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Abstract. We describe some aspects of our research in relational knowl-
edge discovery and combinatorial scientific computing [I1], with special
emphasis on the relation to the research portfolio of the conceptual struc-
tures community. We have recently been developing [I0/12] a combinato-
rial approach to the management and analysis of large ontologies such as
the Gene Ontology (GO) [6]. Our approach depends on casting the GO as
a labeled partially ordered set (poset) [16], and then using scores based on
pseudo-distance measures which we have developed to categorize lists of
labels (in the case of the GO, genes and gene products) concerning their
clustering and depth within the GO. We hold that such taxonomic se-
mantic hierarchies serve as the core conceptual structures underlying all
ontological databases, and through this work we have developed a num-
ber of what we believe to be both fundamental and novel ideas about
treating such large posets as data objects, in particular the nature of
distance in such structures, and the nature of level as an interval-valued
property. After laying out this basic framework, we can then bring these
ideas to a particular kind of poset, namely the concept lattice [5]. Con-
sidering a concept lattice as a poset, we are then prepared to develop
techniques for anomaly detection in relational data by measuring the
relative level of concepts vs. their cardinalities.

1 Introduction

Semantic hierarchies are ubiquitous, not just in formal semantic structures like
conceptual graphs, ontologies, and concept lattices (CLs), but also in meta-
modeling environments, object-oriented typing architectures, and even natural
and computational linguistics. We are concerned with the fundamental nature
of semantic hierarchies, and report on the current state of our work here.

We open with some discussion of the POSet Ontology Categorizer (POSOC),
which was the motivation for the beginning of this work. POSOC was in turn
motivated by the need for biologists to use algorithmic tools to navigate the Gene
Ontology (GO), the best example of the vast, novel conceptual structures which
the genomic revolution has thrust into the world only very recently: very large,
taxonomically organized, hierarchical data objects as specialized databases.

Our view is that semantic hierarchies naturally live within the theory of
partially-ordered sets (posets), and POSOC was developed on that basis. After
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reviewing POSOC’s foundations, including some elementary partially ordered
set (poset) theory, we then move on to consider general semantic hierarchies,
and thus arrive at our core points: explicating our new conceptualizations of
level and distance in posets as a vector-valued quantity of the height and width
of the neighborhood (defined in a particular way) of a collection of poset nodes.

We conclude with some speculations about the use of such concepts in lat-
tices, particularly CLs, conceived of as proto- or putative ontologies generated in
the context of available relational knowledge, in our case, protein-ligand binding.

2 The POSet Ontology Categorizer (POSOC)

The computational biology revolution has produced a proliferation of large data-
bases of genomic information. A premier example is the Gene Ontology (GO)@
[6], a large (> 16,000 node), standardized knowledge structure consisting of
three branches: Molecular Function (MF), Biological Process (BP), and Cellular
Component (CC). Each branch is organized as a taxonomy of nodes which rep-
resent different categories of genomic characteristics. Once a gene is sufficiently
characterized, it can be attached to the appropriate node, as shown in Fig. I [6].
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Fig. 1. A portion of the BP branch of the GO [6]. GO nodes in the hierarchy have
genes from three species annotated below them.

! http://wuw.geneontology.org
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We have been working on the categorization task in the GO, where fol-
lowing a gene expression experiment involving high throughput microarrays or
Affymetrix gene chips, a biomedical researcher is confronted with a list of a few
hundred to a thousand genes, from which she will need to extract useful infor-
mation about the various types of biological processes that were affected in the
experiment. The researcher then wants to take the names of these genes which
have been annotated to the GO and gain an understanding of their overall func-
tion by examining their distribution through the GO: are they localized, grouped
in distinct areas, or spread uniformly? Manual approaches and existing software
are inadequate to answer this question over hundreds of proteins and more than
16,000 GO nodes, and thus an algorithmic approach is necessary.

At its core, the GO is a hierarchy of semantic categories. So to approach
this problem, we have needed to address a number of fundamental questions
about the nature of such hierarchies, modeled as partially ordered sets (posets),
to provide algorithmically determined numerical scoring of the nodes in the GO
with respect to the genes of interest. We produce a ranked list of appropriate
summarizing nodes within the GO, which act as functional hypotheses about
the characteristics of the genes expressed.

POSOC has been developed over the past year [QTOJTT/T2] by researchers
at the Los Alamos National Laboratory (LANL) and Procter & Gamble Corp.
(P&G), and is currently in use by staff scientists at P&GE. In addition, exten-
sions of POSOC to handle textually-based queries have been used recently in a
submission by LANL for the BioCreative challeng for automated annotation
[18].

2.1 Posets

We first introduce some elementary ideas from the theory of finite partially
ordered sets (posets). This is mostly standard and elementary [16], but in some
cases novel (to our knowledge), at least in terms of notation and perspective.

A finite poset is a structure P = (P, <) where P is a finite set and < C P? is
a reflexive, anti-symmetric, transitive binary relation on P. Posets are the most
general combinatorial structures admitting to description in terms of levels, in
our case, levels of semantic generality. While more specific than directed graphs
or networks (every poset is a digraph with no cycles), they are more general than
trees or lattices (every tree and lattice is a poset), in that collections of nodes
can have multiple parents.

The GO is notably a directed acyclic graph (DAG), as is evident in Fig. [
and every DAG determines both a unique poset and a unique Hasse diagram,
in which all transitive links have been removedd. In a poset, two nodes p,q € P

2 As previously reported [9IT0IT2], POSOC was originally targeted specifically at the
GO, and was thus called the Gene Ontology Categorizer (GOC). GOC has now been
generalized to deal with any poset ontology, and is thus now called POSOC here.

3 http://www.mitre.org/public/biocreative

4 T.e., if both a < b and b < ¢ are included, then if a < ¢ is present, it is removed.
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are comparable, denoted p ~ ¢, if either p < g or p < ¢; a chain C C P is a
collection of comparable nodes; and the height H(P) is the size of the largest
chain. Similarly, two nodes p,q € P are non-comparable if p 4 ¢, an anti-
chain is a collection of non-comparable nodes, and the width W(P) is the size
of the largest anti-chain. For any node p € P, its ideal is | p := {q € P : q < p},
its filter is 1p := {q € P : ¢ > p}, and its hourglass is Z(p) := tpU | p. Define
these concepts over a collection of nodes () C P similarly:

1Q=Ulr t@=U1rr. 2@ =] =0

PEQ PEQ PER

For any subset @ C P, a node p € Q is maximal in Q if Aq € Q,q > p.
Let Max(Q) be the set of all maximal nodes in @, noting that Max(Q) must be
non-empty if @ is non-empty. Define the set of all minimal nodes Min(Q) dually.
For any two nodes p,q € P the set TpN71q is their “joint filter” in some sense,
and p V ¢ := Min(1pN1yq) are their joins. For a collection of nodes Q C P, let

\V/Q:=Min | () 1tp

PER

Lower bounds and meets A are defined dually. Note that posets are distinguished
from lattices in that p V ¢ C P is not a single node, and is not guaranteed to
exist, but is rather an arbitrary, possibly empty, subset of nodes.

If there exists a node 1 € P such that Max(P) = \/ P = {1}, then we say
that P is upper-bounded, and dually for 0 € P. If either there is no unique
upper or lower bound 0,1 € P, then we can create them easily by constructing
the closure of P as P := (P U{0,1}, <), where Vp,q € P,p < q +> p < ¢, and
Vp € P,0 < p < 1. Most of our results below require either an upper-, lower-
, or totally bounded poset. We will presume that when P is not naturally so
bounded, its closure P is available in this way.

For two comparable nodes p < ¢, all the nodes “between” them is the inter-
val [p,q] = {t : p <t < q} =1pnlgq. For comparable subsets P;, P, C P with
Py, < P, (so that Vp € P1,q € Pa,p < q), their interval [Py, Ps] is

[P1, Py] = U [p1, p2]-

(p1,p2)EPLX P>

For two comparable nodes p < ¢, the interval [p, q] is equivalent to the set
of all chains between p and p, denoted C(p,q). The vector of chain lengths
h(p,q) == (|C(p,q)]) is the collection of the lengths of all these chains, and
finally the minimal and maximum chain lengths between p and ¢ respectively
are h.(p,q) == mingec(p,q) |C| and h*(p, q) := maxcee(p,q) \CE

The Hasse diagram of an example of a poset on a set of nodes P = {1, A, B,
..., K} is shown in Fig. 2l Note the inherently two-dimensional structure dis-
played by division into levels: while nodes can be re-drawn left to right (width)

5 Here we assume the Hasse diagram, otherwise p < ¢ — h«(p, q) = 1.
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Fig. 2. An example of a labeled poset.

as convenient, vertically it’s crucial that higher nodes be placed above lower ones
(height).

2.2 The GO as a Labeled Poset

The GO has measurable poset properties, as shown in Tab. [ and Fig. B (GO
for September, 2003). The height parameter shows that the GO is properly seen
as a structure divided into levels, 15 for BP and 13 for MF and CC. It branches
out quickly and broadly, with twice as many nodes (10.6K) being “terminal”
leaves compared to interior nodes (only 5.4K). Calculating the width of a poset
is still daunting algorithmically, so the width shown here is only a lower-bound
estimate. Thus the structure is at least three orders of magnitude wider than it
is high. Fig. Bl shows the distribution (on a log scale) of the number of parents
and children per node. Note that a few nodes have hundreds of children, and a
substantial quantity have at least two parents, some as many as four or five.
We can then define a structure O = (P, X, F) as a POSet Ontology
(POSO), where X is a finite, non-empty set of labels, and F: X ~ 2% is a
function mapping each label € X to a collection of nodes F'(z) C P. In Fig. 2

Table 1. Poset statistics of the GO.

Nodes Leaves Interior Edges H W

MF| 7.0K 5.6K 1.3K 8.1K 13 > 3.5K
BP| 77K 4.1K 3.6K 11.8K 15 > 2.9K
CC| 1.3K 09K 04K 1.7K 13 > 04K
GO|16.0K 10.6K 5.4K 21.5K 16 > 5.9K
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Fig. 3. Distribution of number of children (left) and parents (right) per node.

we have X = {a,b,...,j}, and e.g. F(b) = {A, E,F}. In the case of the GO,
then P is the collection of GO nodes, < is the ordering relations present in the
GO, and X is the set of genes annotated to the GO, as illustrated in Fig. [[]

2.3 POSOC Methodology

We can now pose the categorization problem in the context of the example
in Fig. 2} given a particular set of genes of interest cast as a query, say ¥ =
{¢,e,i} C X, what node(s) in P best summarize that set? One answer is C, since
it “covers” all three genes, and does so in the most specific way. The node 1 also
covers the genes, but would not be favored since it’s a more general category. But
it can also be argued that H is a good answer, since, while it only covers ¢ and e,
it does so more specifically than C' does. We will see that this interplay between
“coverage” and “specificity” will be central to the methodology developed.

To proceed, we need the concept of a pseudo-distance as a function §: P2 —
IR where Vp < g € P, h.(p,q) < d(p,q) < h*(p,q); and a normalized distance
as 0 := §/H(P). Current pseudo-distances implemented in POSOC include: the
minimum path length §,, := h,; the maximum path length §, = h*;
the average of extreme path lengths d,.(p,q) := %’ﬂp’q); and the

heh(p,q)

average of all path lengths d,,(p,p’) == # Other candidate pseudo-
distances are in exploration.

Given a pseudo-distance and a set of nodes of interest Y C X, we then want
to develop a scoring function Sy (p) which returns the weighted rank of a
node p € P based on requested nodes Y. We actually use two kinds of scores,
an unnormalized score Sy:P +— IRT which returns an “absolute” number,
and a normalized score Sy: P s [0,1] which returns a “relative” number.
We allow the user to choose the relative value placed on coverage vs. specificity
by introducing a parameter s € {... —1,0,1,2,3,...}, where low s emphasizes
coverages, and high s emphasizes specificity. The scoring function can use either
the unnormalized distance ¢, or the normalized §. Letting » = 2°, we have the
four scoring functions shown in Tab.
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Table 2. Scoring functions.

Score
Distance Unnormalized [ Normalized
; . T —17& o Sy (p)
Unnormalized||Sy (p) = ) .y Zp'eF(x):p'gp (6"(p',p)+ 1) |Sy(p) = 5 ‘;"’F(I)‘

; S (1) — 50 o)) 18w (p) — — Sy @
Normalized Sy(p) = ,cy Zp'eF(x):p’gp (1 —4(p ,p)) Sy (p) == m

Table 3. POSOC output for example in Fig. Rlfor query Y = {c,e,}.

s=—1 s=1 s=3
Rank|| Sy (p)|p Sy (p)|p Sy (p)|p
1/[0.7672|C 0.5467/H 0.3893|H
2(/0.6798|1* 0.3867|C*  ||0.3333[|A;J
3/|0.6315/H 0.3333|A:L;J
4((0.5563|1 0.0617|C*
5/(0.5164|B 0.0615|1
6//0.3333|A;J  [|0.2400|B*  ||0.0559|F;G;K
7 0.2267|1*
8(|0.2981|F;G;K||0.2133|F;G;K
9 0.0112|B
10 0.0060|1

We then find non-comparable nodes within the ranked-list to serve as “cluster
heads”. The resulting clusters are at different depths in P: while “headed” by
non-comparable nodes, their contents (the collection of their descendants in P)
can overlap. Cluster heads which are non-comparable to all other cluster heads
of lower rank are called “primary”, and those above some previously identified
cluster head “secondary”.

Output for the example in Fig. 2 is shown in Tab.[3, for query Y = {c¢,e, i},
specificity values s = —1,1, and 3, doubly-normalized score S, and pseudo-
distance §,,. Cluster heads are shown in bold, and secondaries are labeled with
*. Inspection reveals desirable results: for low specificity, C is the preferred pri-
mary cluster, with 1 a secondary; for high specificity, H and J are preferred (J
specifically covers 7), with C' as the next-ranked secondary.

POSOC was validated by a highly experienced molecular immunologist who
had no prior knowledge of the POSOC to assess its utility and accuracy [12]. It
was also validated formally by comparing POSOCs annotations to a collection
of independent annotations of collections of GO nodes (corresponding to our
lists of target genes) available through the InterPro projectﬁ, which catalogs
assignments of protein families, domains, and functional sites to GO IDs [12].

6 http://www.ebi.ac.uk/interpro
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As noted, we are in the process of generalizing POSOC’s implementation to
target any POSO, not just the GO. Current targets include the Enzyme Com-
mission (EC) databasdﬂ and the MEdical Subject Headings (MESH) ontolog.

3 Requirements for Working with Semantic Hierarchies

While modern bio-ontologies take many forms, an adequate overall description
is of a taxonomically organized data object over which automated inference and
reasoning (for example using description logics [2]) is performed. Leading re-
search in ontologies tends to focus on logical properties, inference, and search.
Our view is that what has made existing bio-ontologies such as the GO so success-
ful are their attributes as hierarchical, taxonomic, categorizations of biological
objects, coming closer to being specially structured databases.

Moreover, these attributes are fundamental to other aspects: it is clear that
large taxonomically-organized database can be very useful without an inference
engine, but the converse is not so evident. Indeed, semantic hierarchies are truly
ubiquitous. Even a casual observation reveals them at the foundations of knowl-
edge architectures such as conceptual graphs [17], as object-oriented data types
[14], in CLs and related work [5], and even in verb type hierarchies from cognitive
linguistics [4]. And yet there seems to be little attention paid to the need for algo-
rithmic approaches to their representation, analysis, navigation, manipulation,
and measurement, or even their generic properties as formal structures.

While there are no doubt many reasons for this, these likely include the rel-
atively later development of poset theory as compared to lattices and networks
(the first serious textbook appeared in 2003 [I6]), and especially the novel ap-
pearance of these large, taxonomically organized knowledge objects which now
require this kind of computer-scientific approach.

So we are motivated to continue in a number of directions:

— First, we have found our pseudo-distances § lacking, as they are only available
between comparable nodes. We are thus seeking to generalize this idea to a
more inclusive measures of distance, size, level, etc.

— There are many more tasks which need to be addressed within the overall
poset ontology world than the categorization task. Examples include:

Matching: How do we match two parts of a poset ontology? This arises,
for example, in both the BioCreative task and the InterPro validation of
POSOC, where POSOC has provided certain answers, and we wish to
compare those to some “correct” answer provided by someone else. This
can be formalized as follows: assume a poset P = (P, <), with P, P, C
P, inducing the sub-posets P; = <P1, §|P1> and Py = <P2, §|P2>. How
can we then measure the similarity of P; and Psy?

" http://www.biochem.ucl.ac.uk/bsm/enzymes
8 http://www.nlm.nih.gov/mesh/meshhome.html
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Comparison: Assume now that we have two different orderings available on
the same underlying set, for example ontologies constructing by different
teams of researchers. How can we compare their similarity? This can also
be formalized as assuming P; := (P, <;) and Py := (P, <s), then how
can we measure the similarity of Py, Ps?

Merger: Finally we have the most general formulation of the problem,
assuming two complete different ontologies Py := (Py,<;) and Py :=
(P, <5). How can we hope to measure their similarity, and ultimately
find ways to merge them together into some new poset P on P; U Py?

The general situation is illustrated in Fig.[d, where the EC and the GO are
shown as posets on different underlying sets P, but with the same set of
labels X. This common labeling can also be used as a source of comparison
information, showing, for example, similarity between nodes A, G, F' of GO
and F,J of EC in virtue of the annotation of genes b, g, h, 7, some of which
are analogous, and some of which (e.g. ¢) are not.

S
A
NN

GO ed

Fig. 4. Cartoon of the general ontology matching problem between the EC and GO.

— We are also interested in considering CLs as semantic hierarchies (see Sec. B)),
and using formal measures of level and distance in them to induce hypotheses
about both extractable knowledge and potential anomalies in data sets.

— Indeed, this general class of problems arises in a number of more specialized
lattices and posets, for example posets of system reconstruction hypotheses
in multi-dimensional statistical analysis [S/T3|I5] and classes of random sets
in generalized information theory [7].

4 Measures in Semantic Hierarchies

In all these instances, what is required are much better conceptualizations of
measures in posets. Our thoughts extend to two important concepts: a general,
interval-valued concept of vertical level or rank within a poset; and a general,
vector-valued concept of overall distance between two arbitrary nodes.
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The scope for this paper allows only a partial formal development. Here we
introduce a few suggestive definitions and results, and refer the reader to future
work for a detailed development, including more proofs of the basic results.

4.1 Interval-Valued Poset Rank

Rank as a measure of the vertical “level” of a node is an important combinatorial
concept [I3], but usually used only in more constrained combinatorial structures
such as lattices or so-called Jordan-Dedekind, or JD, posets@. We have found [16]
rank to be defined in posets in a lower-bounded way:

{0, pe Min(P)
T«(p) = {n, p € Min (P — {q:7.(q) <n})

We use r, suggestively, as its dual function is readily available:

<y [0, pe Max(P)
r(p) = {n,peMax(P{q:r*(Q) <n})

And so an interval rank function can be easily identified as R: P — D(H(P)),
with R(p) = [r.(p), H(P) — r*(p)Jd, where D(n) = {[z,y] : 2,y € IT,0 <
x < y < n} is the set of all integer intervals for n € Z*. An example of a

bounded poset equipped with its interval rank function is shown in Fig. Bl so
that R(D) = [1,2], R(K) = [1,4].

Fig. 5. A bounded poset equipped with its interval rank.

9 Those where all chains between comparable nodes have the same length.
!9 Note that if we instead use R(p) := [H(P) — r«(p), " (p)], the “top” and “bottom”
as in Fig. [ are simply reversed.
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To conceptualize the interval rank, first, P can possess at most H(P) “levels”.
So for any node p € P, it’s level has to be no less than as “high up” from the
bottom as it is, but no more than how “far down” from the top it is.

Theorem 1. R(p) = [h.(0,p), H(P) — h(p,1)]

Proof. Since R(p) = [r«(p), H(P) — r*(p)], it is sufficient to show that r.(p) =
h«(0,p), and r*(p) = h.(p,1). For p = 0, clearly r.(0) = 0 = h.(0,0). So if
p € Min(P — Min(P)), then r.(p) = 1, and also h.(0,p) = 1. Indeed, at each
step Min (P —{q:7.(¢) <n}) = {q : h.(0,q) = n}, and thus r, partitions
P into bands of lower rank n with h, = n. Thus Vp € P,r.(p) = h.(0,p).
r*(p) = h«(p, 1) follows by a dual argument.

R induces an order mapping R: P — (D, <) from P to the set of integer
intervals D, where < is an interval order on D. Whether R is order preserving
depends on the interval order used. For two integer intervals I = [I,,I*],J =
[J«, J*] € D, consider the following weak and strong interval orders:

1=y J:=1,<J,and I" < J*, I1=sJ:=1"<J,.

Theorem 2. R is order preserving from P to (D, =), but not to (D, <;).

Proof. Let p < q. Then h,(0,p) < h.(0,q), and h.(g, 1) < hy(p,1). Thus we have
R(p) = [1.(0,p), H(P) — hu(p,1)] 2w R(q) = [1«(0,q), H(P) — h.(q,1)] directly,
but it might be that H(P) — h.(p,1) < h«(0,¢) or not, and so it could be that
R(p) and R(q) are non-comparable in <.

We also have the following unproved conjecture about how scalar-valued rank
arises as a special case of our interval-valued rank.

Congecture 1. Assume a fully bounded poset P, and a node p € P with r.(p) =
r*(p) so that R(p) = [r,r] for some specific r € Z. Then VC € C(0,1),p € C iff
C' is maximal in the sense of |C|. Moreover, Vp € P, R(p) = [r,r] iff P is JD.

For example, in Fig. B, we have R(H) = [2,2] = 2, and H is only on a
maximal chain 0 < A< H<I<B<I.

4.2 Vector-Valued Poset Distance

In conjunction with our new sense of “vertical distance” in posets, we also wish to
have a general sense of distance which captures the horizontal component as well.
Towards that end, for some collection of nodes @ € P, including both comparable
and non-comparable pairs, we need to characterize the nodes “between” them in
some sense. We characterize this as the neighborhood of @, and our sense of
distance is directly related to some measure of the “size” of this region of P. This
should be a vector quantity consisting of a horizontal and vertical component,
since these concepts are so distinct in posets.

We have some preliminary ideas in this direction, which we report here, al-
though we regret that we haven’t yet explored the implications of our definitions
deeply yet, nor the relationship to interval-valued rank described above.
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Definition 1 (Neighborhoods). Assume a poset P and a collection of nodes
Q € P. If \/ Q exists, then define the upper neighborhood of Q as the inter-
section of its filter and the ideal of its lubs:

'@ =1Qni(\VQ).

If A\ Q exists, then define the lower neighborhood of Q dually:

NQ) =1@nt(AQ).

When both \/ Q and \ Q exist, then define the neighborhood as the intersection
of the hourglass and the interval between the lubs and glbs of Q:

NQ =2@Qn [\ Vel
In all cases, if |Q| = 2 so that Q = {p, q}, then define for each appropriate form
e.9.- N(p,q) = N(Q).

Note that N(Q) exists because necessarily A Q@ < \/ Q. A simplified cartoon of
the appearance of N*(p,q) is shown in Fig.

N'(p,q) pVa

P q

Fig. 6. Cartoon of the upper neighborhood N*(p,q) (shaded region).

The idea is to say that the nodes in the neighborhood of @ should be “en-
trained” by both the filter 1@ and ideal | @ (that is, by the hourglass =(Q)),
but then also should not be “higher” than the joins \/ @, nor “lower” than the
meets A @; indeed, they should be only those parts of the hourglass between
A Q and \/ Q. Thus we have:

Conjecture 2. N(Q) is the set of all chains between A @ and \/ @ which go
through some node of Q.

Chains have no horizontal width, so an easy special case is recovered.

Theorem 3. If C = {p1,pa2,...,pn} C P is a chain with p; < ps < ... < p,,
then N(C) = [p1,pn]-
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Proof. Let C = {p1,p2,...,pn} be a chain with p; < ps < ... < p,. Then
Tp1 2 Tp; forall 2 < i < n,and |p, D |p; forall 1 < i < n—1. Also,
A C =p1,V C = p, both exist, so that [\ C,\/ C] = [p1,pn]. Thus we have:

N©) = Z(@)n A\ ]
= <U Tm) U <U ipz')) N [p1, ]
=1 =1
=(Tp1Ulpn) N(TprULpn) = Tp1Ulpn = [p1,pnl.
Note the trivial corollary that p < ¢ — N(p,q) = [p, q]-

We now define a vector-valued distance in terms of these neighborhood.

Definition 2 (Size and Distance). Assume a bounded poset P. Then let the
vector-valued size of a collection of nodes Q@ C P be

D(Q) = (H(N(Q)), W(N(Q))),
and the vector-valued distance between two nodes p,q € P be D(p,q) =
D({p.d})-
For examples, consider that in Fig.[2, we have
N(B,J)=Z2(B,J)N[BAJ,BV J|=(P—-{E})Nn[D,1] = [D,1],
D(B, J) = (H([D,1]), W([D;1])) = (5,3),

and in Fig. Bl we have
N(J,K)=2(J,K)Nn[JAK,JVK]=({0,D,J,C,1} U{0,K,1}) N0, 1]
={0,D,J,C,1,K}nP ={0,D,J,C,1, K},
D(J,K) = (®({0,D,J,C,1,K}),W({0,D, J,C,1,K})) = (5,2)..
We recover a pseudo-distance easily for the case of comparable nodes.

Theorem 4. If p < g, then D(p,q) = (6.(p,q), 1).

Proof. If p < ¢, then we know from Thm. Bl that N(p,q) = [p,q|, and thus
D(p,q) = (H([p,q]), W(lp, d])) = (" (P, 4),0) = (3x(p, q), 1).

In the future, we may recover other pseudo-distances ¢ if we first restrict our
sense of height H(P) to bounded posets, but then relax it to be the interval
H(P) = [h(0,1),h*(0,1)] instead of the scalar H(P) = h*(0,1).

5 Distance Measures in Concept Lattices

We recognize formal concept analysis (FCA) as both a foundational tool for
the representation of relational information [5], and a way to extract semantic
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hierarchies from relational data. The trivial observation that every lattice is a
poset opens the way to the consideration of the application of our ideas about
levels and distances to nodes in CLs.

Space precludes a detailed exposition, instead we refer to the standard ref-
erences [5]. Instead, we will simply assert the availability of a context as a
binary relation R C X x Y which generates a poset £L = (P, <), where: £
is actually a lattice, in particular the concept lattice of R; P C 2% x 2V is
a set of concepts generated by R; and < is the subset ordering such that
p < q:=p=(A1,B1),q = (Ay,Bs), with A1 C As and By O By, where
A17A2 c Xv Bl7B2 c Y.

Lattices as Special Posets: When a poset P is a lattice (recalling that P here
is finite), we always have that VQ C P,\/ Q and A Q exist, and furthermore
as unique members of P. Thus the formulations of Def. () and () become
largely simplified, for example:

N(p,q) = (tpUtqulpulgn(tlprnlgni(tpntg).

We do not know of the further significance of this at this time, and in par-
ticular what the meaning of these kinds of expressions are specifically in the
context of P being a CL L. Indeed, we are suspicious that we are probably
recapitulating or generalizing known results from lattice theory [3].
Ontology Induction: One of the great challenges in ontology work is the abil-
ity to create ontologies from other information sources such as relational
or statistical data. CLs provide such an opportunity. In our case, we are
working with molecular biologists and machine learning researchers who are
creating relational knowledge bases of the interaction between a set of pro-
teins R = {r;} and ligands (smaller molecules which bind to them to form
biologically active complexes) L = {I;}. As illustrated in Fig.[7, this provides
a formal context in R X L relating proteins to those ligands with which they
bind, and the resulting CL is a semantic hierarchy categorizing proteins r in
the context of those ligands ! which they bind, and vice versa. In this way, an
actual POSO O is generated, where concepts P = 2F are collections of lig-
ands, <is Con L, X = R, and F' is determined by the concept lattice. Thus

Fig. 7. Mapping a protein-ligand binding relation to its concept lattice proto-ontology.



Poset Ontologies and Concept Lattices as Semantic Hierarchies 301

O is fodder for our methodology, including POSOC for categorization, but
also explorations of mappings from these proto-ontologies to other existing
ontologies such as the GO or EC.

Anomaly Detection: We conclude with the final direction in which we would

like to take this work, namely the use of measures in semantic hierarchies
to detect anomalies in relational data as represented in CLs. Simply put,
depending on the semantics of the formal context being represented, there
may or may not be an expected distribution of nodes in the CL with respect
to their cardinalities, that is |A| and |B|. In other words, object concepts
(where |A| = 1) should be “low” in the hierarchy, and attribute concepts
(where |B| = 1) “high”. When this is not the case, it indicates an usual
object, attribute, or collection thereof. Much more needs to be explored
here, but for now we will leave this as a suggestion for the community to
consider further development.
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