider only a frame of reference fixed to a
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particular given system–environment coupling or
distinction.

As shown on the left of Fig. 1, a single system
is considered coupled to an ‘‘absolute environ-
ment’’. Of course, the labels could easily be in-
verted. Indeed, the recognition of abstract
‘‘environments’’ relative to ‘‘systems’’ is thus
somewhat arbitrary, depending perhaps on the
observer’s perspective or on the relative spatial or
temporal scales present.

Also, systems come in collections, or ‘‘soci-
eties’’, which can make the system–environment
distinction or coupling complex. In particular, as
shown on the right of Fig. 1, systems in collec-
tions interact with ‘‘relative environments’’ con-
sisting of the ‘‘physical’’ environment as well as
all the other systems. This formulation can also be
somewhat arbitrary, but will be useful to us below
in Section 4.2.

2.5. Throughputs and closures

Consider a single system S coupled to its envi-
ronment E. In the structural view S and E are
represented as multi-dimensional mathematical re-
lations. When at least one dimension in both S
and E participates as informational or relational
flows through the system–environment boundary,
then S and E can be cast as input/output systems.

Denote g : E�S as the (abstract) relations from
the environment to the system, and f : S�E as
those back from the system to the environment.
In any particular system–environment coupling
such relations are interpreted in particular ways,
for example as entailments, forces, influences, etc.

Logically, we can then recognize only two gen-
eral forms of these relations:
� When the inputs and outputs of f and g are

distinct, then we recognize only input/output
relations which flow through the boundary in
one or the other direction. These we will call
linear (in the sense of ‘‘one way’’, not to be
confused with linear algebraic or dynamical
systems), and the systems throughputs.

� When the outputs of f are (or significantly
affect) the inputs of g, we recognize the rela-
tions as circular, and identify the systems as
closures.
These fundamental concepts of throughputs

and closures have dominated the systems litera-
ture (Joslyn, 2000). In particular, they raise di-
rectly the issues of the possibility or necessity of
such phenomena as circular causality, which is so
central to the cybernetics community (von
Förster, 1981); of self reference (Löfgren, 1990);
and self production, both as autopoeisis (Zeleny,
1981) and autocatalytic biochemistry, as con-
tributing to the origins of life (Eigen, 1992).

2.6. Constraint concepts

As noted, we seek to delve into the foundations
of controls and models from a systems-semiotic
perspective relying on informational concepts. In
our experience, working with such apparently
simple concepts is in fact fraught with hidden
complexities. Thus we have found (Joslyn, 1992;
Heylighen, 1995; Klir and Wierman, 1999) great
value in seeking out other concepts foundational

Fig. 1. (Left) A system coupled to an absolute environment. (Right) Systems interacting with relative environments containing other
systems.



C. Joslyn / BioSystems 60 (2001) 131–148 135

to these. Returning to our systems foundations,
we build on abstract relations among classes of
phenomena as in mathematical systems theory.
Such relations can be understood as collections of
distinctions amongst values of states (for example,
in discrete or continuous state spaces). Variety is
then the quantity of distinctions, and thus charac-
terizes the relative freedom of such relations.

Constraint is a central concept to our under-
standing, and it is important to explicate our
sense of it specifically. In the most general sense,
‘‘constraint’’ is any restriction or limitation. An
important special sense in this discourse is that of
a ‘‘physical constraint’’ in a physical problem.
Examples of such physical constraints include
boundary or initial conditions in dynamical sys-
tems. Another important category to this dis-
course are ‘‘non-holonomic’’ physical constraints
(Rosen, 1985) which act on higher-order deriva-
tives in physical systems.

We will primarily rely on the sense of ‘‘rela-
tional constraint’’ from mathematical systems the-
ory (Mesarovic and Takahara, 1988) as a
reduction in the state space actually populated in
a mathematical description of a problem (physical
or otherwise). In our context, relational constraint
is interpreted as the degree of restriction or deter-
minism of the variety of some relation. Note that
physical constraints imply relational constraints in
the mathematical representations of the problems
they are physically constraining, but not vice
versa. This will be returned to in Sections 6.2 and
6.3 below.

2.7. Representations

The concept of ‘‘representation’’ is also central
to us, and we use it while also recognizing both its
ubiquity and its difficulty in the literature. We
mean to imply the existence of a particular input
relation (a relational constraint) from the environ-
ment to the system. The representation is then
produced as some phenomenon of stability or
regularity internal to the system which captures or
maps some corresponding environmental regular-
ity. This is close to an abstract semiotic sense of
‘‘sign-vehicle’’ or ‘‘sign-token’’, in that the repre-
sentation is the physical phenomenon which

Fig. 2. Functional view of a control system.

stands for the corresponding environmental regu-
larity. In some cases we will specify the represen-
tation more finely to be a particular kind of
sign-vehicle (for example, a symbol token). Other-
wise, the reader should assume a more generalized
concept of representation.

3. Simple control systems and models

In systems theory and cybernetics the modeling
relation and the control relation serve as two
fundamental and distinct classes of semiotic rela-
tions between a system and its environment, or
‘‘the world’’.

3.1. Simple control systems

Consider first a classical control system as
shown in Fig. 2. In the world (the system’s envi-
ronment) the dynamical processes of ‘‘reality’’
proceed outside the knowledge of the system.
Rather, all knowledge of the environment by the
system is mediated through the measurement (per-
ception) process, which provides a representation
of the environment to the system. Based on this
representation, the system then chooses a particu-
lar action to take in the world, which has conse-
quences for the change in state of the world and
thereby states measured in the future.

To be in good control, the overall system must
form a negative feedback loop, so that distur-
bances and other external forces from ‘‘reality’’
(for example noise or the actions of other external
control systems) are counteracted by compensat-
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ing actions so as to make the measured state (the
representation) as close as possible to some de-
sired state, or at least stable within some region of
its state space. If rather a positive feedback rela-
tion holds, then such fluctuations will be am-
plified, ultimately bringing some critical internal
parameters beyond tolerable limits, or otherwise
exhausting some critical system resource, and thus
leading to the destruction of the system as a
viable entity.

Fig. 2 is a functional view of a simple control
system, representing the logical relations among
certain components of the system and the world:
the nodes are logical constructs and the arrows
are labeled by the kind of relations which hold
between them, or the nature of the constraint one
places on the other.

In other words, the measurement function re-
lates a state of the world to a particular represen-
tation through one kind of constraint; a decision
function (by some agent) relates that representa-
tion to the choice of a particular action by an-
other; that action has consequences for the state
of the world (through some dynamical con-
straint); and then in the world other dynamical
constraints produce future states of the world.

Alternatively, a structural version of the same
diagram can be constructed as shown in Fig. 3,
representing now the physical entities in the sys-
tem and the world and how they are structurally
related: the nodes are now subsystems which per-
form certain physical processes, and the arrows
are labeled by how they interact. Thus the physi-
cal sensors interact with the state of affairs in the
world to produce a representation (token) which
is passed to the agent which executes a decision to
choose a particular action taken in the world.

Table 1
Functions sufficient for semiotic control

x f3(x)f2(x)f1(x)

d d+ d
− uu u

ud0 n

Note how generally the functional and structural
views are dual: nodes in one are generally arrows
in the other, and vice versa.

A simplified, discrete example will help here.
Let O be a trivial organism which lives near an
oceanic thermocline with warm water above and
cold water below. O acts as a control system in
relation to the thermocline. We can identify the
components of the functional description of a
simple control system. The properties of the ther-
mocline are the states of the world and its dynam-
ics. The measurement relation maps these states
to a representation of a single critical variable of
temperature, with symbolic states

X={+ = ‘‘too hot’’, − = ‘‘too cold’’,

0= ‘‘just right’’}.

O can affect a single discrete action with
possibilities

Y={u= ‘‘go up’’, d= ‘‘go down’’,

n= ‘‘do nothing’’}.

The decision relation is a function f : X�Y. The
consequences are as expected: the action u raises
and arms O, the action d lowers and cools it, and
n does nothing.

There are 33=27 possible decision functions f,
any of which the agent could invoke to make a
decision to take a particular action. But only the
three shown in Table 1 will result in stable nega-
tive feedback control. f1 is the best default selec-
tion, since it minimizes unnecessary action and
results in smoother and faster control. But if f is
not selected from these three, then positive feed-
back, not negative feedback, will result, with a
corresponding runaway behavior: O either freezes
or boils.Fig. 3. Structural view of a control system.
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Fig. 4. Functional view of the modeling relation.

systems and models, we can identify a number of
more complex cases.

4.1. Computation in control

In particular, typically much more can be done
with the measured representation than simply
passing it on to the agent for decision about
action. It is possible to augment the control sys-
tem with a relation between one representation
and another, where the representation of the
world is acted upon in such a way as to create a
new representation. We call this new relation ab-
stractly ‘‘computation’’, as shown in Fig. 6 in
both the functional (left) and structural (right)
forms.

While using this term, we again wish to equivo-
cate somewhat on finely specifying our sense here.
We mean only to imply a process which creates
one representation from another. The prediction
relation in models, for example, is ‘‘computation’’
in this sense, as we will recognize in Section 5.1
below.

In real systems this ‘‘computation’’ could, in
fact, be many things, but stands in the role of
cognition, information processing, or knowledge
development. It could be the combination of per-
ceptions in neural organisms or the results of a
real computation in machines. Typically, extra or
external knowledge about the state of the world
or the desired state of affairs can be brought to
bear, and provided to the agent in some processed
form, for example as an error condition or dis-
tance from the optimal state. The point is that
this second representation is what is passed to the
agent for decision.

4.2. Hierarchical control

At this point we have recovered the classical
view from linear control systems theory. While
familiar to us as a standard engineering discipline
(Nise, 1992), it is also being generalized to a
number of other engineering (Albus, 1999) and
scientific (Meystel, 1996) domains.

In particular, we are impressed by Bill Powers’
system for hierarchical control (Powers, 1973,
1989, http://www.ed.uiuc.edu/csg), which he has

3.2. Simple models

Now consider the canonical modeling relation
as shown in Fig. 4 (Rosen, 1991; Cariani, 1998).
As with the control relation, the processes of the
world are still represented to the system only in
virtue of measurement processes. But now the
decision relation is replaced by a prediction rela-
tion, whose responsibility is to produce a new
representation which is hypothesized to be equiva-
lent (in some sense) to some future observed state
of the world. To be a good model, the overall
diagram must commute, so that this equivalence
is maintained.

As with the control system, this is a functional
representation, and a structural version is also
possible in Fig. 5. Here as well the sensors enter
into relations with states of affairs in the world
and create representations, but these are now sent
only to a comparator. There is no relation back
from the system to the world.

4. Complex control

Of course, all of the relations described above
in Section 3 are a great deal more complex in real
control systems. Building from the simple control

Fig. 5. Structural view of the modeling relation.
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Fig. 6. Control system with computation: (left) functional and (right) structural.

successfully generalized to explain the architecture
of neural organisms in general, both as individu-
als and in social collections. His general scheme is
shown in Fig. 7. Note that while this is a struc-
tural view, as in Fig. 3 and Fig. 6, we find it
somewhat more convenient here to re-use the
term ‘‘measurement’’ to refer to the process by
which a state-of-affairs of the world produces a
representation in the system. This continues
throughout our discussion of Powers’ theory
through Fig. 9.

As shown in Fig. 7, he views the computer as a
comparator between the measured state and a
hypothetical set-point or reference level (goal).
This then sends the second representation of an
error signal to the agent. He also explicitly in-
cludes reference to the noise or disturbances al-
ways present in the environment, against which
the control system is acting to maintain good
control. For us, these are bundled into the dy-
namics of the world.

Another great virtue of Powers’ control theory
model is its hierarchical scalability. Fig. 8 shows
such a hierarchical control system, containing an
inner level 1 and the outer level 2. The first key
move here is to allow representations to be com-
bined to form higher level representations. In the
figure S1 and S2 are distinct low-level sensors
providing low-level representations R1 and R2 to
the inner and outer levels, respectively. But R1 is
also sent to the higher level S3, and together they
form a new high-level representation R3.

The second step is the ability for the action of
one control system to be the determination of the
set-point of another, thus allowing goals to de-
compose as a hierarchy of subgoals. In the figure,
the outer level uses R3 to generate the action of
fixing the set-point of the lower level.

Notice that the overall topology of the control
loop is maintained. While ultimately the lower
level is responsible for taking action in the world,
it is doing so under the control of the comparison
of a high-level goal against a high-level represen-
tation. Neural organisms especially are systems of

Fig. 7. A Powers’ control system.
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Fig. 8. Hierarchical nesting of Powers’ control systems.

While Powers’ theory is cast first in terms of
individual control systems interacting with their
environments, we can extend this to the multi-sys-
tem case as introduced in Section 2. As shown in
Fig. 9, multiple control systems can interact with
a single set of controlled variables in the real
environment. Thus the actions of the other system
provide a portion of the disturbances perceived by
the first system. Powers has provided significant
insights into the nature of control in complex
systems through the development of his concepts of
conflict among control systems and skepticism
about the possibility of social systems forming an
actual control system at their level of analysis.

5. Hybrid modeling and control

As constructed so far, modeling and control are
distinct ways in which a system can be related
to the world (its environment). Models and con-
trol systems are contrasted by their different topo-
logical structures. Recalling our usage from Section
2, in the modeling relation, only g from the
environment to the system is present as a measure-
ment function, and thus the structure of a model
is fundamentally linear, from the world to the
model.

this type, low-level motor and perceptual systems
combining to accomplish very high-level tasks. And
of course, determination of the outermost goal
cannot be included within Powers’ formal model.

Fig. 9. Social collections of control systems.
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But in a control relation, g is present as mea-
surement, but f is also present as the action
relation from the system back to the world. The
outputs of f are, in fact, connected to the inputs
to g through the dynamic processes in the world.
Thus control is fundamentally circular, in fact a
closure, from the system to the world and back
again; while models are fundamentally linear, a
throughput from the environment to the system.

So while models and controls are distinct forms
of organization, at the same time they share much
in common:
� They both hold a measurement relation from

the world to the system.
� In both models and controls with computation,

there is a relation where one representation is
produced from another, namely prediction and
computation, respectively.
Yet still the topologies remain distinct, one a

circular structure connected to the world, and the
other a linear structure from the world to the
system. So it is clear that control can be done
without computation, modeling, or planning,
based strictly on feedback. The difference is that
in control the representation of what is compared
with what is wanted, while in modeling it is com-
pared with what is expected (based on the model’s
predictions).

We now wish to consider forms of semiotic
organization where both modeling and control
occurs together. We assert that such hybrid mod-
eling and control actually represents not only the
predominant form of control with which we are
familiar, but that it is also frequently held as
being the only form of control which could exist
or is interesting. We will unpack the foundations
of this question in terms of the literature on
feedforward, anticipatory, or model-based
control.

5.1. Mixed modeling and control

The simplest way to construct a hybrid control
and modeling system is shown in Fig. 10. Here we
begin with the functional view of control with
computation as in the left side of Fig. 6. This is
then modified to include a second measurement
step, and a comparison between this and the

Fig. 10. Simple hybrid modeling and control.

computed representation. This second measure-
ment is used to corroborate the results of the
computational step. Note the presence, thereby,
of an embedded model, identified by the dashed
lines.

Functionally the roles have become a bit mixed
now, since world is the source of both the initial
sensory input and the subsequent corroboratory
measurement. In fact, these steps are separated in
time. Fig. 11 shows both the measurement rela-
tions from the world to the system and the action
relations from the system back to the world in
temporal decomposition. The diagram is actually
a bit of a caricature, showing one particular ‘‘tra-
jectory’’ through the space of alternating actions
and measurements over time. (Note that we ig-
nore here for convenience the possibility of
simultaneity).

The point is that sometimes the system is act-
ing, and at others it is measuring, either to sup-
port decisions leading to actions, or for model
corroboration. Thus within the diagram we can
see the structures of both models and controls.
For example, the subsystem enclosed by the
dashed lines on the left is a linear modeling
relation, while other portions of the diagram re-
veal embedded circular control relations, albeit
temporally decomposed.

Notice also that we can now identify an addi-
tional relation, not evident before, directly from
the agent to the representations. In the structural
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Fig. 11. Temporal decomposition of hybrid control.

view of control, as in Fig. 3, this relation is always
mediated through the actions of the agent in the
world. But in this temporal decomposition it
needs to be identified, and we must ask ourselves
which relations the agent manifests on or with the
perception.

Here we invoke constructivist maxim of Powers
(1973) that it is not, in fact, the state of the world
which is being controlled, but rather the percep-
tion of the state of the world by the system: the
system uses variable means to accomplish con-
stant ends, and those ends are in fact the recogni-
tion of some form of stability in the environment
through some form of constancy in the perceived
representation. Thus we recognize this relation as
the control relation itself.

Finally, we note that Sharov (1992) has also
invoked this scheme, in a somewhat more special-
ized form, as a generalized form of learning.

5.2. Regulation �s. feedback control

As we noted above, some form of hybrid mod-
eling and control has come to dominate most
senses of how control is viewed. The difference
between control and modeling relations, and even
the fact that these need not be present simulta-
neously, has often been confused in both the
systems and semiotic literature. For example, Se-
beok implies that modeling requires a control
relation:

Modeling [implies a conception of the world]
where the environment stands in reciprocal re-

lationship with some other system, such as the
individual organism, a collectivity, a computer,
or the like and where its reflection functions as
a control of this system’s total mode of commu-
nication (quoted in Cobley and Jansz, 1999).

But in the classic and highly influential paper
‘‘Every Good Regulator of a System Must Be a
Model of that System’’, Conant and Ashby (1970)
assert exactly the converse.

Fig. 12 shows Conant and Ashby’s scheme of
general regulatory control. They establish a sys-
tem in which a set of disturbances D affects a set
of unregulated variables V and a regulatory mech-
anism R. In turn, R and V jointly affect a set of
critical variables Z, and when control is main-
tained then Z is constrained to a subset G�Z.

But regulation of this sort is a decidedly linear
mechanism: while R affects Z, there is no neces-
sary relation from Z back to R or V. But R and

Fig. 12. Conant and Ashby’s cause control.
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V are seen as tightly coupled. They both receive
input from D, and the task of R is to calculate an
appropriate compensation, which is combined
with the affect of D on V to finally affect Z. This
is what Conant and Ashby call cause control.

Of course, they do deal with feedback control
(Section 5.3), which they call error control. But
they recognize it only as a case of general
regulation.

Regulation by error-control is essentially infor-
mation conserving, and the entropy of Z can-
not fall to zero (there must be some residual
variation). When, however, the regulator R
draws its information directly from D (the
cause of the disturbance) there need be no
residual variation: the regulation may, in princi-
ple, be made perfect (Conant and Ashby, 1970).

It is true that feedback control (error control)
must leave residual variation in Z, depending on
band widths and loop gains of the various subsys-
tems. This is the familiar cycling of Z around its
optimal state in engineering control systems, as
with the thermostat. As the loop gain increases,
the measure of the cyclic or chaotic attractor in
the controlled variables shrinks, in the limit to a
point attractor.

But what is crucial in the quotation is the use of
the term ‘‘in principle’’. Perfect cause control is
only possible if e�ery disturbance can be compen-
sated for exactly, and in exactly the right time. As
the complexity of the environment grows, then by
Ashby’s (1958) own Law of Requisite Variety the
amount of information (structure) necessary in R
grows without bound. And with any residual er-
ror in the regulator R, the overall error of Z can
in turn grow without bound.

But feedback control (error control) has no
such deficiencies. Because the result of the com-
pensation is actually obser�ed by measuring Z
directly, any residual error left over from incom-
plete compensation can be combined with envi-
ronmental perturbation from D or V, and then
‘‘resubmitted’’ to the control mechanism via the
feedback loop. There is never an opportunity for
error to grow uncorrected.

Fig. 13. Anticipatory control using endo-models.

But although such feedback control can be
remarkably good, it requires trading off increased
model complexity for increased quality of control.
The relation between the views of a control sys-
tem in terms of regulation vs. control is analogous
to that between Ptolemic and Copernican astron-
omy. The earth-centered view is simple and com-
forting, and can be logically held in principle, but
requires an indefinite number of epicycles, or in
other words, a model of arbitrarily increasing
complexity. But it is the complexity of the en�i-
ronments of real world systems which is essentially
unbounded. So while perfect cause control may be
possible in principle, it is not in fact, nor is it
actually manifested in real systems such as
organisms.

5.3. Anticipatory control

In Section 5.2 we described cause control as
involving the prediction of future events to guide
actions. We are also familiar with cause control as
anticipatory (Rosen, 1985) or feedforward (Klir,
1991) control. Fig. 13 shows a simplified architec-
ture, with an endo-model embedded within a con-
trol system. It simulates multiple possible
‘‘actions’’, and if the endo-model is stable as a
simulated internal control system, then that action
can be propagated outwards into the ‘‘real’’
world. Thus now if there is a set-point, it enters
the endo-model, and is compared not with the
perception R (which is used to instantiate the
endo-model), but with the final state of world.
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It is this view which most dominates our con-
ception of the nature of control in general, arising
with cognitive organisms, and predominating, for
example, artificial intelligence applications. Fre-
quently this anticipatory perspective is assumed,
perhaps implicitly, without even being realized.
For example, in Conant and Ashby’s architecture
R must contain an endo-model in order for it to
know which actions to take to limit Z to G�Z.
But it is a real question to what extent simpler
natural control systems, such as primitive organ-
isms, have internal models at all.

Moreover, this architecture is actually highly
complex and special. As shown in Fig. 13, now
the agent is replaced by an inner system which is
both a model and a control system (the external
set-point is not shown, and the arrows have been
reflected diagonally to make the graph planar and
ease the drawing). This inner system is a control
system in the sense that there are states of its ‘‘
world’’, its ‘‘dynamics’’, and an ‘‘agent’’ making
decisions.

However, it is also a model in that the states of
its ‘‘world’’ are in fact representations, and its
‘‘dynamics’’ is actually a prediction function. The
inner system is totally contained within the outer
system, and runs at a much faster time scale in a
kind of modeling ‘‘imagination’’. The representa-
tion R from the sensors is used to instantiate this
model, which takes imaginary actions resulting in
imaginary stability within the model. Once this
stability is achieved, then that action is exported
to the real world.

Note that the outer control loop here is simple,
lacking computation. In Powers’ terms, there is
no set-point which the state of the internal model
is being compared to. But this could be present in
a slight elaboration where an imaginary measure-
ment is taken from ‘‘World’’ and compared to
some set-point. The outer error signal would then
be fed to change the imagined actions inside the
model until stability is achieved.

6. Controls and models as semiotic systems

No that we have explicated models and control
in general, and their interrelation in simple and

complex architectures, we move on to consider
them in their capacity as semiotic systems.

6.1. Traditional semiotics of modeling and control

Models and control systems are frequently both
cast in a semiotic context. We sketch our under-
standing of a ‘‘standard’’ such characterization
here. But first, we now take representations to be
symbol tokens: discrete sign-vehicles which have
an arbitrary motivation (no necessary shared
properties) with respect to the meanings, and exist
outside of the temporal scale of the environmental
dynamics. We do this primarily for simplicity,
recognizing that considering more general iconic
or analogical semiotic relations is a more com-
plex, and yet compellingly interesting, situation.

We can then invoke Morris’es distinctions
among three distinct classes of semiotic concepts,
which following (Cariani, 1989; Deely, 1990) we
interpret as:

Syntactic: Concerning the relations (usually for-
mal) among the symbol tokens in a symbol
system.

Semantic: Concerning the interpretation of
symbols as their meanings.

Pragmatic: Concerning the use of symbol to-
kens and their meanings for the overall purposes
or survivability of the system.

A traditional view of the roles of syntactic and
semantic relations (in particular) is shown in Fig.
14. Here the measurement and action functions
embody the semantic relations. Together they
‘‘ground’’ the symbols used inside models by con-
necting them to the world (Harnad, 1990). The
syntactic function then becomes the prediction
relation which produces one representation from
another, or the decision function which produces
an action.

6.2. Constraints present in control and modeling
relations

However, our view is that this position does not
put sufficient restriction on the concept of mean-
ing and semantics, in particular by threatening to
‘‘reify’’ the concept of the symbol as object, as
opposed to the process of interpretation by which
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tokens are taken for their meanings. In our view,
meaning and semantics can only be present in a
system when a decision has been made to inter-
pret a giving token according to one meaning,
and not another, in virtue of a coding constraint
which has itself been established contingently by
selection. In the remainder of this section we will
explicate this position.

In Section 3.1, we described how in the func-
tional view of systems, the components represent
logical constructs, while the relations represent
constraints the components place on each other’s
range of variation. Here we analyze the relations
present in the functional decomposition of control
in terms of all three semiotic categories and in
terms of the constraints they place on the logical
components of the control system.

Measurement: The constraint placed on tokens
by the world. The production of a token inside the
system results from its interaction with the world,
by taking an aspect of the continuous dynamics of
the world into a discrete, static state outside of
that dynamics (Pattee, 1996). In sharp contrast to
coding or computation, measurement provides the
‘‘grounding’’ of the symbol tokens. It remains a
point of dispute whether measurement is sufficient
to provide semantic relations, but it is certainly
necessary.

Computation: The constraint placed on tokens
by themsel�es. Codings are an expression of syn-
tax, and are usually deterministic. It is essentially
string replacement: the presence of one token
results in the appearance of another. As Pattee
(1997) has commented at length, coding substitu-
tions are computational, memory-dependent, and
rate-independent.

Decision: The constraint placed on actions by
tokens. Given the presence of a certain representa-
tion, either as the result of measurement or of
computation, a particular action results.

Dynamics: The constraint placed on the world by
itself. Effectively the rate-dependent dynamical
structure of the universe. These are deterministic
at some level, even if only within the bounds of
some structure of uncertainty (for example the
probability distribution of a quantum or classical
chaotic process).

6.3. Rules as contingent functional entailments

We have cast all of these relations (measure-
ments, computations, decisions, and dynamics) as
forms of constraint. And while constraint is a
quantitative concept admitting to degrees, in fact
in real systems they all have a high degree of
constraint, more or less deterministic. The compu-
tation and dynamic relations are the traditional
paradigms of this form of determinism.

But even measurements are deterministic to the
extent that they are reliable and accurate. In other
words, given a particular model (a particular set
of measurement and prediction relations) or a
particular control system (a particular set of mea-
surement, decision, and action relations), there is
then very little freedom: a given state of affairs in
the world will result in specific representations,
predictions, decisions, and actions.

But that is not to say that all these relations are
necessarily the same kind of constraint. In particu-
lar, we can distinguish between the kinds of con-
straints which Pattee (1982) calls laws and rules.

Fig. 14. Traditional understanding of the semiotics of (left) modeling and (right) control.
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As explicated by Joslyn (1998), laws are wholly
(ontologically) necessary at all levels of analysis,
but rules are necessary at one level, and contin-
gent at another: once a particular rule or coding
(set of interpretations) is established, then it must
be followed, but in general, from a perspective
outside the system, many such interpretations are
possible.

As an example, in Newtonian mechanics the
possible values of F, m, and a are mutually con-
strained in the relational (Mesarovician) sense
that the state space R3 representing F×m×a is
restricted to a subset, in fact deterministically to
the two-dimensional surface described by F=ma.
Similarly, the genetic code is a relation in the
space {codons}× {amino acids}, in fact a func-
tion mapping {codons}�{amino acids}. Both of
these examples are regularities or associations,
which we can characterize as entailments. Further,
they are deterministic, and thus relationally act as
functional entailments.

The genetic code, like the coding f in our
example above, is one such mapping among a
space of possible mappings. Which mapping(s)
exist(s) in the world is a contingent fact of history:
it could have been otherwise. Thus these are
contingent functional entailments (Joslyn, 1998),
and we call such relations ‘‘rules’’. But in the
other example, which surface within F×m×a
describes the relations which exist in the world is
necessary and inexorable. Thus these are neces-
sary functional entailments, and we call such rela-
tions ‘‘laws’’. So both laws and rules create
relational constraints. Returning to the discussion
from Section 2, saying that ‘‘a law is a constraint’’
is to say that the action of a law is to constrain
phenomena. Any two of F, m, or a necessarily
together determine the third, in a lawful manner.
However, any other more limited relational con-
straints, for example among pairs, perhaps cre-
ated by a rule-like physical constraint e.g. linking
m and a alone, does not.

For a more complex example, the position of
bumpers on a pool table creates a particular
constraint on the possible trajectories of balls.
Note that this is a physical constraint which is
acting as a rule, since the bumper positions are
contingent. In fact, both the bumper positions

and the walls of the table act as rules, since they
are contingent functional entailments, while
physics acts as the law, since it is a necessary
functional entailment. Nevertheless, all three cre-
ate distinct relational constraints, in that they
limit the trajectories of the balls. In that sense, the
law is physically constrained by the bumper posi-
tions, and is simultaneously itself a relational (not
a physical) constraint.

Rules are dually contingent and necessary at
complementary levels of analysis. From within the
symbol system, the token must necessarily be
interpreted according to the code, but from with-
out we are (or ‘‘evolution is’’) free to choose any
coding we please. This property of the conven-
tionality (Lewis, 1969) of rules is the hallmark of
semiotic systems. Indeed, rules in this sense
thereby capture the Peircean sense of ‘‘habit’’, the
de Saussurean sense of the arbitrariness of the
sign-function, Jakobson’s distinction between
symbols and other iconic or indexical signs, and
Eco’s (1979) use of the concept of ‘‘motivation’’
to describe the amount of properties shared be-
tween token and referent.

This combination of freedom and determinism
is not possible with purely physical systems. In-
deed, the school of biosemiotics (Hoffmeyer,
1996) is dedicated, in some sense, to the proposi-
tion that the classes of semiotic systems and living
systems are equivalent, or at least coextensive
(Deely, 1992; Joslyn, 1998). In the example from
Section 3, there is no fundamental natural law of
the universe which requires f to be selected ac-
cording to the principles of negative feedback.
Instead, this selection is contingent on, and results
from, the process by which the system is
constructed.

6.4. Selection as constraint of rules

So given a particular relational constraint,
whether from a rule or a law, we can also consider
the possibilities for that constraint itself to vary.
We noted this in the possibility of multiple f in the
organism example from Section 3.1, and multiple
potential genetic codes or perhaps we can move
the bumpers around on the table. The walls of the
table then provide the limits of that variability.
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But considering again F=ma as a relational
constraint (a two-dimensional surface in F×
m×a), at a different level of analysis we can
consider the possibility that a different surface
within F×m×a might describe the relations
among F, m, and a. Since this is not possible in
this universe, we recognize F=ma as a law.

This complex complementarity of levels of
freedom, of variations of constraints, is precisely
the hallmark of semantic relation, in that it is
the making of appropriate choices (relative, ulti-
mately, to an organism’s ability to persist or
survive) which is the semantic function in a
semiotic system. It is on this required ‘‘appropri-
ateness’’ of the choice of the agent that the ‘‘in-
telligence’’ of the semiotic system rests: a certain
action is ‘‘correct’’ in a given context, while an-
other is not. It is only on this basis that mean-
ing or semantics can be said to be present in a
control system or a model.

Thus the presence of rules (contingent func-
tional entailments) in a ‘‘good’’ system, whether
an ‘‘accurate’’ model or a ‘‘good’’ control sys-
tem, implies a level of meta-constraint in addi-
tion to those identified in Section 6.2, namely
the constraint on which rules themsel�es are vi-
able. In the example from Section 3, this con-
straint can actually be measured information
theoretically as log2(27/3)=3.17 bits.

This additional level of constraint is what Pat-
tee (1997) calls selection.

Selection: The constraint on measurement,
computation, and decision relations by the world.
This new level of constraint is the constraint
within the space of all possible rules, in particu-
lar of all possible measurements, all possible
computations, and all possible actions.

Selection is an example of the pragmatic as-
pect of semiotic systems, and must be provided
by a force acting outside of the system (control
system or model) itself. The typical agents of
this constraint are either natural selection or the
decisions provided by designers.

Thus in a system which has contingent func-
tional entailments (rules) the pragmatics of the
selection of those rules invokes semantic rela-
tions of meaning among the components. In our

example, it is appropriate to say that for our
organism ‘‘too hot’’ actually means ‘‘go down’’,
and ‘‘too cold’’ actually means ‘‘go up’’. This
meaning is present in virtue of the action of
interpretation provided by the agent. It is the
agent which, by manifesting the coding relation
f, takes ‘‘too hot’’ to mean ‘‘go down’’.

7. Conclusion: towards meta-system transitions
and semiotic closures in social systems

We wish to close with a few points. First, we
have explicated models and controls as systems
of interacting constraints, and semantic relations
within them as rule-like potential ‘‘variations of
constraints’’. Going one level further invokes the
possibility that this variation of constraint can
itself be constrained. This concept of ‘‘con-
strained variation of constraint’’ is the definition
Heylighen (1995) provides of the ‘‘meta-system
transition’’, itself offered originally by Turchin
(1977) as the canonical process of creation of
higher levels of control in complex evolutionary
systems. We are especially pleased to see the
intersection of this detailed analysis of semiotic
systems with the grand cybernetic evolutionary
theories of both Powers and Turchin.

Then, where does the above analysis leave us
with respect to Pattee’s concept of semantic or
semiotic closure in particular? A simple-minded
parsing would say that any control system is, in
fact, a semiotic closure, since it is a semiotic
system manifesting semantic and pragmatic rela-
tions through circular, closure, relations with its
environment.

But this is not satisfactory, since clearly Pat-
tee is trying to express this concept of closure at
another level entirely, namely that at the level of
selection, or the pragmatic constraint placed on
the selection of the measurement, computation,
and decision relations themselves. Unlike the
clear distinction between system and environ-
ment, semantic or semiotic closure expresses the
view that the interpreting agent is in fact itself a
referent of the semiotic system. Further, the ac-
tions that are taken into the environment as a
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result of the interpretation of measured tokens
can themselves affect those coding relations, for
example by constructing another system (organ-
ism) capable itself of manifesting the same semi-
otic relations.

So finally, as the discussion moves to consider
multiple semiotic systems, here across genera-
tional time, for our final point we would like to
refer back to the discussion from Section 4.2
concerning multiple interacting control systems.
Above we considered complex control in the sense
of ‘‘deep’’ control involving multiple levels of
representation or modeling. Ultimately we are
interested in considering complex control in the
‘‘broad’’ sense of control among multiple interact-
ing control systems or in complex environments.

As a paradigm, consider the possibility of a
form of ‘‘social control’’, where a community of
multiple, independent, interacting control systems
form a higher level aggregated control meta-sys-
tem. This is the situation considered at length by
Turchin (1977) and called a ‘‘meta-system transi-
tion’’, and has been considered by Powers (1973)
as conflict situations among multiple control
systems.

Even the simplest such two-element social con-
trol system is quite complex, and its analysis is
beyond the scope of this paper. Consider, for
example, that for each of the component control
systems, not only is the reference level (set-point)
of the other available to it, but in principle the
entire other control system is part of its environ-
ment. Powers has commented at length on the
failure of one control system to be ever able to
truly control the other in his formal sense, and has
suggested that the entire concept of a social con-
trol system is invalid.

If control is truly possible among a community
of systems, the challenge will be to identify the
key components necessary for any control system,
in particular the measurement function and refer-
ence level. That is, where are the representations,
where is the semantics, at the social level, as
distinct from the iterated semantics of the con-
stituent systems? And ultimately, what is the pos-
sible nature of selection, the source of all meaning,
at the social level?
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