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Abstract

Further results on possibilistic measurement [5, 8, 9] are presented, including the introduc-
tion of possibilistic histograms, their interpretation as fuzzy numbers, and their continuous
approximations.

1 Possibilistic Measurement

Joslyn has presented a measurement method for possibility distributions [5, 8, 9]. The procedure is
based on the observations of possibly non-disjoint intervals. From these set statistics an empirical

random set can be derived. Under reasonable consistency requirements, its one-point coverage
function is a possibility distribution, from which a consonant (possibilistic) random set can in turn

be derived.
Given a finite universe Ω := {ωi}, 1 ≤ i ≤ n, the function m: 2Ω 7→ [0, 1] is an evidence func-

tion (otherwise known as a basic probability assignment) when m(∅) = 0 and
∑

A⊆Ω m(A) = 1.
Denote a random set generated from an evidence function as S := {〈Aj, mj 〉 : mj > 0}, where
〈 · 〉 is a vector, Aj ⊆ Ω, mj := m(Aj), and 1 ≤ j ≤ N := |S| ≤ 2n − 1. Denote the focal set as

F := {Aj : mj > 0} with core C(F ) :=
⋂

F Aj and support S(F ) :=
⋃

F Aj .
The plausibility measure on ∀A ⊆ Ω is Pl(A) :=

∑

Aj∩A6=∅ mj. The plausibility assignment

(otherwise known as the one-point coverage function) of S is

~Pl = 〈Pli 〉 := 〈Pl({ωi}) 〉 , Pli :=
∑

Aj3ωi

mj.

~Pl is a fuzzy set that can be mapped to an equivalence class of random sets [10].

When ∀Aj ∈ F , |Aj| = 1, then S is specific, and Pr(A) := Pl(A) is an additive probability

measure with probability distribution ~p = 〈 pi 〉 := ~Pl and additive normalization
∑

i pi = 1
and operator P (A) =

∑

ωi∈A pi. S is consonant (F is a nest) when (without loss of generality for

ordering, and letting A0 := ∅) Aj−1 ⊆ Aj . Now Π(A) := Pl(A) is a possibility measure. As Pr
is additive, so Π is maximal:

∀A, B ⊆ Ω, Π(A ∪ B) = Π(A) ∨ Π(B),

where ∨ is the maximum operator. Denoting Ai := {ω1, ω2, . . . , ωi}, and assuming that F is
complete (i.e. ∀ωi ∈ Ω, ∃Ai), then ~π = 〈πi 〉 := ~Pl is a possibility distribution with: support

S(π) := {ω: π(ω) > 0} = S(F ); core C(π) := {ω: π(ω) = 1} = C(F ) 6= ∅; maximal normalization
∨

i πi = 1; and operator Π(A) =
∨

ωi∈A πi.

However, it is not necessary that S be consonant for
∨

i πi = 1. The weaker condition of
consistency C(F ) 6= ∅ is sufficient, and therefore this is all that is required for S to have a
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possibility distribution. If S is not consistent, then there are well-justified possibilistic normalization

methods [6, 12].
To derive a possibility distribution from an empirical source, it is necessary to observe subsets

Bs ⊆ Ω, 1 ≤ s ≤ M denoted as a vector ~B := 〈Bs 〉. The set of observed subsets produced by
eliminating duplicates in ~B is an empirically derived focal set FE := {Aj}, N ≤ M . Denoting the

number of observed subsets Aj as Cj , then the set-frequency function is

mE :FE 7→ [0, 1], mE(Aj) =
Cj

∑

Aj∈FE Cj
= Cj/M.

mE in turn generates an empirically derived random set SE . If FE is a disjoint class, then SE

generates a probability distribution on an equivalence class on S(F ). But if SE is consistent, or is
a consistent approximation, then the empirical possibility distribution is

π(ω) =

∑

Aj3ω Cj

M
. (1)

In [6] a variety of methods to gather set statistics are outlined, including: 1) ensembles of

heterogeneous measuring devices, changing the backdrop of measurement from multiple time trials
on a single instrument to multiple instrument trials at a single time; and 2) intervals derived from

order statistics of observed (singleton) point data.

2 Possibilistic Histograms

Possibility distributions derived according to (1) can be properly described as possibilistic his-
tograms, similar to ordinary (stochastic) histograms, but derived from possibly overlapping inter-
val observations, and thus governed by the mathematics of random sets. In the sequel it will be

assumed that SE is consistent, either naturally or as the result of a normalization method, and
thus π from (1) is a possibility distribution.

Let Ω = IR, and each observation Aj ∈ FE be a closed interval denoted by its endpoints
Aj := [lj, rj]. Let l(j) and r(j) be the order and “reverse order” statistics [1] of the left and right

endpoints, so that

l(1) ≤ l(2) ≤ . . . ≤ l(N), r(N) ≤ r(N−1) ≤ . . . ≤ r(1). (2)

are permutations of the lj, rj. Denote the multisets of endpoints and ordered endpoints as the
vectors

~E := 〈 l1, l2, . . . , lN , r1, r2, . . . , rN 〉 , Ê :=
〈

l(1), l(2), . . . , l(N), r(N), r(N−1), . . . , r(1)

〉

.

Consistency requires that

max
j

lj = l(N) ≤ r(N) = min
j

rj, (3)

so that C(π) = [l(N), r(N)]. If l(N) = r(N) then π has a point core. The joint linear order on Ê is

then

l(1) ≤ l(2) ≤ . . . ≤ l(N) ≤ r(N) ≤ r(N−1) ≤ . . . ≤ l(1). (4)

The inequalities in (2) will be strict or not depending on whether a pair Aj1, Aj2 share an

endpoint. All the Aj are distinct, so they cannot share both endpoints. This forces most, but not
all, of the lj, rj to be distinct. Consider first a single observation A1 := [a, b]. When a = b then

A1 is a point observation. When a second observation A2 := [c, d] is made, then there are four
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possibilities:

c = d ∈ {a, b}, c ∈ {a, b}, d 6∈ {a, b}, c 6∈ {a, b}, d ∈ {a, b}, c 6∈ {a, b}, d 6∈ {a, b}.

As distinct, consistent, observed intervals are added, in one limit all the lj, rj are distinct; in the

other they all share only a common point core r(N) = l(N). Let E := {ek}, 1 ≤ k ≤ P := |E| be the

set of endpoints with duplicates omitted from ~E. Then in general N + 1 ≤ P ≤ 2N .

Each of the ek is equal to at least one of the (left or right) endpoints. From (4), the ek naturally
divide into the two groups mapping to left and right endpoints. Therefore denote E = E l ∪ Er,

where E l := {el
kl}, E

r := {er
kr} are the left- and right-endpoints respectively, ordered as in (4),

where

P l := |E l|, 1 ≤ kl ≤ P l, P r := |Er|, P r ≥ kr ≥ 1, P l + P r = P.

π is completely determined by the coordinates 〈 ek, π(ek) 〉. First, S(π) = [el
1, e

r
1] and C(π) =

[el
P l , e

r
P r ]. In general π is piecewise constant. Each ek marks a discrete jump either up to π(ek)

or down to π(ek + 1), depending on whether ek ∈ Er or ek ∈ E l. For an (open or closed) interval
I ⊆ IR and y ∈ [0, 1], let π(I) = y denote that ∀x ∈ I, π(x) = y. Then

π([−∞, el
1)) = π((er

1,∞]) = 0, π([el
1, e

l
2)) = π(el

1), . . . , π([el
P l−1, e

l
P l) = π(el

P l−1),

π([el
P l , e

r
P r ]) = 1, π((er

P r , er
P r−1]) = π(er

P r−1), . . . , π((er
2, e

r
1]) = π(er

1)

Letting Gk, 1 ≤ k ≤ P −1 be the (appropriately half-open or closed) interval in IR from ek to ek+1,
then let Dk, 1 ≤ k ≤ P − 1 be the locus of points {〈x, y 〉 : x ∈ Gk, y = π(x)} which comprise the

actual points of π.

2.1 Example

As an example, consider the vector of interval observations

~B = 〈 [1.5, 3.5], [1, 2], [1, 2], [1.5, 4]〉 ,

so that M = 4 (see Fig. 1). Then N = 3, l(N) = 1.5, and r(N) = 2, and C(π) = [1.5, 2], S(π) = [1, 4].

Furthermore, P = 5 and e2 = 1.5 maps to l1 = l3 = l(2) = l(3) = e2 = el
2 with P l = 2 and P r = 3.

The various sets and vectors are (the Dk and Gk are shown in the figure):

FE = {[1, 2], [1.5, 3.5], [1.5, 4]}, ~E = 〈 1.5, 1, 1.5, 3.5, 2, 4〉 , Ê = 〈 1, 1.5, 1.5, 2, 3.5, 4〉 ,

E = {1, 1.5, 2, 3.5, 4}, E l = {1, 1.5}, Er = {2, 3.5, 4}.

2.2 Possibilistic Histograms as Fuzzy Numbers

Possibilistic histograms are natural representations of possibility distributions. Since possibility
theory is a weak representational form for uncertainty [4, 7], it is appropriate that they produce

meaningful forms of possibility distributions even given very few observations. In particular, pos-
sibilistic histograms are fuzzy intervals, and those with point cores are fuzzy numbers.

Lemma 1 π is monotone increasing from −∞ to C(π) and monotone decreasing from C(π) to ∞.

Proof: Let x ∈ IR. The proof will be carried out for x ∈ [−∞, r(N)]; the remaining argument

follows analogously for x ∈ [l(N),∞]. First, recall that the ordering of (4) carries over to the el and
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Figure 1: Four observed intervals, their statistics, and their possibilistic histogram.

er. When x < el
1 then π(x) = 0. Then, let 1 ≤ k ≤ P l and let xk ∈ [el

k, e
l
k+1), so that

π(xk) = π(el
k) =

∑

Aj3xk

Cj/M =
∑

Aj⊇[el
k
,el

k+1
)

Cj/M.

From (3) and (4), ∀el
kl , e

r
kr , el

kl ≤ el
kl+1

≤ el
kl+2

≤ er
kr . Therefore

|{Aj: Aj ⊇ [el
k, e

l
k+1)}| ≤ |{Aj: Aj ⊇ [el

k+1, e
l
k+2)}|,

and so π(xk) ≤ π(xk+1) ≤ 1. Finally, when x ∈ [el
P l , e

r
P r ] = C(π), then π(x) = 1.

Definition 1 (Fuzzy Interval) [3] A fuzzy subset of the real numbers F is a fuzzy interval if
1) Possibilistic Normalization: C(F ) 6= ∅; and 2) Convexity: ∀x, y ∈ IR , ∀ z ∈ [x, y] , µF(z) ≥
µF (x) ∧ µF (y).

Definition 2 (Fuzzy Number) [3] A fuzzy interval F is a fuzzy number if ∃r ∈ IR, C(F ) = {r}.

Theorem 1 If FE is consistent, then π is a fuzzy interval.

Proof: (1) Condition 1 of Def. 1 is satisfied by the consistency of FE. (2) For condition 2 of

Def. 1, there are three cases, all of which follow from Lem. 1. a) If x ≤ y ≤ er
P r then π(x)∧π(y) =

π(x) ≤ π(z). b) If el
P l ≤ x ≤ y then π(x) ∧ π(y) = π(y) ≤ π(z). c) If x ≤ el

P l ≤ er
P r ≤ y

then: if x ≤ z ≤ er
P r , then π(x) ≤ π(z); similarly, if el

P l ≤ z ≤ y, then π(y) ≤ π(z). Therefore
π(z) ≥ π(x) ∧ π(y).

Corollary 1 If ∃r ∈ IR, C(FE) = {r}, then π is a fuzzy number.

Proof: Obvious.
Note that: from condition 1 of Def. 1, fuzzy intervals and numbers are in fact possibility

distributions; the instrument ensemble methods introduced in [5] typically produce fuzzy intervals,

while the order statistical methods typically produce fuzzy numbers.
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3 Continuous Approximations

Possibilistic histograms are to possibility theory as ordinary histograms are to traditional statistics.
As maximum likelihood and other estimation methods are used in statistics to generate continuous

approximations to histograms, so it is desirable to develop continuous or smooth approximations
to possibilistic histograms.

One of the most significant differences between possibilistic and stochastic histograms is that
the former are collections of intervals, not discrete points. We can proceed by selecting a set of
points from these intervals to which a continuous curve will be fitted.

The following ideas suggest themselves:

• The midpoint of the core, c :=
〈

l(N)+r(N)

2 , 1
〉

, should always be selected.

• To facilitate a smooth drop to the axis at the edge of the support, then if the points l :=
〈

l(1), 0
〉

and r :=
〈

r(1), 0
〉

do not equal c, then they should always be selected.

• The endpoints of each Dk, denoted dl
k := 〈 ek, π(ek) 〉 and dr

k := 〈 ek+1, π(ek) 〉 should be

candidates.

• The midpoints of each of the Dk, denoted hk :=
〈

ek+ek+1

2 , π(ek)
〉

should be candidates.
Given a set of required and candidate points, the only other criterion is that only one point is

selected for each x ∈ S(π). This would preclude, for example, including both the right limit of a
Dk open on the right and the left limit of Dk+1 closed on the left, which are equal in x but differ

in π(x).
Regrettably, space precludes a detailed analysis. Let the example in Fig. 2 suffice to illustrate

the approach. The left side shows two observed intervals, in dashed lines below the axis, and the
components of the Dk with N = M = 2 and P = 3. The set of required points is {c = h2, l, r}. dl

1

and dr
3 are excluded due to conflicts with l and r, leaving a candidate set {h1, d

r
1, d

l
2, d

r
2, d

l
3, h3}.

Any subset D (including the empty set) can be chosen as long as it does not contain either {dr
1, d

l
2}

or {dr
2, d

l
3}.

Once a set of points is selected, a variety of curve-fitting methods are available. The simplest and
most direct is to connect them with line segments, producing a piecewise linear, continuous distri-

bution. Three of these are shown on the right of Fig. 2 for the sets D = {h1, d
l
2, d

r
2, h3}, ∅, {d

r
1, d

l
3},

moving from the outside to the inside. Alternatively, nonlinear regression or spline methods can be

used to fit the selected points to an exponential or quadratic form, also commonly used for fuzzy
numbers [2, 11, 13].
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Figure 2: Example piecewise linear continuous possibility distributions.

An advantage of the line-segment method is that even given very few observations, the possibility

distributions have the same form as those typically used in applications. Some of these are shown
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in Fig. 3, with some example observed intervals below them which could give rise to them. Case A

is a square distribution produced by a single crisp interval [a, b]; B is the triangular form, produced
in all cases when d = c and D = ∅ is selected; C is the outermost case of Fig. 2 for the observations

[f, i], [g, h].
In case D it is also common for π to extend to the right by letting m −→ ∞, so that ∀x ≥

l, π(x) = 1. Either condition can result when point observations j, k, l are interpreted either as
distances from a fixed m (perhaps an upper bound), or as magnitudes in relation to one or the
other infinities. In this last case, π is simply equivalent to a cumulative probability distribution; but

this approach is in keeping with possibilistic semantics [7], which draws from the ordinal concepts
of capacity, distance, and similarity.
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Figure 3: Typical fuzzy intervals and numbers used in applications.
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