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0.1 Abstract

Possibility theory is being developed as an alternative to traditional information

theory. While possibility theory is logically independent of probability theory,

they are related: both arise in Dempster-Shafer evidence theory as fuzzy

measures de�ned on random sets; and their distributions are both fuzzy sets.

Together these �elds comprise the new �eld ofGeneralized Information Theory

(git).

Traditionally mathematical possibilistic semantics has been based strictly on

fuzzy sets and their interpretation in the context of psychological uncertainty and

subjective evaluations. The purpose of this dissertation is to extend interpretations

and applications of possibility theory beyond those of fuzzy sets; in particular, to

develop a natural semantics of possibility for the purposes of qualitative mod-

eling of complex physical systems. The dissertation addresses the following:

Possibility Theory in git: The relations between possibility theory and the other

formalisms of git are explicated; random set distributions and their dis-

tribution operators and structural and numerical aggregation func-

tions are introduced to relate probability with possibility in the context of

git; possibility arises from consistent random sets; and methods for pos-

sibilistic normalization and possibilistic approximation of inconsistent

random sets are developed. It is argued that there is no special relationship

between possibility theory and fuzzy systems theory.

Semantics of Possibility: Drawing from semiotics and generalmodels, criteria

for the natural semantics of possibility are explored; the basis for a grad-

uated, de re possibility is related to modal, natural language, and prob-

abilistic views; a strong compatibility requirement for possibility and

probability is advanced; possibilistic concepts are developed from mathe-

matical, statistical and physical interpretations; and the traditional se-

mantics of possibility from subjective evaluations, converted probabil-

ities, and likelihoods are critiqued.

Possibilistic Measurement: Measurement methods for possibility values based

on subset observations, and which are consistent with possibilistic seman-

tics, are developed; possibilistic histograms which are fuzzy intervals,

and their continuous approximations, are de�ned; set statistics are de-

rived from indirect measurement of system components, ensembles of

di�erently calibrated instruments, interval-based time series data from

order statistics, and local extrema of time series data.
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Possibilistic Processes: General processes are de�ned as semirings operating

on state vectors and transition matrices, and the special case of possi-

bilistic processes using max/t-norm semirings and possibilistically normal

conditional transition matrices, are introduced, and their properties devel-

oped; possibilistic Markov processes and a possibilistic Monte Carlo

method are de�ned.

Software Architecture: An architecture for a C++ implementation of possi-

bilistic and git methods is proposed in the context of the Computer-Aided

Systems Theory (cast) research program.

Qualitative Model-Based Diagnosis and Trend Analysis: The use of possi-

bility theory as a new method for qualitative modeling is explored. The

potential for the application of possibilistic methods in systems for the quali-

tative model-based diagnosis and trend analysis of complex systems like

spacecraft is described.



vi

0.2 Acknowledgments

It is rare for someone to create a new �eld of knowledge. This work is certainly

not an example of such a thing. Instead, it merely reects the continuation in a

certain direction of the work of someone who has, my teacher, Prof. George Klir of

SUNY-Binghamton Systems Science. Without his vision and strong support over

many years none of this would have been possible. Studying under him has been an

immense privilege.

In my many years working at SUNY, the other pole of my intellectual life has

been Prof. Howard Pattee. Before entering SUNY, I could not have imagined how

rich and broad my study under Prof. Pattee would be, and how far my education

would advance at the hands of such an inspiring teacher.

In addition, I would like to acknowledge the assistance of the other Systems

Science faculty, and also Ms. Bonnie Cornick, without whom I would have been

even more lost and confused than I normally was.

Among all the teachers I have had the pleasure of studying under, there is none

I wish to thank more than Prof. Valentin Turchin of City College Computer Science.

Since meeting him many years ago, all my work with him has been an unfolding

process of discovery and wonder. It is rare indeed to �nd a teacher and friend of

such brilliance and depth.

Our work together with Dr. Francis Heylighen of the Free University of Brussels

is a continuing source of great satisfaction. I am all the more fortunate to have two

colleagues with whom I share such a �rm view of the world and close collaborative

relationship. I know we all look forward to the work for the years ahead.

The last three years of my graduate work were funded by the Code 520 group

of NASA's Goddard Space Flight Center in Greenbelt Maryland under grant #

NGT 50756. I'm pleased to extend my deep gratitude to Dr. Walter Truszkowski

for his support and collaboration. My work with the Goddard group is reected

not only in the �nal chapter, but throughout the dissertation. It would indeed have

been impossible to complete this work without him, and I hope that he is pleased

with the chance he took in supporting me. In addition, the whole Code 520 group,

especially Michael Moore, were very helpful, as was the entire University A�airs

o�ce and sta� at Goddard.

My good fortune actually began before entering SUNY, since I came with many

of the intellectual resources that would serve me over later years. For this I must

credit the superb education I received at Oberlin College, and especially the incred-

ible support of my primary teachers there, Prof. Dan Merrill and Prof. Christian

Koch. It was through my work with them that I was �rst able to explore the life of



0.2. ACKNOWLEDGMENTS vii

the mind, and to begin to realize the direction of my work. I will never forget the

respect, freedom, and guidance they gave a young student.

Possibility theory is a strange and new enough �eld that there are few proper

colleagues. My recent cooperation with Prof. Etienne Kerre of the University of

Ghent and his students Dr. Gert de Cooman, Mr. Bernard de Baets, and Dr. Bart

Cappelle has been especially welcome. I was delighted to �nd some real mathemati-

cians trying to move this theory along! In addition Profs. Didier Dubois and Henri

Prade of the Paul Sabatier University in Toulouse have been very kind and helpful.

The colleagues and friends I have made in the academic community over the

years have also been a great source of support and stimulation. There are too many

to mention them all. But I won't let that stop me (in alphabetical order, no less!):

thanks to Prof. Pierre Auger, Prof. Bela Banathy, Dr. Kirstie Bellman, Dr. Peter

Cariani, Prof. Francois Cellier, Dr. John Dockery, Prof. Paul Fishwick, Dr. Sally

Goerner, Dr. Irwin Goodman, Dr. Kevin Hu�ord, Dr. George Kampis, Dr. Kevin

Kreitman, Dr. Robert Lea, Prof. Hal Linstone, Prof. Alvaro Moreno, Prof. Tuncer

�Oren, Prof. Franz Pichler, Dr. William Powers, Mr. Luis Rocha, Prof. Stan Salthe,

Prof. Len Troncale, Dr. (yet?) Jon Umerez, Prof. Stuart Umpleby, and (last but

not least) Dr. Jack Wang for their friendship and help.

Finally, I would like to thank my family for believing in me through the years:

Mom and Dad, Lisa and the folks in Maine, Sara, Paul, and Jonathan, and Otto

and the big Mi.

Cli� Joslyn

Spring 1994

Portland, Maine



viii

0.3 Preface

In 1983 I was a Sophomore at Oberlin College facing the prospect of declaring a

major and planning the rest of my college career. After considering the possibility of

completing a less than superlative mathematics program, I decided to take advantage

of Oberlin's strong independent study and individual major programs. With the

help of Profs. Dan Merrill and Chris Koch, and some long hours in the library, I

designed an individual major program in Cognitive Science, the �rst formal study

ever done in that subject at Oberlin.

It was during this time that I encountered the work of Gregory Bateson, Valentin

Turchin, Kenneth Sayre, and Ludwig von Bertalan�y, and immediately realized

where my true interests lay. In my senior year I deected my studies towards Systems

Science and Cybernetics, and have never looked back. Again with the unparalleled

support of my teachers, I completed an honors thesis entitled \Cybernetics and the

Science of Mind", and was graduated with high honors.

In that work I tried to show the validity and feasibility of Systems Science and

Cybernetics as a research program for Cognitive Science. In doing so, I relied heavily

on probabilistic information theory and entropic concepts to serve as a universal

modeling language, available at all levels of analysis, and allowing the linkage of

theories across qualitatively distinct types of systems. Similarly, semiotics and the

general application of concepts from semantics provided a bridge from information

theory to the special sciences of biology and psychology.

A few years after leaving Oberlin I entered graduate study in the SUNY-Binghamton

Systems Science program. Now with the strong guidance of my new teachers

Prof. George Klir and Prof. Howard Pattee, I had the perfect opportunity to absorb

the contents of Systems Science and Cybernetics, in both its breadth and depth.

And as I entered the doctoral program, I again faced the prospect of declaring a

research topic and planning the rest of my graduate career. After some meditation,

there was no question about the direction I would take.

Systems Science is highly variegated and heterogeneous, both synthetic and syn-

cretic. More than any other �eld of study, it faces the fundamental dilemma of

providing for unity amid diversity. From electrical engineering to family therapy to

theoretical biology to constructivist philosophy, there are many roads to Systems

Science. And my road has always been the search for a universal modeling language

through information theory and semiotics.

From Prof. Klir I had been introduced to the expanding horizons of Generalized

Information Theory (git), in particular the elegant symmetry between probabilistic

and possibilistic information theory. And while investigating possibility theory, I
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realized that outside of the formalisms themselves, there had been very little e�ort

to relate possibility theory (or fuzzy theory, evidence theory, or any of the other

branches of git) to the kinds of foundational issues of systems science that had

occupied me earlier: the availability of a universal modeling language to link type-

speci�c descriptions of systems. These other formalisms had been developed solely

in the context of modeling human psychology. And not only were their advocates

content with that situation, they strongly championed it.

My path was clear: to explore the semantics of possibility with respect to the

modeling of physical systems; in particular, to develop possibilistic models with valid

methods for measurement and prediction of possibilistically distributed values.

Along the way a number of other goals became associated with this work. I found

that possibilistic models and the empirical semantics of possibility theory were so

poorly developed that I would have to start essentially at the beginning, de�ning the

most basic measurement procedures for possibility distributions and the concepts of

possibilistic processes from �rst principles.

I also found that random set theory provided the strongest base, both formally

and at the semantic level, from which I could approach possibility theory. This

view led to a strengthening of my criticism of the traditional mathematical and

semantic understanding of possibility theory, which is based on fuzzy sets. It also

indicated the direction to be taken to develop empirical measurement procedures

for possibility.

I have been accused by some of committing the sin of the mathematician: of

working from formalism to application, rather than from a problem to its solution.

I have never understood this orthodoxy, and must admit that to a certain extent

I have been \shopping for a problem". But fortunately I think I've found one in

the developing methodology of qualitative modeling and simulation. I am working

with Walter Truszkowski at NASA{Goddard to apply possibilistic methods to the

qualitative model-based fault diagnosis and trend analysis of spacecraft systems,

and we are both hopeful about the future of this work.

Finally, the search for a universal modeling language extends beyond formal

mathematics to the implementations of these mathematical systems in computer-

based languages. The Computer-Aided Systems Theory (cast) school reects the

aspirations in this direction. It is my strong hope that I will be able to participate in

the development of cast systems to implement possibilistic and other git methods.

If these attempts are well-engineered, then the resulting systems should provide a

valuable basis for the development of higher-level Systems Science methodologies,

for example Klir's General Systems Problem Solver (gsps).
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Chapter 1

Science and Information

I have come to believe that the whole world is

an enigma, a enigma that is made terrible by

our own mad attempt to interpret it as though

it had an underlying truth.

| Umberto Eco

This work is ultimately about a particular manifestation in the modern world

of an ageless dualism present in the Western tradition: the distinction between the

objective and the subjective; between the material and the immaterial; between

phenomena and the referential semantic systems with which we model and interpret

them; between physics and mathematics; between the physical and the mental;

indeed, between body and mind.

The manifestation of these dualisms which will concern us here is the changing

nature of the relation between the (broadly conceived) natural sciences and the

informational sciences. Recently there have been great advances in the informa-

tional sciences, and a plethora of new formalisms. Whereas traditionally information

theory has been tightly coupled to the natural sciences, whatever connection there

might be between these new informational formalisms and the science of natural

or physical systems has not generally been explored. In particular, it is the pur-

pose of this thesis to develop the mathematical and methodological ideas which will

help establish the new theory of possibilistic information, and to apply it to the

modeling of physical systems.

1.1 Informational Properties and Concepts

The term \information science" has come to be used primarily to refer to what used

to be called \library science". Today it encompasses the general problems of techno-

logical information management and retrieval systems. However, it will be used here

1
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to refer to the whole array of formal and semi-formal theories which address not the

physical, but speci�cally the informational properties of systems. Thus information

science as used here includes not only classical information theory and the new

generalized information theory (git) which is of speci�c interest in this thesis,

but also the broader �elds of computer science, linguistics and semiotics, and

parts of philosophy of science and philosophy of language.

In order to try to achieve some coherence in what can be a semantic mine-

�eld, we begin by explicating some of the basic concepts which surround the term

\information".

1.1.1 Fundamental Characterizations

The essential requirement for the nominal concept of information is actually a process

of \inform"-ation | a process by which something becomes informed. This creates

an image of the reception of a message, a \piece" of \knowledge" by which we

become informed about what the actual state of a�airs is, and thus an increase

in the \amount" of that knowledge. This can also be seen as the resolution of a

question, as the selection of an answer from an ensemble of possible answers.

It is usually held that an increase of information, a resolution of a question,

results in a corresponding decrease of something else: of the capacity to store future

information, of the number of questions yet to be answered, or of the number of

possible states of a�airs.

As noticed by Smithson [271], traditionally it has only been the �rst of these

concepts which is held in a positive manner, while the other is usually seen only as a

lack of information or certainty. There are a host of terms with a negative pre�x to

describe this lack of information, such as uncertainty, imprecision, incomplete-

ness, ignorance, nonspeci�city, inde�niteness, indistinctness, indetermi-

nacy, inexactness, and unclarity. There are correspondingly few unmodi�ed

positive terms, such as doubt, randomness, ambiguity and vagueness.1

But ultimately the presence of information and uncertainty are inherently in-

terrelated, and must always be mutually present. The reception of information

necessarily involves the elements of surprise and novelty, a change that could not

be foreseen, that was unknown before the reception of the information. The occur-

rence of novelty or surprise necessarily requires an inherent freedom in the system

in which the novelty occurs, which freedom is then reduced by the reception of the

1It is interesting to note that in classical information theory the situation is actually reversed,

where the concept of entropy represents a lack of knowledge, which prompted Schr�odinger [257]

to coin the term negentropy to describe the presence of form.
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information.

In the end, following Ashby [6], the two dual, fundamental concepts of con-

straint and variety are arrived at as the foundations of a theory of information.

In all of the above formulations, an increase in information is an increase in con-

straint, of a \giving of form", and a corresponding decrease of variety. Of course,

information could also be lost, which would result in an increase in variety. These

are both very general concepts, but have the advantage of being able to be treated

mathematically in a clear way, having little connotative baggage, and both being

positive terms.

Thus the task of formal information theory becomes that of trying to explicate

the various ways that variety and constraint can be characterized, and whatever

laws govern their change in systems.

1.1.2 Related Concepts and the Rejection of \Information"

There are unfortunate problems with the use of the term \information" itself in

formal information theory, and particularly with the sense we are adopting here.

Throughout its history, controversies have raged about the appropriateness of the

term to describe a measure of constraint, as discussed by Shannon [263]. Information

has been taken to mean the opposite of this sense, for example in the classical

communication theory of Shannon and Weaver [264], where it is actually associated

with a quantity of variety, in terms of the capacity of a channel to communicate

information.

Huge confusions also exist in the literature about the distinction between the

syntactic concept of information as a measure of variety or constraint and the cor-

responding semantic concepts of information which relate tomeaning, value, sig-

ni�cance, and other referential concepts in semiotics and linguistics. While the

former is very exact, the latter can be quite problematic. Many wise people have

chosen to avoid this issue by avoiding the term \information" itself, resorting to

uncertainty or some more speci�c term. This will be aspired to here.

The concept of indeterminism and its relation to uncertainty is also important.

Indeterminism is typically held to be an ontological property of some process in a

phenomenal system, whereas uncertainty is an epistemic property of some modeling

system. Thus the presence of indeterminism in a system would entail uncertainty

in a good model of that system, and the uncertainty in that model would reect

the indeterminism in the object system. But on the other hand, the presence of

uncertainty in a model does not entail a corresponding indeterminism in the object

system: we may simply be ignorant of the determinism nevertheless present in the
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object process. Since our knowledge is necessarily restricted to the models which

we can construct, the presence of indeterminism as an ontological property of real

systems thus becomes a metaphysical question.

The recent growth in information science has also brought together a constella-

tion of other concepts which require careful consideration. These concepts, including

order, organization, randomness, and complexity, have been used with some-

what reckless abandon in recent years. In general they will not be used in this work

except in passing, although it is suggestive to consider how the new information

theories would relate to these and other concepts.

1.2 Natural Science and Information Theory

For centuries classical information theory developed in intimate relation to existing

theories of physical systems, and has come to dominate many modern physical

theories.

And with the advent of programmable machines in the mid-20th century,

information science gained a new branch in the theory of computational sys-

tems. This involved not only theories about the nature of systems which perform

computations and simulations which they carry out, but also theories about the

fundamental limits of computation, and resulting limits on our knowledge of the

natural systems they model. And increasingly, these computational information

theories are also �nding strong relationships to both classical and quantum theories

of physical systems.

1.2.1 Probability

The history of information theory can be traced back to the �rst attempts to for-

malize theories of uncertainty in terms of the theories of chance and probability by

Leibniz, Bernoulli and Laplace. In fact, probability is at the core of the centuries

of development of classical information theory. It also has a key role to play in git,

and has a strong relationship to possibility theory. The similarities and di�erences,

both formal, philosophical, and semantic, between probability and possibility will

occupy much of this work.

One of the foundational philosophical issues in probability is the distinction be-

tween aleatroy, de re, objectively-determined and de dicto, subjectively-determined

probabilities [112]. This issue is also relavent for the modern information theories

which are not speci�cally stochastic. Since our interest in determining of de re or

aleatory possibility values will depend on some relation between a possibilistic mea-
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surement procedure and a physical system being measured, this issue will also be a

fundamental concern for possibility theory.

Other issues in the foundations of probability concern its additivity and the

representation of ignorance through the Principle of Insu�cient Reason. These

issues were decided in a speci�c way in previous centuries. But Shafer [262], Hacking

[112], and others have discussed that there were many other ways these issues others

might have been decided. The establishment of git today in part is a response

towards the realization of these other possibilities.

1.2.2 Thermodynamic Information

Classical mechanics left no room for either uncertainty or indeterminism in systems

having dynamical descriptions. This world had no capacity for novelty or surprise:

from the universal Hamiltonian all would be revealed. Of course all was not quite

well with this view. Almost all interesting di�erential systems, including those which

model three astronomical bodies or a mole of gas, yield no analytical solutions, only

sloppy approximations; and frictional forces were a constant nagging problem.

Explicit attempts to alleviate these problems began with the development of

statistical physics by Boltzmann and Gibbs in the late 19th century. Statistical

physics placed probability at the center of the physics of macroscopic phenomena.

The long-term evolution of macroscopic, measurable quantities was modeled by the

asymptotic behavior of probability distributions. In this way, certainty about the

long-term behavior of a small number of gross aggregates of matter was traded

for uncertainty about the short-term development of vast numbers of simple enti-

ties, and friction could be accommodated. Weaver [300] describes this in terms of

informational concepts as the movement to a science of \disorganized complexity".

It was in the context of thermodynamics and statistical physics that the concept

of entropy arose, originally in thermodynamics as a measure of the \thermody-

namic distance" of a system from equilibrium, and later in statistical physics as

a mathematical measure of the variety present in the probability distribution of

the various energy levels of the mechanical states of the system. Where the for-

mer is a physical, ontological concept wedded to the context of the physical system

being measured, the latter is an informational, epistemic concept tied only to the

mathematics of probability distribution in question. So it is here that the rise of

informational concepts in direct relation to the theories of physical systems can �rst

be clearly seen

This relationship has continued throughout the further developments of ther-

modynamics. Whereas thermodynamic theories had been developed for closed or
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isolated systems, the thermodynamics of open systems came to the fore in later

decades, beginning with the general theories of von Bertalan�y [12] and the near-

equilibrium physics of Ilya Prigogine [221, 222]. Schr�odinger [257] observed that

the thermodynamics of open systems was intimately related to the fundamental

processes of living systems. Later workers have furthered this work into specula-

tions about fundamental relations between thermodynamic processes and processes

of general evolution and emergence [20,140,292,WeBDeF88]. The key idea to these

theories is that general evolution is in part a process by which systems export en-

tropy to their environments, thus maintaining themselves in low entropy, highly

informed, highly structured, \far-from-equilibrium" states.

1.2.3 Information Theory

In the rise of thermodynamics informational concepts were advanced into universal

characteristics of systems at all levels of analysis, but still only in the one context of

their physical, energetic thermodynamics. Thus concepts of thermodynamic entropy

become signi�cant to, for example, social and economic systems, to the extent that

they involve physical processes of energy ow.

But beginning with the communications theory of Shannon and Weaver [264] in

the 1950's and 1960's, a divergent view began to take hold which divorced entropy

from its purely thermodynamic grounding into a general measure of variety in sys-

tems irrespective of their energetics. This view placed the emphasis on entropy as a

measure of variety in stochastic systems, and therefore applied to stochastic systems

described at any level and in any terms.

The ensuing debate in the literature about the relation between thermodynamic

and nonthermodynamic entropies has yet to abate. Our purpose here is not to

pursue this issue in depth.2 No doubt there is a signi�cant relation between en-

tropy as a measure of a communications versus a thermodynamic system, as �rst

argued by Brillouin [19] and Szilard [279]. But from the 1960's on there has been a

proliferation of attempts to apply non-thermodynamic entropies in virtually every

scienti�c context imaginable, from genetics to anthropology. Many researchers were

attracted by what can turn out to be purely metaphorical relationships to such con-

cepts as order and organization discussed above. Others of these e�orts were not

very well grounded conceptually or formally, as Shannon himself was the �rst to

acknowledge [263].

But in the successes of this e�ort the continued growth of the signi�cance of

2The reader is referred to a more thorough analysis of the issues involved in a paper by the

author [128].



1.2. NATURAL SCIENCE AND INFORMATION THEORY 7

the informational sciences for the natural sciences can be seen. As distinct from

the general thermodynamic view, with this approach informational concepts can be

applied in a type-speci�c manner to systems at any level of analysis, opening the

possibility of fruitful information analyses of systems in their speci�cities. A recent

cogent example is the work of Tom Schneider [255,256], in which Shannon's coding

theory is applied to the physics of \macromoleculer machines" such as enzymatic

reactions and DNA transcription.

1.2.4 Quantum Information

Whereas information in statistical physics is based on the view of systems as large

collections of interacting deterministic subsystems, in the early 20th century quan-

tum theory extended the range of uncertainty to microscopic physics. Heisenberg's

Uncertainty Principle expresses fundamental limits on the certainty with which any

physical system can be described, irrespective of size or complexity. The determinis-

tic states of the Newtonian framework dissolve into probabilistic meta-states, whose

development can by described only by the stochastics of Schr�odinger's state transi-

tion function. Wheeler [303] has described how informational concepts are gaining

importance in explanations of quantum theory.

1.2.5 Algorithmic Information

With the advent of programmable machines, the concept of the algorithm came

to prominence, and the general characteristics and properties of algorithms and

machines which implement them were investigated. Measures of time and space

complexity were identi�ed as informational concepts, and such measures as algo-

rithmic depth [11] were developed.

Algorithmic complexity, also sometimes called algorithmic information,

was described independently by Kolmogorov [162] and Chaitin [29] as a measure

of the \compressibility" of a symbol string by some compression algorithm. This

quantity can in turn can be taken as the information content of a system relative to

some other interpreting computational system.

1.2.6 Chaotic Information

Also with the advent of computing machines the approximations of dynamical sys-

tems without analytic solutions became more tractable and complete. As researchers

began empirical exploration of the space of such systems, the special mathematical

properties of these systems, �rst discovered by Poincare, was developed into the
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theory of chaos.

The development of chaotic dynamics in the 1980's added to the now rich �eld

of information theories. In chaotic dynamical systems, while short term prediction

of trajectories is completely possible and deterministic, errors in calculations and

small di�erences in the speci�cation of initial conditions do not damp out, but

rather grow exponentially in model time. Thus while microscopically deterministic,

at the macroscopic level their behavior is highly unpredictable, and it is common

to resort to information theoretic descriptions at this level. The concept of metric

entropy [258], also developed by Kolmogorov, is used in this context to measure

the \spread" of the trajectories in the phase space.

Chaos provided a wide domain of di�erential systems which previously had no

solution with a qualitative, macroscopic, stochastic description at a higher level of

analysis. Thus chaotic information theory has had a major impact on physics. The

�rst mathematical explorations of chaotic systems were performed on models of

atmospheric convection [179]. A vast array of physical systems have proven to have

excellent descriptions under chaotic dynamics, from some relatively simple physical

systems like compound pendulums and dripping faucets to orbital dynamics and

complex chemical and biophysical systems [10].

1.2.7 Computational Physics

One leading edge in computational information theory is the growth of \computa-

tional physics", which concerns itself speci�cally with the relation between compu-

tational information theory and physics. This discussion addresses many aspects

of this relationship, including issues in algorithmic information theory and chaotic

dynamics, but also about the nature of irreversibility in computation, the relation

between measurement and computation, the thermodynamics of gravitational sin-

gularities, the complexity of physical systems, and the fundamental physical limits

of computing machines [202,307,329].

1.2.8 Modeling and Simulation Technology

Finally, another very strong trend in the 1980's is the development of a number of

computational techniques which are intended to model or simulate natural systems.

Examples include neural network theory, which simulates neural systems; arti�cial

intelligence, which simulates cognitive systems; genetic algorithms, which simulate

genetic evolution [121]; and a variety of \arti�cial life" systems which simulate a

variety of di�erent organismal behaviors [172].

Most of the above technologies, while very popular, hold at best a metaphorical
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relationship to the systems they are intended to model. As discussed by Pattee [201]

and Rosen [242], they su�er from the de�ciency of being \mere" simulations, which

cannot capture much of the causal structures of their object systems. Nevertheless,

they are capable of very good mimicry, and certainly their intention is to maintain

as close a relation as possible to the systems they model.

An example of a better technique which actually tries to provide a computer

model of the causal relations in a complex biological systems is the work of William

Powers [215, 216]. His hierarchical feedback control models are a striking blending

of theory and simulation, and promise to provide a key link in the application of

informational concepts to complex physical systems.

1.3 Information Science as Meta-Science

Unlike physical concepts like energy and mass, informational concepts like organi-

zation and entropy have a special dual nature, in that they relate to both objective

and subjective phenomena and attributes. Therefore they can be applied not only

to the objects of science, for example by considering a thermodynamic or biological

system in informational terms, but also reexively to the processes of science itself.

Therefore the various branches of information science can be used reexively to an-

alyze the scienti�c process as a whole, resulting in the possibilities for both uni�ed

science and meta-science.

A prime example of this is in the application of statistical techniques to the

problems of induction, evidence, inference, and theory construction, as typi�ed by

the classical work of Reichenbach [236] and Salmon [245]. Other examples include

the work of Rescher [237,238], who uses informational concepts to explore the limits

to theory construction; and Klir [145] who has constructed a number of sophisticated

multidimensional inductive modeling methodologies based on strong information

and systems scienti�c principles.

One of the most interesting approaches in this spirit is the work of the max-

imum entropy school begun by Ed Jaynes with his classic paper on statistical

physics [127]. In it he turned the traditional relation between thermodynamic and

informational entropy on its head. Instead of seeing maximum statistical entropy as

a derived conclusion, a reection of the complete ignorance of the observer relative

to an underlying \real" process, he regards it as an assumption to the process of

deriving scienti�c laws. Given some boundary constraints, for example from the law

of conservation of energy, and then performing an entropy maximization problem,

the basic results of statistical physics can be directly derived. Jaynes and his follow-

ers [289, 269] as well as others [35, 137] have developed this Maximum Entropy
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Principle (mep) to apply to many problems in scienti�c inference.

All of the above programs can be ultimately regarded as projects in scienti�c

semiotics, in which the processes of science are regarded as processes in symbolic

systems. It is through the science of symbolic systems that information science

approaches psychology in the abstract, where mental processes are regarded either

microscopically as a parallel computational process in a neural system, or macroscop-

ically as a system of representations maintained by an organism of its environment.

In any of these manifestations, the view of information science as metascience

is inherently connected to the underlying natural scienti�c theories to which it is

applied.

1.4 Generalized Information Theory

The �nal branch of information science to be discussed is that which will occupy

us for the rest of this work, and which we will call, following Klir [151], Gener-

alized Information Theory. git has many components, including fuzzy sets

and measures, uncertainty measures, evidence theory, random set the-

ory, possibility theory, and traditional probability theory as a special case.

These speci�c aspects will be examined in detail in Chap. 2, with only some of their

overall characteristics discussed here.

The components of git are all mutually interrelated, and are all related to

probability theory and classical information theory. None of them are completely

radical departures, but rather are derived by relaxing fundamental principles of a

traditional theory, for example the excluded middle (fuzzy sets), additive measures

(fuzzy measures), additive normalization (possibility theory), point-valued random

variables (random sets), or point-valued probability distributions (evidence theory).

1.4.1 git and Science

The explosive development of physical science in this century is marked with a con-

comitant growth in information science, to the point that now the relation between

them is highly complex and intimate. Each major branch of the information sciences,

from information theory to computational theory to metascience, has developed in

close relation to natural science. This follows the pattern in many branches of math-

ematics, where scienti�c and mathematical development are mutually reinforcing.

git was founded in the mid-1960's, and has achieved a great fruition in the

1990's. But it is surprising that these new mathematical theories generally do not

follow in the tradition of information science, and are not (generally) closely related
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to any naturalistic scienti�c theories or applications.

Indeed, we now stand at a time of a owering of mathematical information

theories, an expanding universe of formalisms which provide generalizations of gen-

eralizations along all dimensions of the classical theories. This movement takes

place amidst great excitement about the potential to integrate these methods into

existing and new techniques in a variety of engineering disciplines. Yet at the same

time there is very little attention being paid to the potential signi�cance of the new

information theories for science and meta-science.

As we approach the new millennium we face an historically unique situation:

today there are aspects of information science which have exceeded natural science

to the extent that it is unknown what, if any, relation there might be between them

and the natural laws which govern the world. While this situation is not unusual

for mathematics in general, where there need be no necessary relation between a

new mathematical and a new physical theory, it is unusual for information science,

growing up as it has closely tied to scienti�c theory.

That is not to say that these theories lack applications of any kind. On the

contrary, there is currently a great deal of interest, verging on faddishness, in git

methods. But virtually none of this interest or these applications can be described

as being related to natural science in the same sense that traditional information

theory has been.

1.4.2 Applications in \Informational Engineering"

The vast majority of the applications of git are in what could be described as infor-

mational engineering, conceived of as the application of computer and electronic

technology to the management of human technological systems. Examples include

application to control system technology, decision support systems, pattern match-

ing systems, expert systems, approximate reasoning systems, and a variety of other

\knowledge based" applications.

1.4.3 Applications in Psychology

A common factor of the above applications is the emphasis that they place on the

management of human-controlled or human-modeled systems: a knowledge-based

control system is intended to replace a human operator; an expert system is intended

to replace a human expert; a pattern-matching system is intended to emulate human

perception; and an approximate reasoning system is intended to emulate human

reasoning.
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More strongly, many branches of git were founded speci�cally for the purpose of

modeling human psychology. This is certainly the case for two of its major branches,

those of fuzzy sets and evidence theory. In the founding paper on fuzzy set theory,

Zadeh says

Clearly, the \class of all real numbers which are much greater than 1",

or \the class of beautiful women", or \the class of tall men", do not

constitute classes or sets in the usual mathematical sense of these terms.

Yet, the fact remains that such imprecisely de�ned \classes" play an

important role in human thinking, particularly in the domains of pattern

recognition, communication of information, and abstraction. [321]

Or in the paper introducing the concept of the \fuzzy restriction", which will later

lead to the possibility distribution, he says

A common thread that runs through most of the applications of the

theory of fuzzy sets relates to the concept of a fuzzy restriction | that

is, a fuzzy relation which acts as an elastic constraint on the values

that may be assigned to a variable. Such restrictions appear to play

an important role in human cognition, especially in situations involving

concept formation, pattern recognition, and decision-making in fuzzy or

uncertain environments. [323]

At no point does Zadeh ask what an \elastic constraint" might be in the context

of physical systems, but merely assumes that it results from the vagaries of human

judgment.

As an example of the ful�llment of this principle, in the majority of fuzzy systems

applications the sole representation used is that of the \linguistic variable", intended

to model a subjective term as used by a human.

Similarly, Shafer [261] developed his theory of belief functions, later to grow

into the Dempster-Shafer theory of evidence, speci�cally to model human subjects

tendencies to report ranges of probability estimates.

1.4.4 Lack of Objective Semantics

In light of this historical development of git, it is not surprising that the semantics

of fuzzy theory and possibility theory have been based almost exclusively on the

subjective opinions of people. There is a deep assumption in git that, in comparison

with traditional information theory, the values of fuzzy set membership grades, or

possibilities, or beliefs, are inherently meant to model the uncertainty of a human
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subject. This assumption may be implicit, but it is also frequently stated explicitly,

and with little or no justi�cation, for example by Kandel, \Probability is an objective

characteristic. The membership grade is subjective [132]."

Of course classical information theory also has applications in informational

engineering, and that is not an indictment of it. And the subjectivist school of

probability semantics has made an important contribution to probability theory.

My criticism of git is not that it includes these applications and these semantics,

but rather that it is limited to them in a way in which traditional information theory

is not.

Whereas traditional information theory is deeply rooted in physics and biology,

and has grown to include human psychology, git was founded entirely in the domain

of human psychology, and with few exceptions has not grown out of it. It does not

seem ludicrous to try to �nd an objective semantics for git methods. It rather

seems that a complacent research community has been satis�ed with ceding the

\real world" to the probabilists for thirty years.

1.5 Towards an Objective Possibility Theory

This condition is what the present work is attempting to alleviate, by de�ning

possibility as an independent form for the representation of uncertainty, and moving

towards an objective, empirical semantics of possibility through the development of

possibilistic measurement procedures and possibilistic models of physical

systems.

In Chap. 2 the fundamental existing results and some new results in mathemat-

ical possibility theory will be introduced in the context of the various components

of git and their relationships. Rather than the traditional approach of grounding

possibility theory in the theory of fuzzy subsets, we will approach possibility theory

from the perspective of random subset theory and distribution functions of fuzzy

measures. It will then be argued that possibility theory has a legitimate identity as

a form of information theory distinct from both probability and fuzzy sets.

The semantics of possibility theory are discussed in Chap. 3. After arguing that

any legitimate natural semantics of possibility must rely on the dual procedures of

measurement and interpretation, the roots of possibilistic semantics in philosophy,

natural language, modal logic, and especially probability theory will be discussed.

After examining the semantic consequences which ow from the formalism of math-

ematical possibility theory itself, the traditional semantics of possibility theory will

be critiqued.

Chap. 4 is dedicated to the development of a variety of objective measurement
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procedures for possibility distributions. These are based on measurement methods

which yield subsets, not points, either directly from a measuring instrument or a

set of measuring instruments, or indirectly through the manipulation of point data

streams. The results of these procedures compare favorably with the fuzzy number

forms of possibility distributions used in many applications.

Possibilistic processes and automata are introduced in Chap. 5. General pro-

cesses are based on semirings, and the relation between semirings and t-norm and

t-conorm pairs is disambiguated. Familiar classes of processes include the determin-

istic, nondeterministic, and stochastic cases. Possibilistic processes are a new class.

They are placed in the context of general automata and the other classes of processes,

and it is argued that they are the legitimate generalization of nondeterministic pro-

cesses, in a way that stochastic processes are not. Conditional possibility measures

and distributions, used in possibilistic processes, are also available on semirings.

Possibilistic automata and other possibilistic machines are also discussed, including

possibilistic networks, Monte Carlo methods, and Markov processes.

Chap. 6 presents the architecture for an implementation of possibilistic methods

in an object-oriented, C++ environment in the context of the Computer-Aided Sys-

tems Theory (cast) research program. Implementation of both fundamental and

supplementary git methods is proposed, as well as links to other aspects of git and

other cast implementations. Such a system is necessary both for the implementa-

tion of possibilistic models, as well as for the empirical exploration of the properties

of possibilistic systems and processes.

In its integration of interval-based and uncertainty distribution methods, pos-

sibility theory promises to provide an important new set of methods for the new

movement in qualitative modeling (qm). Recently such models have been applied

to systems which diagnose the possible faults in complex systems like spacecraft. So

�nally Chap. 7 considers the promising potential for the application of possibilistic

modeling methods to the qualitative model-based diagnosis and trend analysis of

spacecraft systems.



Chapter 2

Possibility Theory in

Generalized Information

Theory

Let X = X .

| Laurie Anderson

At the most general level, git consists of the �elds of fuzzy sets, fuzzy mea-

sures, and uncertainty measures. Both probability theory and possibility

theory are related in that their measures are fuzzy measures and their distributions

are fuzzy sets. Evidence theory and random set theory are closely related �elds

in which both fuzzy measures, as set functions, and fuzzy sets, as point functions,

are uni�ed.

In this chapter some new and some established results of possibility theory in

relation to the branches of git will be presented. In doing so the various components

of git and the mathematical notation and concepts used will be formally introduced

and interrelated. Much of this material is drawn from the published literature,1

and these results and de�nitions will be interwoven with original results and novel

notation. A number of the results presented are not claimed to be original, but

are presented for the sake of completeness. Part of the purpose is to present this

material in our speci�c mathematical context, in which possibility theory is based

on consistent random sets. Citations to the literature will be o�ered wherever a

1The reader is referred to some of the standard texts on these subjects: for fuzzy sets and

systems to Zimmerman [328] and Dubois and Prade [55]; for fuzzy measures to Wang and Klir [299];

for evidence theory to Shafer [261]; for random set theory to Kendall [142] and Goodman and

Nguyen [104]; for possibility theory to Dubois and Prade [64]; and for uncertainty measures and

git as a whole to Klir [154] and Klir and Folger [155].

15
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result is drawn explicitly from an external source, even if an alternate de�nition or

proof is provided.

But a number of new results in possibility theory are presented, in particular the

relation between the distributions of fuzzy measures and structural and numerical

aggregation functions on random sets; and well-justi�ed possibilistic normalization

procedures in the context of random sets.2

Finally, it is argued that contrary to the standard interpretations, possibility

theory is a new form of information theory, distinct from, but related to, both prob-

ability and fuzzy sets. The traditional ideas from fuzzy systems theory that there

is a special equivalence between fuzzy sets and possibility distributions, that possi-

bilistic concepts are inherently more appropriate for fuzzy theory than probabilistic

concepts are, and that fuzzy theory is inherently possibilistic and non-probabilistic,

are rejected. Also, even though possibility theory is in a number of ways weaker

than probability, it is nevertheless logically independent of it.

It is assumed that the reader is conversant in the various aspects of traditional

information theory on which there is a vast literature: probability and statistics,

classical measure theory, classical information theory, and some rudimentary ab-

stract algebra.

Throughout the following a �nite universe of discourse 
 = f!ig; 1 � i � n <1
will generally be assumed. Occasionally 
 = f!g will be used when referring to a

continuous universe or a universe with unspeci�ed cardinality.

2.1 Algebraic Preliminaries

In this section, some of the mathematical structures used by many components of

git are de�ned. While these structures are usually based on the unit interval [0; 1]

with the total order �, there are generalizations to full lattices with partial orders.

Both cases will be presented here.

Let hL;�i be a complete lattice with 0; 1 2 L as the global supremum and

in�mum. _ and ^ will denote either the join or meet in L or the maximum and

minimum operators on [0; 1] as appropriate.

2.1.1 Complements

De�nition 2.1 (Complement (Lattice)) [38] A function ':L 7! L is a com-

plement function if:

2A complete list of the original contributions of this dissertation is provided in Appendix A.
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� Boundary Condition: '(0) = 1.

� Monotonicity: 8x; y 2 L; x � y ! '(x) � '(y).

� Involution: 8x 2 L; '('(x)) = x.

Corollary 2.2 '(1) = 0.

Proof: '('(0)) = 0 and '('(0)) = '(1), so '(1) = 0.

De�nition 2.3 (Complement (Standard)) [56] A complement function ' on

[0; 1] is a standard complement if ' is continuous.

Almost always '(x) = 1� x.

2.1.2 Norms and Conorms

Norm and conorm operators are dual, and their de�nitions will be made \in parallel".

De�nition 2.4 (Lattice Norm (Conorm)) [38] The function u:L2 7! L (resp.t:L2 7!
L) is a norm (conorm) if

� hL;u; 1i (resp. hL;t; 0i) is an Abelian monoid (commutative and associative

operator with identity 1 (resp. 0));

� u and t are monotonic:

8; x1; x2; y1; y2 2 L; x1 � x2; y1 � y2 ! x1uy1 � x2uy2; x1ty1 � x2ty2:

Corollary 2.5 0 (resp. 1) is a zero of u (t), that is

8x 2 L; x u 0 = 0 u x = 0 and x t 1 = 1 t x = 1:

Proof: Since 0 � 0 and 8x 2 L; x � 1, then

8x 2 L; xu 0 � 1 u 0 � 0:

Since inf L = 0, therefore xu0 = 0. The other result for u follows from commutivity.

The results for t follow analogously.

Corollary 2.6 8x; y; z 2 L; y � z ! x u z � x u w.
Proof: Follows from x � x and monotonicity.

u and t are dual, related by DeMorgan's property under '.
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Idempotent Monotonic Nilpotent \Crisp"

u x ^ y � x� y � x um y := 0 _ (x+ y � 1) � x uw y := bxcbyc
t x _ y � x ? y := x+ y � xy � x tm y := 1 ^ (x+ y) � x tw y := dxedye

Table 2.1: Common hu;ti pairs on [0; 1], and their relation.

Proposition 2.7 [38] Assume u;t, and for some ' de�ne the DeMorgan trans-

forms

x u' y := '('(x)t '(y)); x t' y := '('(x)u '(y)):
Then there exists a ' such that u' is a conorm, t' is a norm, and

(u')' = u; (t')' = t:

h_;^i is a norm/conorm pair, and huw;twi is the norm/conorm pair de�ned by

x uw y :=

8>><>>:
x; y = 1

y; x = 1

0; otherwise

; x tw y :=

8>><>>:
x; y = 0

y; x = 0

1; otherwise

:

All of the above conditions hold when hL;�i = h[0; 1];�i. Table 2.1 summarizes

some of the prominent norm/conorm pairs available on [0; 1], where bxc and dxe are
the least and greatest integers near x respectively.

In general,

x ^ y � x u y � x uw y x _ y � x t x tw y:

2.2 Possibility Theory

The concept of \possibility" has a long history in philosophy. Some of these ideas

have been expressed in a formal theory beginning with modal logic (see Sec. 3.2).

But modal logic expresses possibility as a crisp concept, that is, representing either

completely possible or completely impossible events. Mathematical possibility the-

ory di�ers from modal logic in that it is a formal theory which represents possibility

which admits to degrees between and including complete possibility and impossibil-

ity, and usually expressed on the unit interval.

Possibility theory was �rst formalized and axiomatized by Shackle [260]. It was

later introduced again by Zadeh [325], who related it strictly to his fuzzy set theory.

Possibility measures and distributions also arise in the context of fuzzy measures

and random sets.
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There have been a number of recent e�orts to axiomatize possibility on the ba-

sis of qualitative relations by Dubois and Prade [52, 66], the semantics of betting

by Giles [98], measurement theory by Yager [311], abstract algebra by Yager [318],

and lattice-theoretic based measure theory by Cooman et al. [38]. A very general

axiomatization of the core tenets will �rst be presented (joint and conditional pos-

sibility will not be discussed until Chap. 5), followed by the specialization to the

more standard version used in the general literature.

2.2.1 Generalized Possibility

The following is a very general axiomatization combining the work of Yager [318]

and Cooman et al. [38].

Let B be a �nite Boolean algebra with 0; 1 2 B as the global supremum and

in�mum. Let _;^ be the join and meet in both B and L without ambiguity, and

for b 2 B, let b 2 B be the complement of b in B.

De�nition 2.8 (Possibility Measure (General)) A possibility measure is a

function �:B 7! L, where

� �(0) = 0.

� 8fbjg � B with j 2 J an arbitrary index,

�

0@_
j2J

bj

1A :=
_
j2J

�(bj):

De�nition 2.9 (Necessity Measure (General)) Assume bj as above. A neces-

sity measure is a function �:B 7! L where

� �(1) = 1.

� 8fbjg � B with j 2 J an arbitrary index,

�

0@^
j2J

bj

1A :=
^
j2J

�(bj):

Proposition 2.10 [38] Let �':B 7! L and �':B 7! L with

�'(b) = '(�(b)); �'(b) = '(�(b)):

Then �' is a necessity measure dual to �, and �' is a possibility measure dual to

�.
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Results for possibility generally hold in the dual for necessity. Therefore necessity

measures will be used sporadically in the sequel as required.

De�nition 2.11 (Normalization (General)) � is normal if �(1) = 1.

De�nition 2.12 (Atoms) [318] a 2 B; a 6= 0 is an atom of B if

8b 2 B; a ^ b = a or a ^ b = 0:

LetM(B) := faig be the set of all atoms of B. 8b 2 B, let

M(b) :=

(
ai 2 M(B) : b =

_
i

ai

)
:

Denote ai; b as a generic atom and element of B respectively.

De�nition 2.13 (Possibility Distribution (General)) A possibility distribu-

tion is a function �:M(B) 7! L with

�(ai) := �(ai):

Corollary 2.14

�(b) =
_

ai2M(b)

�(ai):

Proof: Trivial from the de�nition of the possibility measure (2.8) and lattice atoms

(2.12).

De�nition 2.15 (Possibility Distribution Core) The core of a possibility dis-

tribution is C(�) := fai : �(ai) = 1g.

De�nition 2.16 (Possibility Distribution Focus) If 9a� 2 M(B) with a� 2
C(�), then a� is a focus of �.

Corollary 2.17 (Existence of a Focus) [38] If � is normal, then 9a� 2 M(B); �(a�) =
1.

Proof: From normalization (2.11),

�(1) =
_

ai2M(1)

�(ai) =
_

ai2M(B)

�(ai) = 1:

Since 1 is the supremum of L, if 6 9a�; �(a�) = 1, then
W
ai
�(ai) 6= 1. Therefore

9a� 2 C(�).

Corollary 2.18 If � is normal then �(b)_ �(b) = 1.

Proof: �(b) _�(b) = �(b_ b) = �(1) = 1.
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2.2.2 Specializations

Possibility theory has almost always been developed in the context where L = [0; 1]

and � is the standard total order on the reals. Cooman et al. [38] were the �rst

to extend [0; 1] to a full lattice. Dubois, Lang, and Prade [53] have also considered

possibility measures valued on the lattice of fuzzy sets. Cooman et al. are quite

clear that some of the more standard results of possibility theory only hold when �
is a complete, and not a partial, order.

Proposition 2.19 [38] Let L = [0; 1], and let � and � be dual for some complement

'. Then �(b) < 1! �(b) = 0 and �(b) > 0! �(b) = 1.

Proposition 2.20 [38] Assume L;�; � as above. Then �(b) � �(b).

Possibility theory has also almost always been developed in the context where

B = 2
 is the power set of some (usually �nite) set 
. Then the operators _;^;�
in B become [;\;� in 2
, and

1 = 
; 0 = ;:

M(B) =M(2
) = ff!1g; f!2g; : : : ; f!ngg; 8A � 
;M(A) = ff!ig : !i 2 Ag:
When both specializations of B to 2
 and L to [0; 1] are made, then the following

standard de�nitions are achieved.

De�nition 2.21 (Possibility Measure (Standard)) A possibility measure is a

function �: 2
 7! [0; 1] with �nite 
 where

� �(;) = 0.

� 8fAjg � 2
 with j 2 J an arbitrary index,

�

0@[
j2J

Aj

1A :=
_
j2J

�(Aj):

De�nition 2.22 (Normalization (Standard)) � is normal if �(
) = 1.

De�nition 2.23 (Possibility Distribution (Standard)) A possibility distribu-

tion is a function �: 
 7! [0; 1] with

�(!) := �(f!g):

Corollary 2.24

�(A) =
_
!i2A

�(!i):
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Proof:

�(A) =
_

f!ig2M(A)

�(f!ig) =
_
!i2A

�(!i):

De�nition 2.25 (Crisp Possibility Distribution) A possibility distribution is

crisp if 8! 2 
; �(!) 2 f0; 1g.

Corollary 2.26 (Possibilistic Normalization) If � is normal, then 9!�; �(!�) =
1.

Proof: Directly from the general result (2.17).

2.3 Fuzzy Measures

Fuzzy measures were introduced by Sugeno [276,277] in order to generalize classical

measures [115], and were extended by Wang [298] and Wang and Klir [299].

De�nition 2.27 (Fuzzy Measure and Fuzzy Measure Space) [299] A fuzzy

measurable space is h
;�i, where � � 2
 is a sigma-�eld of 
. A fuzzy measure

on a fuzzy measurable space is a function �: � 7! [0;1], where:

� If ; 2 � then �(;) = 0,

� 8A;B 2 �, if A � B then �(A) � �(B).

Then the fuzzy measure space is h
;�; �i.

It is common to let �: 2
 7! [0; 1], which will be assumed in the sequel.

Proposition 2.28 (Fuzzy Measure Limits) [299] Assume a fuzzy measure spaceD

; 2
; �

E
to [0; 1]. Then

�(A [B) � �(A) _ �(B); �(A \ B) � �(A) ^ �(B):

Corollary 2.29 A probability measure Pr on
D

; 2


E
is a fuzzy measure on 2
 to

[0; 1].

Proof: Let A � B. Then B = A [ (B � A), and A \ (B � A) = ;, so that

Pr(A [B) = Pr(B) = Pr(A) + Pr(B �A). Therefore Pr(B) � Pr(A).

Corollary 2.30 If 
 is �nite then � is a fuzzy measure on 2
 to [0; 1].
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Proof: If A � B then A [B = B, so that �(A [ B) = �(A) _ �(B) = �(B), and

�(A) � �(B).

Puri and Ralescu [224] have shown that when 
 is not �nite, then if � is fully

continuous then it in fact is not a full fuzzy measure, although Wang and Klir

[299, p. 63] have shown that they are lower semi-continuous fuzzy measures.

� is a set function on 2
, and thus the size of its domain grows exponentially

with j
j. The purpose of a distribution of a fuzzy measure is to recover knowledge

of � from values only on elements of 
, which of course grows only linearly with j
j.

De�nition 2.31 (Distribution of a Fuzzy Measure) Given a fuzzy measure
D

; 2
; �

E
to [0; 1] with 
 �nite and j
j = n, then the function

q� : 
 7! [0; 1]; q�(!) := �(f!g);

is a distribution of � if there exists a distribution operator function �: [0; 1]2 7!
[0; 1] where

� h[0; 1];�; 0i is an Abelian monoid (� is a commutative, associative, operator

with identity 0).

� In operator notation,

8A � 
;
M
!2A

q�(!) = �(A): (2:32)

2.4 Fuzzy Sets

A crisp subset F � 
 is denoted by its characteristic function

�F : 
 7! f0; 1g; �F (!) =

(
1; ! 2 F
0; ! 62 F :

Fuzzy sets result from a direct generalization.

De�nition 2.33 (Fuzzy Set) [320] Amembership function is a function �: 
 7!
[0; 1]. A fuzzy subset on 
, denoted eF e� 
, implies the existence of a membership

function �eF : 
 7! [0; 1] such that

�eF (!) =
(

1; ! 2 eF
0; ! 62 eF ;

and �eF (!) 2 (0; 1) means that ! 2 eF \to the extent of" �eF (!).
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Goguen [100] has extended fuzzy sets to lattice-valued, or L-fuzzy, sets similar

to Cooman et al.'s generalization of possibility measures to a lattice.

Since f0; 1g � [0; 1], therefore all crisp sets are fuzzy sets. The extension

principle states, in part, that any fuzzifying generalization must be consistent with

the classical, crisp special cases. The extension principle is not determinative, since

many di�erent fuzzi�cations may have the same values in the crisp cases. Thus the

crisp cases form only a partial constraint on the admissible fuzzy generalizations.

Proposition 2.34 A fuzzy measure � to [0; 1] with distribution q� induces the fuzzy

sets denoted e� e� 2
; �e�(A) := �(A);

eq� e� 
; �eq� (!) := q(!):

Note that e� is a fuzzy subset of 2
, not 
.

2.4.1 The Fuzzy Power Set

A very useful representation for fuzzy sets is o�ered by Kosko [164, 165]. First,

consider a crisp subset F � 
 represented as a set of tuples fh!i; biig; 1 � i � n

where bi := �F (!i) 2 f0; 1g. When the ordering of the !i are �xed, then they can

be assumed, and the representation F can be replaced by the simple bit vector, or

bit string ~F := hbii.
~F can be regarded as a vertex of the boolean hypercube of dimension n. Denote

this lattice as 2
, which is equivalently the power set of 


2
 = fF � 
g; 8F � 
; F 2 2
:

This approach generalizes naturally to fuzzy sets. First represent a fuzzy subseteF e� 
 as a set of tuples fh!i; fiig; 1 � i � n, where fi := �eF (!i) 2 [0; 1]. As above,

when the ordering of the !i are assumed, then the vector representation
~eF := hfii

is arrived at. Kosko calls each fi a \�t", for \fuzzy digit", to map with \bit" for

\binary digit".

The fuzzy set eF is thus represented not as a point on a boolean 2n-lattice, but

a point inside the unit hypercube of dimension n, called the fuzzy power set of


 denoted

[0; 1]
 := f eF e� 
g; 8 eF e� 
; eF 2 [0; 1]
:

Of course 2
 � [0; 1]
, in keeping with the extension principle.

An example is shown in Fig. 2.1 for 
 = fx; yg, so that 2
 = f0; 1g2 � [0; 1]
 =

[0; 1]2.
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Figure 2.1: A crisp set F = fxg and a fuzzy set eF = fhx; :2i ; hy; :8ig.

2.4.2 Fuzzy Set Concepts

The following concepts related to fuzzy theory will also be used. Unless otherwise

noted, see [155].

De�nition 2.35 (Operators) Let eF; eG e� 
 and u;t be dual in '. Then

�eF[eG := �eF t �eG; �eF\eG := �eF u �eG; �eF := '
�
�eF � :

De�nition 2.36 (Inclusion) Given eF ; eG e� 
, then eF � eG if �eF � �eG.
De�nition 2.37 (Alpha Cut) For � 2 [0; 1],

eF� := f!i : �eF (!i) � �g � 
:

Each fuzzy set eF � 
 can be represented as a combination of its �-cuts, each a crisp

subset of 
, weighted by its � value. Thus

�eF (!i) = max
�2[0;1]

!i 2 eF�:
De�nition 2.38 (Level Set) The set of distinct membership grades present in the

fuzzy set:

�( eF) := f� 2 [0; 1] : 9!i; �eF (!i) = �g � [0; 1]:

�( eF ) is the set produced by eliminating duplicates from the �t string representation
~eF .
De�nition 2.39 (Support) The crisp subset on which a fuzzy set has some mem-

bership:

U( eF ) := f!i : �eF (!i) > 0g � 
:

De�nition 2.40 (Core) The crisp subset on which a fuzzy set has complete mem-

bership:

C( eF ) := eF1 � 
:
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De�nition 2.41 (Fuzzy Set Normalization) A normal fuzzy set has unity mem-

bership on at least one !i, so that C( eF) 6= ;.
De�nition 2.42 (Fuzzy Relation) A fuzzy subset eR e� 
1 � 
2 for some uni-

verses 
1;
2.

De�nition 2.43 (Fuzzy Matrix) Given a fuzzy relation eR e� 
1�
2, denote the

fuzzy matrix as

Rn1�n2 = [Rij ] :=
h
�eR(!i; !j)i e� 
1 � 
2;

where nk := j
kj <1 for k 2 f1; 2g.

2.4.3 Fuzzy Arithmetic

Fuzzy methods have been used to generalize many branches of mathematics (for

example calculus), and fuzzy generalizations of arithmetic will be useful for us later

on. All of the following are from Dubois and Prade [54,61]. See also Kaufmann and

Gupta [139].

De�nition 2.44 (Fuzzy Interval) A fuzzy subset of the real line eF e� IR where:

� eF is normal.

� eF is convex:

8 x; y 2 IR ; 8 z 2 [x; y] ; �eF (z) � �eF (x)^ �eF (y):
De�nition 2.45 (Fuzzy Number) A fuzzy interval eF where 9x 2 IR;C( eF) =

fxg.

Fuzzy intervals are direct generalizations of crisp intervals, and each fuzzy interval

can be decomposed into its alpha cuts, a set of weighted crisp intervals.

Proposition 2.46 If eF is a fuzzy interval and �eF is upper semi-continuous, then

� 8� 2 (0; 1]; eF� � 
 is a closed interval.

� 8�1; �2 2 (0; 1]; �1 � �2 ! eF�1 � eF�2 .
Proposition 2.47 A crisp interval [a; b]� IR is a fuzzy interval eF with

�eF (x) =
(

1; a � x � b

0; x < a or x > b
; 8� 2 (0; 1]; eF� = [a; b]:
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De�nition 2.48 (Unary Fuzzy Arithmetic Operators) Let f : IR 7! IR be an

injective unary operator (for example, f(x) = �x or f(x) = ex) and eF be a fuzzy

interval. Then 8x 2 IR

�
f(eF )(x) =

(
�eF (f�1(x)); f�1(x) 6= ;
0; f�1(x) = ; :

De�nition 2.49 (Binary Fuzzy Arithmetic Operators) Let � be a binary arith-
metic operator, for example � 2 f+;�;�;�g, and eF1; eF2 be two fuzzy intervals.

Then 8x 2 IR
�eF1�eF2(x) := _

y�z=x

�eF1 (y)^ �eF2(z):
Proposition 2.50 eF1 � eF2 is a fuzzy interval.

However, the fuzzy arithmetic operators do not satisfy all the group properties of

ordinary arithmetic. For example, in general eF + (� eF ) 6= 0. And the use of the

^ operator in (2.49) can be (and perhaps should be) extended to u (see below

discussion in Sec. 5.5.2.1).

2.4.4 Fuzzy Sets vs. Fuzzy Measures

In the interest of being very clear about the nature of the critique of the standard

understanding of the relation between possibility theory, fuzzy sets, and fuzzy mea-

sures, it is useful to consider some of the linguistic and historical issues at stake in

the terminology.

There is clearly a strong linguistic similarity between terms \fuzzy set" and

\fuzzy measure": presumably a fuzzy measure is a measure of some kind of fuzziness.

It was certainly Sugeno's intention to closely relate the concepts of fuzzy measures

and fuzzy sets. In introducing the term [277], he begins by noting that given a crisp

set F � 
 and an unknown element ! 2 
, that the \fuzziness" of the statement

! 2 F , denoted here as w!(F ), should be monotonic in the cardinality of F :

F1 � F2 ! w!(F1) � w!(F2): (2:51)

Thus w! should be a fuzzy measure in F . He then proceeds to note that w!(F )

is just the characteristic function �F (!), but with variable F and ! �xed. So, he

reasons, on generalization to a fuzzy set eF � 
, it should follow that �eF (!) is a
kind of fuzzy measure.

Thus it can be said that the concept of grade of fuzziness in fuzzy mea-

sures theory includes as a special case the concept of grade of membership

in fuzzy sets theory. [277]
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However, there are a number of reasons why this choice of terms is rather poor

and misleading, and historically unfortunate. First, a fuzzy measure is not the

measure of the fuzziness of a fuzzy set. Sugeno's claim is rather that the fuzzy

membership function is a case of a fuzzy measure. Now it is true that something

like Sugeno's criteria (2.51) holds for fuzzy sets. Letting w!( eF ) := �eF (!), then from

the de�nition of fuzzy set inclusion (2.36)

eF � eG! 8! 2 
; w!( eF ) � w!( eG):
But this seems more an artifact of the de�nition of subset inclusion (2.36) than an

important result in its own right.

Nor does it follow that � is a fuzzy measure anyway. This is because w!( eF ) is
not a set-function w: 2
 7! [0; 1] as required by the de�nition (2.27), but rather a

fuzzy-set function w: [0; 1]
 7! [0; 1].

Nor is a fuzzy measure the measure of the fuzziness of an element's belonging to

a fuzzy set. As Sugeno admits, that is simply the membership grade itself, which is

certainly not a fuzzy measure.

A number of researchers have introduced true measures of the fuzziness of a

fuzzy set [155, p. 140] which are functions mapping fuzzy sets to the unit interval,

and thus not fuzzy measures. We will continue to use the historical term \fuzzy

measure" while discussing below the actual complicated relationship between fuzzy

sets, fuzzy measures, and possibility distributions. But it should be kept clearly in

mind that nothing of substance should necessarily follow from this historical fact.

2.5 Evidence Theory and Random Set Theory

The Dempster-Shafer Theory of Evidence, or simply evidence theory, of

A.P. Dempster [48] and Glen Shafer [261] is somewhat less general than the theory

of fuzzy measures. Nevertheless it provides a very rich domain which encompasses

classical information theory and the most important classes of fuzzy measures.

Evidence theory begins with a set-based probability distribution, which we shall

call an evidence function, and which is frequently called a basic assignment or

basic probability assignment. In the following let A;B � 
.

De�nition 2.52 (Evidence Function) [155] A function m: 2
 7! [0; 1] is an ev-

idence function if m(;) = 0 and
P

A�
m(A) = 1.

Proposition 2.53 An evidence function m induces a fuzzy set denoted em e� 2


with �em(A) := m(A).
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Each evidence functionm determines two fuzzy measures from 2
 to [0; 1], which

we will call evidence measures.

De�nition 2.54 (Disjointness Relation) Denote

A ? B := A \B = ;:

De�nition 2.55 (Belief Measure) [155] Let Bel: 2
 7! [0; 1] be a fuzzy measure

where

8A � 
; Bel(A) := Pr(S � A) =
X
B�A

m(B):

De�nition 2.56 (Plausibility Measure) [155] Let Pl: 2
 7! [0; 1] be a fuzzy

measure where

8A � 
; Pl(A) := Pr(S 6? A) =
X
B 6?A

m(B):

Bel and Pl were originally interpreted as the \lower" and \upper" probabilities, Pr�

and Pr� respectively, de�ning a class of probability measures such that

Bel(A) = Pr�(A) � Pr(A) � Pr�(A) = Pl(A): (2:57)

Proposition 2.58 [155] Bel and Pl are dual, in that

Bel(A) = 1� Pl(A ):

Proposition 2.59 [155,284] Bel (and Pl as its dual) determines the evidence func-

tion according to the M�obius inversion.

m(A) =
X
B�A

(�1)jB�AjBel(B):

Corollary 2.60 (Evidence Measure Boundaries) Bel(
) = Pl(
) = 1.

Proof:

Pl(
) =
X
A6?


m(A) =
X
A�


m(A) = Bel(
) = 1:

The best justi�ed combination rule for the combination of evidence functions is

Dempster's rule of combination.

De�nition 2.61 (Dempster's Rule of Combination) Given two evidence func-

tions m1; m2 on 
, then let the combined evidence function be m := m1 � m2,

where for A1; A2 � 
, then 8A � 
,

m(A) = m1(A)�m2(A) :=

P
A1\A2=A

m1(A1)m2(A2)P
A1 6?A2

m1(A1)m2(A2)
;
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2.5.1 Random Sets

A random set is a random variable which takes as its values on subsets of 
.

Therefore a random set S associates a probability, which we will denote suggestively

asm(A), to each A � 
. Since them(A) are probabilities and must sum to one, it is

clear that under the restriction that m(;) = 0, then the m values act as an evidence

function on 
. From here on evidence functions and measures will be discussed only

in the context of random sets.

Random sets were �rst developed in the context of stochastic geometry, dealing

generally with random compact subsets of IRn [5,93,142,182]. It is only more recently

that random sets are being integrated into the formalisms of git [72, 102,181,192].

De�nition 2.62 (Random Set) [68] Given an evidence function m: 2
 7! [0; 1]

with �nite 
, a random set is S := fhAj ; mji : mj > 0g, where Aj � 
; 1 � j �
N := jSj � 2n � 1, and mj := m(Aj) = Pr(S = Aj).

De�nition 2.63 (Focal Set) [155] Given a random set S, its focal set is F :=

fAj :mj > 0g.

De�nition 2.64 (Focal Element) [155] Given a focal set F , each Aj 2 F is a

focal element.

Note that all the Aj are distinct. Since 8A � 
; A 2 F $ m(A) > 0, therefore

Bel(A) =
X
Aj�A

m(Aj); Pl(A) =
X
Aj 6?A

m(Aj):

De�nition 2.65 (Random Set Core) The core of a random set is

C(S) :=
\

Aj2F

Aj :

De�nition 2.66 (Random Set Consistency) [64] A random set S is consis-

tent if C(S) 6= ;.

De�nition 2.67 (Plausibility Assignment) Given a �nite random set S with

plausibility Pl, its plausibility assignment (sometimes called a falling shadow

[295], trace [296, 297] or one-point coverage function [102]), is denoted as the

vector

~Pl := hqPl(!i)i = hPl(f!ig)i = hPlii :
Proposition 2.68 (Plausibility Assignment Formula)

Pli = Pl(f!ig) =
X

Aj 6?f!ig

mj =
X

Aj3!i

mj :
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Lemma 2.69
P

iPli =
P

jmj jAj j.

Proof: From the plausibility assignment formula (2.68),

X
i

Pli =
nX
i=1

X
Aj3!i

m(Aj) =
X
Aj2F

X
!i2Aj

m(Aj) =
X
Aj2F

m(Aj)jAj j =
X
j

mj jAj j:

Corollary 2.70
P

i Pli � 1.

Proof: From the Lemma (2.69), and since jAj j � 1,X
i

Pli =
X
j

mj jAj j �
X
j

mj = 1:

Theorem 2.71 If S is consistent, then m(A) > 0! Pl(A) = 1.

Proof: Fix A � 
. Since S is consistent, C(S) = T
Aj2F

Aj 6= ;, and 8Aj1 ; Aj2 2
F ; Aj1 6? Aj2 . Sincem(A) > 0, therefore A 2 F , and so 8Aj 2 F ; A 6? Aj . Therefore

Pl(A) =
P

Aj 6?A
mj =

P
Aj2F

mj = 1.

As with the representation of a fuzzy set in the unit hypercube, a canonical,

graphical representation of random sets is available. Since each random set maps

evidence values, plausibilities, and beliefs on (crisp) subsets of 
, these values can

be placed as labels on the vertices of the boolean hypercube of dimension n. An

example is provided in Fig. 2.2 for a universe 
 = fx; y; zg and random set

S = fhfxg; :1i ; hfx; yg; :7ig; hfzg; :2ig ; F = ffxg; fx; yg; fzgg:

In the �gure, nodes with value 0 are unlabeled.
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Figure 2.2: Evidence values m, beliefs Bel, and plausibilities Pl on 
 = fx; y; zg.
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2.5.2 Distributions of Random Sets

Restricting consideration to evidence measures on �nite random sets, �x � to Pl.

Then the de�nition of distributions of fuzzy measure (2.31) is modi�ed to random

sets as follows.

De�nition 2.72 (Distribution on a Random Set) Assume a random set S with
plausibility Pl. The function

q: 
 7! [0; 1]; q := qPl

is a distribution of S if qPl is a distribution of Pl. Since in general 
 and S are

assumed to be �nite, denote

qi := q(!i) = Pli = Pl(f!ig); ~q := ~Pl = hqii = hq1; q2; : : : ; qni :

And from (2.34), denote the fuzzy sets eq = fPl e� 
.

In the sequel, the notations q;Pl, qi;Pli and ~q; eq and ~Pl;fPl may be used interchange-

ably as appropriate, hopefully without confusion from context.

Proposition 2.73 (Distribution Operator) If q is a distribution of Pl on a ran-

dom set S, then from the operator condition of the distribution of a fuzzy measure

(2.32),

8A � 
; Pl(A) =
M
!i2A

qi:

Corollary 2.74 (Normalization) If q is a distribution of Pl on a random set S,
then M

!i2


qi = 1:

Proof: Follows immediately from the boundary conditions of evidence measures

(2.60) and the de�nition of the distribution operator (2.73).

A distribution produces functional relations between the singletons and the focal

elements, and between the values of the distribution and the values of the evidence

function. This gives the ability to construct the focal set from the elements, and

the set plausibilities from the point distribution values, and vice versa.

De�nition 2.75 (Structural Aggregation) Given a random set S with a distri-

bution q, then a function gq:F 7! 
 is a structural aggregation function if it is

one to one.
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A distribution not only relates the algebraic structure of F and 
, but also

numerically aggregates the values of the mj and the qi.

De�nition 2.76 (Numerical Aggregation) Given a random set S with evidence
function m, distribution q, and structural aggregation function gq, then a func-

tion hm;q: [0; 1] 7! [0; 1] is a numerical aggregation function if hm;q(m(Aj)) =

q(gq(Aj)).

Given a distribution q, the e�ect of gq is to map each focal element Aj to some

unique element !i. Since gq is one to one, there can be only as many focal elements

as there are elements of 
, so that

jSj = N � j
j = n:

Above, 1 � i � n has been used to index 
, while 1 � j � N � 2n has been used to

index F � 2
. But when a distribution q exists, the elements can be coded directly

in terms of the focal elements by combining focal element and universe element

notation, de�ning

!j := gq(Aj); qj := q(!j) = q(gq(Aj)): (2:77)

This condition will be generically called \relabeling". Thus the relabeling of (2.77)

establishes a common ordering of the Aj ; mj; !i, and qi, and from numerical aggre-

gation (2.76) it follows that

hm;q(mj) = qj :

These relations are diagrammed in Fig. 2.3.


 [0; 1]

[0; 1]F

q

m

-

-

6 6

hm;qgq

Figure 2.3: Relations among random sets and their distributions and aggregation

functions.

De�nition 2.78 (Completion) Given a random set S with a structural aggrega-

tion function gq, then S and its distribution q are complete if N = jSj = n = j
j.
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Proposition 2.79 If q is complete then gq and hm;q are onto, and thus bijections,

with

g�1q (!j) = Aj ; h�1m;q(qj) = mj :

So in a complete random set, the focal elements and universe elements, and the

measure values and distribution values, are mutually determining, and the indices i

and j are identical and can be used interchangeably.

2.5.3 Some Special Cases

Both probability and possibility arise for special cases on the structure of F .

2.5.3.1 Probability

De�nition 2.80 (Speci�city) [155] S is speci�c when 8Aj 2 F ; jAjj = 1.

Proposition 2.81 [155] If S is speci�c, then Pl = Bel and Pr := Pl = Bel is a

probability measure satisfying the usual additivity conditions 8A;B � 


Pr(A[ B) = Pr(A) + Pr(B) � Pr(A \B); A ? B ! Pr(A \ B) = 0:

Theorem 2.82 If S is speci�c, then p := qPr is a probability distribution with

operator � = +.

Proof: From the above proposition (2.81),

8A � 
;
X
!2A

p(!) =
X
!2A

Pr(f!g) = Pr

 [
!2A

f!g
!
= Pr(A):

Thus the stochastic operation and normalization conditions are

Pr(A) =
X
!i2A

pi;
X
i

pi = 1 (2:83)

in the discrete case and

Pr(A) =

Z
A

dp(!);

Z


dp(!) = 1

in the continuous case.

Theorem 2.84 If S is speci�c, then

gp(Aj) := !i such that Aj = f!ig

is a structural aggregation function.
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Proof: From the de�nition of speci�city (2.80) and the fact that the Aj are all

distinct, gp is clearly one to one.

Theorem 2.85 If S is speci�c, then hm;p(mj) := mj = pj is a numerical aggrega-

tion function.

Proof: Using the relabeling of (2.77),

p(gp(Aj)) = p(!j) = Pr(f!jg) =
X

Ak�f!jg

mk = m(;) +m(f!jg) = mj :

Proposition 2.86 (Probabilistic Completion) When p is complete then 8!i; 9Aj =

f!ig, and by relabeling, simply

g�1p (!j) = Aj ; h�1m;p(pj) = mj :

Corollary 2.87 (Probabilistic Completion Conditions) If p is complete, then

8!i; pi > 0.

Proof: Since p is complete, then by relabeling 8!j ; 9Aj 2 F , and since 8Aj 2
F ; mj > 0, therefore pj = hm;p(mj) = mj > 0.

Graphically, the speci�c focal elements Aj 2 F occupy the lowest \row" of

the random set, as shown in Fig. 2.4 for S = fhfxg; :1i ; hfyg; :7i ; hfzg; :2ig and

~p = h:1; :7; :2i.
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Figure 2.4: A speci�c random set and probability measure.

2.5.3.2 Possibility

De�nition 2.88 (Consonance and Nests) [155] S is consonant and F is a

nest, when (without loss of generality for ordering, and letting A0 = ;) Aj�1 � Aj .

Since the Aj are all distinct, therefore Aj�1 � Aj and not Aj�1 � Aj .
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Theorem 2.89 (Consonance/Possibilistic Equivalence) S is consonant i� � :=

Pl is a possibility measure.

Proof: Case 1: Let A;B � 
. In general, if A 6? Aj , then 8k; j � k � N;A 6? Ak.

Let AN be the maximal and A0 the minimal Aj under the ordering � for which

A 6? Aj . Assume A0 � B0. Then (A [ B)0 = A0, and so Pl(A [B) = Pl(A). Since

Pl(A) =

Aj=ANX
Aj=A

0

m(Aj);

therefore Pl(A) � Pl(B), and so Pl(A [ B) = Pl(A) _ Pl(B). The analogous result
holds for B0 � A0. Case 2: See [299, p. 64].

Of course, for a consonant random set, � := Bel is the dual necessity measure,

as discussed in Sec. 2.2.1. Dual results for the below will not be further discussed.

Corollary 2.90 If S is consonant, then � := q� is a possibility distribution with

operator � = _.
Proof: Follows immediately from the de�nition of the possibility distribution (2.23)

and the maximum operator for possibility theory (2.24).

Thus the possibilistic operation and normalization conditions are

�(A) =
_
!i2A

�i;
_
i

�i = 1: (2:91)

in the discrete case and

�(A) = sup
!2A

�(!); sup
!2


�(!) = 1

in the continuous case.

In the sequel, for any given possibility distribution ~�, without loss of generality

let the �i be ordered so that

�1 � �2 � � � � � �n: (2:92)

Theorem 2.93 (Possibilistic Structural Aggregation) If S is consonant, then

a structural aggregation function g�:F 7! 
 exists.

Proof: g� will be speci�ed in the course of the proof. In general, Aj�1 � Aj , where

1 � j � N , and A0 := ; by convention, so that Aj = Aj�1 [ (Aj � Aj�1). Since

the Aj are all distinct, therefore all the Aj �Aj�1 are also distinct and non-empty.

Therefore g� can be selected so that

8Aj 2 F ; g�(Aj) 2 Aj �Aj�1

arbitrarily.
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Theorem 2.94 (Possibilistic Numerical Aggregation) If S is consonant, then

hm;�(mj) :=
NX
k=j

mk = �(!j)

is a numerical aggregation function.

Proof: 8j, denote !j 2 Aj � Aj�1 be such that from the proof of the structural

aggregation theorem for possibility (2.93), !j = g�(Aj). So !j 2 Aj , and because F
is a nest, 8j � k � N; ! 2 Ak. Therefore from the plausibility assignment formula

(2.68),

81 � j � N; �(g�(Aj)) = �(!j) =
X

Ak3!j

mk =
NX
k=j

mk = hm;�(mj):

Theorem 2.95 (Possibilistic Formulae) When S is complete with distribution

q = �, then using the relabeling convention of (2.77)

1. g�(Aj) = Aj �Aj�1 = !j .

2. g�1� (!j) = Aj = f!1; !2; : : : ; !jg.

3. h�1m;�(�j) =mj = �j � �j+1, where �n+1 = 0 by convention.

Proof:

1. When S is complete, then jFj = n. Since all the Aj are distinct, therefore

jAj � Aj�1j = 1. Since g�(Aj) 2 Aj � Aj�1, therefore g�(Aj) = !i such that

Aj � Aj�1 = f!ig unambiguously. By relabeling, !j := g�(Aj).

2. Because of the ordering convention of (2.92), the !j are also ordered so that

�(!1) � �(!2) � � � � � �(!n):

Furthermore,

!1 = g�(A1) 2 A1 �A0 = A1 � ; = A1;

so that A1 = f!1g. Similarly,

!2 = g�(A2) 2 A2 � A1 = A2 � f!1g;

so that A2 = f!1; !2g. The result follows by induction.
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3. From the completion of S and possibilistic numerical aggregation (2.94), �j =Pn
k=j mk. So

�j � �j+1 =
nX

k=j

mk �
nX

k=j+1

mk = mj :

In contrast with probabilistic completion (2.87), if � is complete then all the �i

are distinct.

Theorem 2.96 (Possibilistic Completion) � is complete i�

1 = �1 > �2 > � � � > �n > 0:

Proof:

1. Assume a complete possibility distribution �.

� �1 = 1 from possibilistic normalization (2.26).

� If 9j; �j = �j+1 then from the possibilistic formulae (2.95), �j � �j+1 =

mj = 0, which violates (2.62).

� Finally, if 9�i = 0, then 8Aj ; !i 62 Aj , so that 
 62 F . But 
 2 F ,
because S is complete and consonant, and otherwise jSj < n. Therefore

8�i > 0.

2. Assume a possibility distribution where 1 = �1 > �2 > � � � > �n > 0. Let

i = 1. Then

�1 =
X

Aj3!1

mj =
X
Aj2F

mj > �2 =
X

Aj3!2

mj ;

so that

9Aj1 ; Aj2 ; !1 2 Aj1 ; Aj2; !2 2 Aj1 ; !2 62 Aj2 ; mj2 > 0:

The same argument holds for general i, therefore 81 � i � n; 9Aj ; mj > 0, so

that N = n and S is complete.

Graphically, the nested focal elements go \up the edge" of the random set, as

shown in Fig. 2.5 for S = fhfxg; :1i ; hfx; yg; :7i ; hfx; y; zg; :2ig and ~� = h1; :9; :2i.



2.6. UNCERTAINTY MEASURES AND PRINCIPLES 39

�
�

�	

?
@
@
@R

?
�

�
�	

@
@
@R

?

@
@
@R

?
�

�
�	

@
@
@R

�
�

�	

� = Bel
�

�
�	

?
@
@
@R

?
�

�
�	

@
@
@R

?

@
@
@R

?
�

�
�	

@
@
@R

�
�

�	

m

.1

.7

.2

.1

.8 .1

1

0

0

�
�

�	

?
@
@
@R

?
�

�
�	

@
@
@R

?

@
@
@R

?
�

�
�	

@
@
@R

�
�

�	

� = Pl

1

1 1

1

:9

:2
:90

Figure 2.5: A consonant random set, possibility and necessity measures.

2.5.3.3 Both

Speci�c and consonant random sets are almost completely distinct. There is just

one set of degenerate cases that they share.

De�nition 2.97 (Certain Distributions) The certain distributions ~1i; 1 �
i � n are those distributions for which qi = 1 and 8k 6= i; qk = 0.

Corollary 2.98 If S is both speci�c and consonant, then

9!!i;F = ff!igg; N = 1; ~p = ~� = ~1i:

Proof: Obvious.

2.6 Uncertainty Measures and Principles

A number of researchers have developed methods to characterize random sets and

their distributions, and a variety of mathematical functions which measure the quan-

tity and variety of evidence allocated to focal elements with respect to the algebraic

structure among them. These uncertainty measures provide the key links be-

tween the concepts of evidence, belief, and plausibility discussed above and those

of information, uncertainty, variety and constraint described in Chap. 1. The un-

certainty measure of a random set or distribution quanti�es the amount of freedom

and variety, and lack of constraint, present in that object.

Although we de�ne uncertainty measures on random sets, and then derive some

special forms, it was the special forms that were historically almost always developed

�rst. These special forms were almost all de�ned not on random sets, but rather on

the distributions of fuzzy measures, and were developed to serve particular purposes

in a certain methodologies or applications. The most prominent of these is stochastic

entropy, which has been a crucial statistical measure since the 19th century.



40 CHAPTER 2. POSSIBILITY THEORY IN GIT

2.6.1 Axiomatization

In general, an uncertainty measure maps a random set or probability or possibility

distribution (here jointly called \objects") to [0;1), measuring some aspect of the

information or uncertainty represented by the object. When working with �nite

object (as here), then it is desirable to restrict the range to [0; log2(n)].

There has recently been a great deal of work in axiomatizing uncertainty mea-

sures [154, 157, 227, 229, 231], carried out in the spirit of the axiomatization e�orts

for the statistical entropy measure [1]. There are many desirable properties for an

uncertainty measure to satisfy. Under di�erent possible axiomatizations, some of

these properties will be axioms, and others theorems. The choice of an appropriate

axiomatization is thus made on a mixture of logical, aesthetic, and arbitrary bases.

This work will not be discussed in depth here, except to (informally) mention

some of the properties which are desirable for all these measures to possess [229,154].

Symmetry: Invariance under permutation of the values of the object.

Expansibility: Invariance under inclusion of additional, zero-weighted items to the

object.

Subadditivity: The uncertainties of the projections of the object sum to no more

than the uncertainty of the whole object.

Additivity: Equality holds when the projections are independent.

Normalization: There is a standard object with uncertainty value 1.

Continuity: Required when dealing with non-�nite objects.

2.6.2 Uncertainty Measures on Random Sets

Two general forms of uncertainty measures on random sets have been identi�ed.

De�nition 2.99 (Nonspeci�city) [155]

N(S) :=
X
j

mj log2(jAj j);

The nonspeci�city measures the \spread" of the evidence in S.

De�nition 2.100 (Strife) [154]

S(S) := �
X
j

mj log2

"
NX
k=1

mk

jAj \ Akj
jAkj

#
:
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Proposition 2.101 [154]

S(S) = N(S)�
X
j

mj log2

"
NX
k=1

mkjAj \Ak j
#

The strife measures the ambiguity in terms of the amount of discrepancy among the

evidential claims mj .

De�nition 2.102 (Total Uncertainty) [154]

T(S) := S(S) +N(S):

Proposition 2.103 [154]

T(S) = 2N(S)�
X
j

mj log2

"
NX
k=1

mk jAj \Ak j
#
:

Strife and nonspeci�city play complementary roles in evidence theory. The for-

mer primarily measures aspects of a random set which are fundamentally probabilis-

tic in nature, that is speci�c and distributed; while the latter primarily measures

aspects of a random set which are fundamentally possibilistic in nature, that is

nonspeci�c and consonant. In the general case of a random set that is neither

probabilistic nor possibilistic, then the relative values of N(S) and S(S) can be con-

sulted in order to determine the \balance" between these two kinds of information

in a random set.

2.6.3 Uncertainty Measures on Distributions

In the cases of probability and possibility the uncertainty measures can be de�ned

on the appropriate distributions, and they take on especially interesting forms.

2.6.3.1 Probability

Proposition 2.104 [154] If S is speci�c, then

S(S) = H(~p ) := S(~p ) = �
nX
i=1

pi log2(pi) (2.104)

N(S) = 0

T(S) = H(~p );

where H is the stochastic entropy.

It is well-known that H achieves its minimum for the certain distributions, and

its maximum for the equiprobable distribution
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De�nition 2.106 (Maximally Uninformative Probability Distribution) The

uniform probability distribution:

~p � := h1=n; 1=n; : : :; 1=ni :
Proposition 2.107 (Entropy Minimax) [155]

min
~p
H(~p ) = H(~1i) = 0; max

~p
H(~p ) = H(~p �) = log2(n): (2:108)

2.6.3.2 Possibility

Proposition 2.109 If S is consonant, then [154]

N(S) =
X
j

mj log2(j)

N(~�) =
nX
i=2

�i log2

�
i

i� 1

�
=

nX
i=1

(�i � �i+1) log2(i) (2.110)

S(~�) =
nX
i=2

(�i � �i+1) log2

 
iPi

k=1 �k

!

= N(~�)�
nX
i=2

(�i � �i+1) log2

 
iX

k=1

�k

!

T(~�) =
nX
i=2

(�i � �i+1) log2

 
i2Pi

k=1 �k

!
Whereas probability distributions have no nonspeci�city, possibility distributions

do have some strife. But it has been established [94] that the maximum values for

S(S) for possibility measures is bounded from above, and the actual upper bound

(for jSj �! 1) is approximately 0:892. Hence, possibility measures are almost strife

free; their strife may often be neglected, especially when jSj is large.
Like probability distributions, N achieves its minimum on certain possibility

distributions, but its maximum for the distribution which is all ones.

De�nition 2.111 (Maximally Uninformative Possibility Distribution) The

unitary possibility distribution:

~�� := h1; 1; : : : ; 1i :
Proposition 2.112 (Nonspeci�city Minimax) [154]

min
~�
H(~�) = N(~1i) = 0; max

~�
= N(~�) = N(~��) = log2(n) (2:113)

Corollary 2.114 If S is consonant and ~� = ~�� then S = fh
; 1ig and F = C(S).
Proof: From the plausibility assignment formula (2.68), if 8i; �i = 1 =

P
Aj3!i

mj =P
Aj2F

mj , so 8i; 8Aj ; !i 2 Aj .
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2.6.3.3 Probability/Possibility Comparison

There have been a number of e�orts over the years develop measures which com-

pare probability and possibility distributions and measures, and conversion methods

among them. In general, a compatibility3 function maps a probability distribution

~p and a possibility distribution ~�, or equivalently a probability measure Pr and a

possibility measure �, to a number in [0; 1], where 0 indicates complete discrepancy

and 1 complete compatibility between the distributions or measures. Compatibility

measures have been axiomatized by Delgado and Moral [47].

Dubois and Prade have o�ered a very general de�nition of compatibility at the

measure level.

De�nition 2.115 (Dubois and Prade Compatibility (Measure)) [57] Given

a probability measure Pr and a possibility measure �, the Dubois-Prade com-

patibility, or DP-compatibility, of Pr and � is

DP (�;Pr) =

(
1; 8A � 
;�(A) � Pr(A)

0; otherwise
:

If DP (~p ;~�) = 1 then ~p and ~� are DP-compatible.

Note that DP-compatibility is in keeping with the general ordering relation of evi-

dence measures which interprets � and � as lower and upper probabilities (2.57).

The most prominent compatibility measure was introduced by Zadeh, and will

be generally su�cient in this work.

De�nition 2.116 (Zadeh Compatibility (Distribution)) [325] Given a prob-

ability distribution ~p and possibility distribution ~�, the Zadeh-compatibility, or

Z-compatibility, of ~p and ~� is

Z(~p ;~�) := ~p � ~� =
X
i

pi�i:

If Z(~p ;~�) = 1 then ~p and ~� are Z-compatible.

Theorem 2.117

0 �
^
i

pi � Z(~p ;~�) � 1

3The term used in the literature is actually \consistency", so to avoid confusion with random

set consistency, we will use \compatibility".
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Proof: Since 0 � �i � 1, therefore 8i; 0 � pi�i � pi, and so

0 �
X
i

pi�i = Z(~p ;~�) �
X
i

pi = 1:

But since �1 = 1 by possibilistic normalization (2.26), therefore

Z(~p ;~�) = p1 +
nX
i=2

pi�i � p1 �
n̂

i=1

pi � 0:

Lemma 2.118 If ~p and ~� are Z-compatible, then 8!i,

pi > 0! �i = 1; �i < 1! pi = 0:

Proof: From the proof of (2.117),

0 �
X
i

pi�i = Z(~p ;~�) �
X
i

pi = 1:

Since 8!i; pi�i � pi, therefore for equality to hold, 8!i; pi�i = pi. Therefore pi >

0 ! �i = pi=pi = 1. The second result follows by modus tolens and the restriction

pi; �i 2 [0; 1].

Theorem 2.119 If ~p and ~� are Z-compatible, then Pr determined from ~p and �

determined from ~� are DP-compatible.

Proof: Let A � 
 be �xed. First, if 9!i 2 A; �i = 1 then

�(A) =
_
!i2A

�i = 1 � Pr(A):

On the other hand, if 8!i 2 A; �i < 1, then from (2.118) 8!i 2 A; pi = 0, and

�(A) =
_
!i2A

�i � 0 =
X
!i2A

pi = Pr(A):

2.6.4 Uncertainty Principles

As remarked above, uncertainty measures provide the crucial link between the for-

malisms of git and their interpretations in terms of such concepts as information,

order, and organization.

As discussed in Chap. 1, the entropy measure has been advanced as an almost

universally applicable explanatory concept. The Maximum Entropy Principle
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(mep) in particular, beginning with the maximization of thermodynamic entropy at

thermodynamic equilibrium, and continuing with the Shannon-Jaynes program of

informational entropy, has proved an extremely powerful formalism.

But of course, the mep program is limited to classical information theory, and

thus the special case of the strife measure in probability theory (2.1). Even in this

classical context, the correlate Minimum Entropy Principle [34, 35] is usually

neglected as a powerful tool for simpli�cation problems.

In the face of the need to generalize the mep to git, Klir has advanced three

general principles for reasoning with uncertain systems [150]. These principles are

formulated here in terms of a problem-solving context where for a given problem

random set S there is a set of multiple possible solution random sets � := fŜg. The
task is to select an optimal solution S� 2 �.

2.6.4.1 Uncertainty Minimization

This is an arbitration principle to be used in simpli�cation or approximation prob-

lems. It says that that solution with minimal uncertainty should be chosen so as to

lose the least possible amount of information.

Principle 2.120 (Minimum Uncertainty Principle) [150] Given a simpli�ca-

tion problem, let

S� = min
Ŝ2�

T(Ŝ):

From entropy minimization (2.108) and nonspeci�city minimization (2.113), in

both unconstrained probabilistic and possibility problems this principle has the same

e�ect, selecting any of the certain distributions ~1i.

2.6.4.2 Uncertainty Maximization

This principle is used in the context of inductive or ampliative reasoning, when it

is necessary to extrapolate beyond available information. It says that that solution

with maximal uncertainty should be chosen, so that it is maximally noncommittal

with regard to missing information.

Principle 2.121 (Maximum Uncertainty Principle, mup) [150]Given an am-

pliative problem, let

S� = max
Ŝ2�

T(Ŝ):

In a stochastic problem the mup becomes the mep, and in an unconstrained

problem from entropy maximization (2.108), ~p � will be chosen. The selection of

equal probabilities as the representation of ignorance in probability theory can be
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traced back to Laplace's Principle of Insu�cient Reason as the foundation of most

methods of inductive reasoning.

In a possibilistic problem the mup becomes the Maximum Nonspeci�city

Principle, also called the Minimum Speci�city Principle [63, 318]. In an un-

constrained problem, from nonspeci�city maximization (2.113), ~�� will be chosen.

Random sets assign essentially probabilistic evidence valuesm to subsets Aj � 
.

A number of researchers, including Dubois and Prade [57], Smets [270] and Yager

[315], have suggested the following conversion formula as an application of Insuf-

�cient Reason or the mep at the focal set level to derive a canonical probabilistic

approximation to S, replacing each subset evidence value m(Aj) with the mep uni-

form probability distribution over its members.

De�nition 2.122 (Maximum Entropy Probability Distribution) [57,270,315]

Given a random set S, let the maximum entropy probability distribution

pS : 
 7! [0; 1] be 8! 2 
,

pS(!) :=
X
Aj3!

mj

jAj j ;

or in vector form

~pS :=
D
pS(!i)

E
:

2.6.4.3 Uncertainty Invariance

Both themup and the Minimum Uncertainty Principle were developed in the context

of a single aspect of git, either probability or possibility theory. But in attempting

to generalize these to git, the need arises to convert problems from one aspect of

the formalism to another. Klir introduced the Uncertainty Invariance Principle

(uip) [148,156] to accommodate this situation. It is used when translating a problem

from one formalism to another, for example probability to possibility, and requires

that the quantity of uncertainty as measured in each formalism be preserved under

the transformation.

Principle 2.123 (Uncertainty Invariance Principle, uip) [148]Given a trans-

lation problem where S is in one formalism and the Ŝ 2 � in another, let S� 2 � be

such that T(S�) = T(S).

2.7 Possibility Distributions and Random Sets

Probability and possibility clearly represent two distinct, almost isomorphic, forms

for the representation of information. In the context of random sets, both prob-

ability and possibility measures are generated very naturally as two special cases
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of fuzzy measures with distributions. Probability is dominated by operations using

+, while possibility is dominated by operations using _. Since probability theory

has been well developed for decades, it becomes desirable to explore the proper-

ties of possibility theory, and consider both its similarities to, and still considerable

di�erences from, probability theory.

The main value of relying on fuzzy measures with distributions is the reduction

in complexity achieved when the domain of the measure is replaced by the domain

of the distribution, reducing the number of states from 2j
j to N � j
j. Therefore
operations which take or yield distributions are far more valuable than those which

take or yield measures.

2.7.1 Probability Distributions and Random Sets

The relation between probability distributions and random sets is simple and un-

problematic: speci�city of S is both necessary and su�cient for S to have an additive
distribution ~Pl; and for each additively normal probability distribution ~p there is a

unique speci�c random set.

Theorem 2.124 (Probabilistic Speci�city)
P

iPli = 1 i� S is speci�c.

Proof: Case 1: Assume relabeling convention in the probabilistic case. If S is

speci�c, then 8Aj 6= f!jg; !j 62 Aj , and so Plj =
P

!k2Aj
mk = mj . Thus

P
j Plj =P

j mj = 1. Case 2: If
P

iPli = 1, then from Lemma (2.69)
P

j mj jAj j = 1. Since

8Aj ; jAjj � 1, therefore 8Aj ; mj jAj j � mj . Since
P

j mj = 1, then it must be the

case that 8Aj ; jAjj = 1.

Corollary 2.125 Given a complete probability distribution ~p , then S = fhf!ig; piig
is the unique random set such that ~Pl = ~p .

Proof: When ~Pl = ~p , then
P

i Pli = 1, so from the probabilistic speci�city theorem

(2.124), S is speci�c. Now from the plausibility assignment formula (2.68),

pi = Pl(f!ig) =
X
Aj3!i

mj :

In general, there will be zero or more Aj such that Aj 3 !i. If there were more than

one, then one of those would have cardinality greater than one, which it cannot. If

there were none, then pi = 0, which it cannot from probabilistic completion (2.86).

Therefore 9!Aj ; f!ig = Aj , so jSj = j~p j = n = N , and S is complete, and by the

relabeling of (2.77), m(Aj) = pj .
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2.7.2 Consonance, Consistency, and Possibility Distributions

But the relationship between possibility distributions and random sets is more com-

plicated. There is a mapping between each possibility distribution and an equiv-

alence class of consistent random sets, although there is a unique, well-justi�ed,

consonant random set in this class.

In Sec. 2.5.3.2 it was shown that a random set S being consonant is both nec-

essary and su�cient for the plausibility measure on S to be a possibility measure.

But S being consonant is only a su�cient, and not a necessary, condition for S to

have a possibility distribution.

Theorem 2.126 (Consonance Implies Consistency) If S is consonant, then S
is consistent with core C(S) = A1.

Proof: For 1 � j � N;Aj�1 � Aj . Therefore 8Aj ; A1 � Aj and so A1 � TAj2F
Aj .

Since A1 6= ;, therefore A1 � C(S) 6= ;, so that S is consistent. Now assume

C(S) 6� A1, then 9!i 2 C(S); !i 62 A1. But since !i 2
T
Aj2F

Aj , and A1 2 F ,
therefore !i 2 A1, which is a contradiction. Therefore C(S) � A1, and C(S) = A1.

Theorem 2.127 (Su�ciency of Consistency) S is consistent i�
W
i Pli = 1.

Proof: Case 1: Assume S is consistent. Then 9!i 2 C(S), and therefore

8Aj ; !i 2 Aj and Pli =
P

Aj2F
mj = 1. Case 2: Assume

W
i Pli = 1 so that

9!0 2 
;Pl(f!0g) =P
!02Aj

mj = 1 =
P

j mj , so that it must be that 8Aj ; !0 2 Aj ,

and thus !0 2 C(S), so that S is consistent.

So in possibility theory there is a disconnection between the requirements on

measures and those on distributions: consonance is required for measures, and while

all consonant random sets are consistent, consistency is the only requirement for

dealing with distributions.

Given any of a (complete) possibility measure, possibility distribution, or con-

sonant random set, each of the others is determined and can be constructed:

� Assume a consonant random set. Then in virtue of the equivalence of con-

sonant random sets and possibility measures (2.89), � can be constructed

from the de�nition of plausibility (2.56); and then � is determined from the

de�nition of the possibility distribution (2.23).

� Assume a possibility measure. Then � is determined from the de�nition of the

distribution (2.23); and similarly in virtue of (2.89), a consonant random set

is constructed from the possibilistic formulae (2.95).
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� Assume a possibility distribution. Then a a consonant random set is con-

structed from the possibilistic formulae (2.95); and a possibility measure from

the de�nition of plausibility (2.91).

2.7.3 The Consonant Approximation

The only remaining case is when a consistent, but non-consonant, random set S is

given. Then equally from the equivalence of consonance and possibility (2.89), Pl is

not a possibility measure, so that

9A;B � 
; Pl(A [B) 6= Pl(A)_ Pl(B):

But nevertheless from the su�ciency of consistency for maximum normalization

(2.127), ~Pl is maximum normalized, and can be taken as a possibility distribution

~� := ~Pl.

De�nition 2.128 (Constructed Possibility Measure) Assume a non-consonant,

consistent random set with maximally normalized plausibility assignment ~Pl. Then

let ~� = ~Pl, and let �� be the possibility measure determined by the possibilistic op-

erator (2.91), and let S� be the consonant random set, with focal set F�, determined

by the possibilistic formulae (2.95).

In general, of course,

�� 6= Pl; S� 6= S:

Proposition 2.129 If S is consistent then N(S) � N(~�) = N(S�).
Proof: This is demonstrable by construction at least for n � 4, and should gener-

alize in a complicated combinatorial proof.

For a consistent, non-consonant S, we know that ~� = ~Pl is a possibility distribu-

tion. But S� is a unique, optimal, natural, and canonical consonant representation

of ~�. We can therefore accept consistency as a su�cient criteria to generate a pos-

sibility distribution ~� from a random set S, and regard �� as a valid representation

of the measure associated with ~�.

2.7.3.1 Uniqueness

S� is the unique consonant member of the equivalence class of random sets which

are one-point equivalent to a given possibility distribution ~�.

Theorem 2.130 Given a possibility distribution ~�, then S� is the unique consonant
random set for which ~Pl = ~�.
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Proof: Let S be a consonant random set with ~Pl = ~�. We need to prove that

S = S� . Let the �i be ordered as in (2.92). So from possibilistic normalization

(2.26), �1 = 1. Since from the plausibility assignment formula (2.68)

�1 =
X

Aj3!1

mj = 1 =
X
Aj2F

mj ;

therefore 8Aj ; !1 2 Aj . Therefore m exists only on the reduced universe 
0 =


�f!1g with j
0j = n� 1. Since S is consonant, F must be a nest, and now a nest

on 
0. There are (n�1)! nests in 
0, one for each permutation of the !2; !3; : : : ; !n.

Let �!2; �!3; : : : ; �!n be the selected permutation �
0 of 
0, and �xing �!1 := !1, then

we can let Aj := f�!1; �!2; : : : ; �!jg be the focal elements of S. So

Plj =

Ak=
X
Ak=Aj

m(Ak) � Plj+1 =

Ak=
X
Ak=Aj+1

m(Ak):

If �
0 6= 
0, then there exists at least two 2 � j1 < j2 � n such that !j1 = �!j2 ; !j2 =

�!j1 . So �j1 � �j2 , but Plj2 � Plj1 . Therefore
�
0 = 
, and so F = F�. Therefore m

is determined from the possibilistic formulae (2.95), so that S = S� .

2.7.3.2 Optimal Inclusion

S� is also the consonant random set which is \closest" to S, whether one-point

equivalent or not, as developed by Dubois and Prade.

De�nition 2.131 (Random Set Inclusion) [68] A random set S1 is included

in S2, denoted S1 � S2, when 8A � 
;Pl1(A) � Pl2(A).

De�nition 2.132 (Optimal Inclusion) [68] A random set S1 is optimally in-

cluded in S2, denoted S1 �� S2 when S1 � S2 and S1 is the maximal such random

set with respect to the partial ordering �.
Proposition 2.133 [68] If S is consistent, then S� �� S.

2.7.3.3 Natural Ordering of ~Pl

Consider the situation where we are given only a list of uncertainty values in [0; 1]

which are maximally normalized, that is have a maximum value of 1. While no

random set (consistent, consonant, or otherwise) nor set-valued evidence measure is

apparent, it is justi�able to take the list as a possibility distribution. The �rst, and

perhaps most natural, operation that can be taken on the list is then to arrange it

in order. These are the only conditions (maximum normalization and rank order)

which are necessary for the application of the possibilistic formulae (2.95), and thus

the recovery of a consonant random set and possibility measure.
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2.7.3.4 Canonical Random Set from a Distribution

Goodman [102] has considered the problem of constructing a random set from a

given distribution, and described a method which has become somewhat canonical

(e.g. for Chanas and Nowakowski [31]).

De�nition 2.134 (Canonical Random Set) [102] Assume a general distribu-

tion q: 
 7! [0; 1] on a �nite 
, and let U be a uniform random variable on [0; 1].

Then

S(U) := f! : q(!) � Ug

is a random subset of 
 with focal set F(U).

Theorem 2.135 If ~q is maximally normalized, then S(U) = S�.

Proof: Let ~� = h�ii := ~q (�nite 
), so that as before

1 = �1 � �2 � � � � � �n; Aj := f!1; !2; � � � ; !jg; F� = fAjg:

So

S(U) = f!j : �j � Ug = min
�j�U

Aj 2 F�:

Since

8A 62 F ; m(A) = Pr(S(U) = A) = 0;

therefore F(U) = F�. Since

81 � j � n; U 2 [�j ; �j+1)! S(U) = Aj ;

therefore

m(Aj) = Pr(S = Aj) =

Z
U :S(U)=Aj

dU =

Z �j

�j+1

dU = �j � �j+1;

which is just the possibilistic formulae (2.95), so that S(U) = S� .

2.8 Possibilistic Normalization

In a consistent random set, all the evidential claims are in partial agreement, since

they all include the core. If furthermore F is a nest, thenC(S) = A1 2 F . Therefore
a consistent random set is in some sense a \partial" nest, and it is appropriate to

consider possibilistic methods on the possibility distribution ~� := ~Pl, the measure

��, and the consonant random set S� constructed from ~�.
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But when S is not even consistent, then possibilistic concepts cannot apply in any
capacity. Instead, possibilistic methods may only be applied to an approximation of

S (in the measure) or ~Pl (in the distribution). We argued in Sec. 2.7 that operations

on distributions are at least as valuable as those on measures, and usually more so.

In addition, the consistency requirement for a possibility distribution is weaker, and

thus far easier to satisfy, than the consonance requirement for a possibility measure.

Therefore what is required are methods to approximate an inconsistent random

set by a consistent one while preserving as much of the original structure of S as

possible. Or, when approximating ~Pl, since
W
i Pli < 1 for an inconsistent S, the

task is to possibilistically normalize ~Pl to produce a normal possibility distribution

~� in such a way as to preserve as much of the structure of ~Pl as possible.

2.8.1 Consistent Transformations

One way to transform an inconsistent random set S is to move an evidential claim

hA;mi 2 S to a new focal element. Then what is crucial is that no information be

lost, and thus 8!i 2 A be accounted for in the transformed focal element.

De�nition 2.136 (Consistent Transformation) A consistent transformation

of a random set S, denoted S 7! Ŝ with focal set F̂ , evidence function m̂, and plau-

sibility P̂l, moves an evidential claim hA;m(A)i 2 S to a focal element Â 2 F̂ ,
such that Â � A in accordance with the following algorithm, where := denotes

assignment:

1. m̂ := m.

2. m̂(A) := 0.

3. m̂(Â) := m̂(Â) +m(A).

The e�ect is to replace the evidence for A with zero, while adding it to that of Â.

Since Â � A, all the evidence of the old claim is accounted for in the new claim Â.

Theorem 2.137 (Identity Consistent Transformation) Under a consistent trans-

formation S 7! Ŝ, if Â = A then Ŝ = S.
Proof: Each of the steps of the algorithm has the following result:

Step Result

1 m̂(A) := m(A); m̂(Â) := m(Â)

2 m̂(A) := 0

3 m̂(Â) := m̂(Â) +m(A)
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When Â = A, then at step 3 m̂(Â) = m̂(A) = 0 + m(A) = m(A), with the �nal

result that m̂ = m and Ŝ = S.

Corollary 2.138 (Non-Identity Consistent Transformation) Under a consis-

tent transformation S 7! Ŝ, if Â � A, then the �nal result is

m̂(A) = 0; m̂(Â) = m(Â) +m(A):

Proof: Follows immediately from steps 2 and 3 of the proof of the identity consistent

transformation (2.137).

Theorem 2.139 Ŝ � S.

Proof: Given (2.137), all we have to show is that Â � A ! Ŝ � S. Assume that

under the consistent transform

A 2 F 7! Â 2 F̂ ;

with Â � A, so thatm(A) andm(Â) are the only values which are changed according

to (2.138). We need to show that 8B � 
;Pl(B) � P̂l(B).

1. If B 6? A then B 6? Â, and since m(A) + m(Â) = m̂(A) + m̂(Â), therefore

Pl(B) = P̂l(B).

2. If B ? Â, then B ? A, and so Pl(B) = P̂l(B).

3. If B ? A but B 6? Â, then P̂l(B) = Pl(B) +m(A) � Pl(B).

Theorem 2.140 N(Ŝ) � N(S).

Proof: Again from the identity consistent transformation (2.137), Â = A !
N(Ŝ) = N(S). If Â � A, therefore jÂj > jAj, and so

N(Ŝ) = N(S)�m(A)jAj+m(A)jÂj > N(S):

However, sometimes S(S) � S(Ŝ), and sometimes S(S) � S(Ŝ).
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2.8.1.1 Focused Consistent Transformations

So far, this de�nition is not very helpful, since it provides no general principle for

applying the variety of consistent transformations that are available in order to

derive a consistent random set.

A necessary condition for a consistent random set is a non-empty core. Since

C(S) 6= ; ! 9!i; 8Aj ; !i 2 Aj , therefore the minimum necessary transformation on

S is to introduce a minimal core, that is a unique focus 9!!� 2 C(S).

De�nition 2.141 (Focused Consistent Transformations) A consistent trans-

formation with focus !i := !� 2 
 of a random set S, denoted S 7! Ŝi with focal

set F̂i and evidence function m̂i, makes 8Aj 2 F the consistent transformation

Aj 7! Âj := Aj [ f!ig 2 F̂i:

Let �(S) := fŜig be the family of n random sets Ŝi, one for each !i 2 
.

From the identity (2.137) and non-identity consistent transformation (2.138) results,

for a given Aj , if !i 62 Aj , then m(Aj) becomes zero while the evidence for Aj is

added to the evidence of the \promoted" subset Âj = Aj [f!ig; whereas if !i 2 Aj ,

then there is no change.

Since 8Âj 2 F̂i; !� = !i 2 Âj , therefore all the Ŝi 2 �(S) are consistent with

normal possibility distributions, cores C(Ŝi) = f!ig with minimal size jC(Ŝi)j = 1,

and foci !� = !i.

Theorem 2.142

8A � 
; m̂i(A) =

(
m(A) +m(A� f!ig); !i 2 A
0; !i 62 A

:

Proof: Let !i = !� and A be �xed. We can consider the losses, gains, and

retentions of the evidence for A under the transformation S 7! Ŝi. The only losses

will occur if !i 62 A, in which case if A 2 F then m(A) will be lost. If !i 2 A

then m(A) will be retained. Finally, A will receive gains from any Aj such that

Aj [ f!ig = A. This is only true for Aj = A (in the case of retention), or Aj =

A � f!ig. Case 1: Let !i 62 A. Then m(A) is lost, nothing is retained, and since

A � f!ig = A, nothing is gained. Therefore m̂i(A) = 0. Case 2: Let !i 2 A.

Then there are no losses, m(A) is retained, and m(A � f!ig) is gained. Therefore

m̂i(A) = m(A) +m(A� f!ig).

Theorem 2.143 S 7! Ŝi induces the transformation:

~Pl = hPl1;Pl2; : : : ;Pli; : : : ;Plni 7! ~� = hPl1;Pl2; : : : ; 1; : : : ;Plni
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Proof: Let i be �xed so that !� = !i; let A 2 F ; Â 2 F̂i; let m;Pl and m̂;cPl be
the evidence functions and plausibilities of S and Ŝi respectively; and let ~� be the

possibility distribution of Ŝi. First,

�i = cPl(f!ig) = X
!i2Â

m(Â) =
X
Â2F̂

m(Â) = 1:

Now consider 8k 6= i; 1 � k � n, and any ; 6= A0 � 
. Case 1: If !i 2 A0,

then m(A0) is unchanged in the transformation. Case 2: Assume !i 62 A0. If

!k 2 A0, then !k 2 A0 [ f!ig; as m(A0) is added to Plk, so m̂(A0 [ f!ig) is added
to cPlk. Similarly, if !k 62 A0, then !k 62 A0 [ f!ig; as m(A0) is not added to Plk,

so m̂(A0[ f!ig) is not added to cPlk . Therefore the transformation does not change

the value of Pl(f!kg), and �k = cPlk = Plk.

2.8.1.2 Choice of Focus

The task here is to transform evidence represented in the random set S to a consis-

tent random set denoted S�, that is, assuming that S is not itself consistent. The

method is still not complete. For a general inconsistent random set S, there are n
possible focused consistent transformations Ŝi. What is still required is a method

to choose the \correct" !i as a focus, and to elevate the plausibility of that element

to 1 as a possibilistic normalization.

Maximum Plausibility The most obvious method is simply to select as a focus

that element with the highest plausibility.

Principle 2.144 (Maximum Plausibility) Given a random set S, let S� be that
focused, consistent transformation Ŝi such that

!� = max
!i2


Pli:

This method has also been suggested by Ramer and Puea-Ramer [232].

This is the only order-preserving focus selection.

Corollary 2.145 Let the Pli be ordered so that

1 > Pl1 � Pl2 � � � � � Pln;

let ~Pl 7! ~� by a focused consistent transformation, and let the �i maintain the same

indices as the Pli. Then the focus !� selected by maximum plausibility (2.144) is

the only one for which

Pli1 � Pli2 ! �i1 � �i2 :



56 CHAPTER 2. POSSIBILITY THEORY IN GIT

Proof: By the maximum plausibility principle (2.144), Pl1 will be chosen as a focus.

If Pli0 ; i0 6= 1 is changed to 1, then Pl1 > Pli0 but �1 < �i0 = 1.

As stressed by Dubois and Prade [59], this property is extremely important,

since the ordinal relation among the �i is perhaps the most signi�cant attribute of

a possibility distribution (see Sec. 3.3.1).

Minimal Information Distortion It is also appropriate to turn to the Uncer-

tainty Principles of Sec. 2.6.4. In particular, the choice of focus can be regarded as

a transformation problem, and the uip of Sec. 2.6.4.3 can be applied to derive S�
with uncertainty equal to that of S.

Principle 2.146 Given a random set S, let S� be that focused, consistent trans-

formation Ŝi 2 �(S) such that T(Ŝi) = T(S).

However, (2.146) cannot be used in this form. As the uip was originally introduced

[147], one side of the transformation was considered to be completely constrained,

while the other was constrained only by the measure of uncertainty. For example,

for a given, �xed probability distribution, the researcher would be free to select any

possibility distribution with equal uncertainty.

Later results [95] show that certain transformation methods have desirable prop-

erties, but still the transformed distribution could vary with a continuous parameter

a 2 (0; 1), and it was shown that 9a 2 (0; 1) such that uncertainty invariance could

be satis�ed.

But in the present context �(S) provides only a �nite set of candidates from

which S� must be selected. If S is already consistent then of course S� = S and so

T(S�) = T(S). But in general it may very well be the case that 8Ŝi 2 �(S);T(Ŝi) 6=
T(S). From (2.140) we know that 8i;N(S) � N(Ŝi), but such a relation does not

necessarily hold for S, and therefore also not for T. In general, there will be a

tradeo� when S is transformed to Ŝi, with the strife of S being transformed into the

nonspeci�city of the Ŝi. But the conditions under which T(Ŝi) increases or decreases
generally from T(S) have yet to be investigated.

Therefore, we must adopt a modi�cation of this �rst attempt (2.146) in this

�nite case to express the desire to make the information contents of the original and

derived random sets be as \close" as possible.

De�nition 2.147 (Distortion Function) A function �: IR+ 7! IR+ is a distor-

tion function if:

� �(x; y) = 0 i� x = y.
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� �(x; y) is monotonic increasing in x and y.

Principle 2.148 (Minimal Information Distortion) Given a random set S, let

S� = min
Ŝi2�(S)

�(T(S);T(Ŝi)):

An obvious candidate for �(x; y) is jx�yj, but some other measure might sometimes

be more satisfactory. Choice of a distortion function will depend on the problem

at hand and the methodology of the investigator. If T(S) < T(Ŝi), then \extra"

information is gained through the transformation that was not included in the data.

On the other hand, if T(S) > T(Ŝi), then information in the data is lost through the

transformation. In general it should be considered more dangerous to add spurious

information than to excise given information, but a very great loss should not be

chosen over a very small gain. One can imagine a more sophisticated loss function

which would smoothly provide more weight to information loss than information

gain.

There is another issue to consider here as well. To this point we have been

concerned with constructing a random set S� 2 fŜig which is a consistent approx-

imation of an inconsistent S, and in doing so are comparing T(S) with T(S�).
However, the ultimate goal is to treat the plausibility assignment of S� as a possi-

bility distribution, or equivalently to derive the constructed consonant random set

S�. If (2.129) is true, then N(S�) � N(S�). So minimum information distortion

(2.148) could instead be applied on each of the Ŝ�i , the consonant approximations

of each of the focused consistent transformations, as follows:

Principle 2.149 (Minimal Information Distortion, Alternate) Given a ran-

dom set S, let
S� = min

Ŝi2�(S)

�(T(S);T(Ŝ�i )):

2.8.1.3 An Example

Fig. 2.6 illustrates the following example. Let 
 = fx; y; zg; n= 3, and assume the

following inconsistent random set

S = fhfxg; :1i ; hfx; yg; :7ig; hfzg; :2ig; ~Pl = h:8; :7; :2i ;

with the properties

N(S) = :7; S(S) = :805; T(S) = 1:505

So �(S) = fŜx; Ŝy; Ŝzg. Note that Ŝz is actually consonant, and the only Ŝi for
which T(Ŝi) increases (slightly). Maximum plausibility (2.144) selects S� = Ŝx, and
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Ŝx = fhfxg; :1i ; hfx; yg; :7i ; hfx; zg; :2ig ~�x = h1; :7; :2i
Ŝy = fhfx; yg; :8i ; hfx; zg; :2ig ~�y = h:8; 1; :2i
Ŝz = fhfzg; :2i ; hfx; zg; :1i ; h
; :7ig ~�z = h:8; :7; 1i

Table 2.2: Example focused consistent transformations.

S Ŝx Ŝ�x Ŝy Ŝ�y Ŝz Ŝ�z
N .700 .900 .817 1.000 .917 1.209 1.209

S .805 .317 .259 .269 .224 .363 .363

T 1.505 1.217 1.076 1.269 1.141 1.572 1.572

�(S; �) 0.000 .288 .429 .236 .364 .067 .067

Table 2.3: Information measures of approximations.

both minimal information distortion principles ((2.148) and (2.149)), using �(x; y) =

jx� yj, select S� = Ŝz.
The results are summarized in Tab. 2.2 and Tab. 2.3, where ~�! is the possibility

distribution of the appropriate Ŝi.

2.8.2 Dimensional Extension

A consistent transformation requires the modi�cation of at least one of the values

Pli, which is changed to 1 in order to possibilistically normalize ~Pl. However, it

is possible to provide a maximum normalized element in a manner which does not

disrupt the other Pli at all, by simply leaving them all unchanged, but instead

adding a new element Pln+1 = 1.

Principle 2.150 (Dimensional Extension) Given a possibilistically subnormal

plausibility distribution ~Pl, let ~�0 = h1i + ~Pl, where + in this context is vector

concatenation.

The e�ect is to replace the universe of discourse 
 with a new universe 
0 = 
 [
f!n+1g, with a new plausibility assignment �0 = ~Pl

0
=


Pl0i
�
, where

Pl01 = 1; Pl0i = Pli�1; 2 � i � n+ 1:

Actually, the correct perspective is not so much that a new element !n+1 is being

added, as it is that a random set already de�ned on 
0, but for which 9i;Pli =
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Ŝ�y�
�

�	

?
@
@
@R

?
�

�
�	

@
@
@R

?

@
@
@R

?
�

�
�	

@
@
@R

�
�

�	
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Figure 2.6: Consistent and consonant approximations of a three-dimensional incon-

sistent random set.
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0, is consistently transformed with a focus !� = !n+1, e�ecting by (2.143) the

transformation:

~Pl = hPl1;Pl2; : : : ;Pln; 0i 7! ~� = hPl1;Pl2; : : : ;Pln; 1i ; (2:151)

where ~� has yet to be appropriately ordered.

Theorem 2.152 Given an inconsistent random set S de�ned on 
0 = 
 [ f!n+1g
such that

8Aj 2 F ; !n+1 62 Aj ; (2:153)

then the focused consistent transformation S 7! Ŝn+1 e�ects the transform of ~Pl 7! ~�

as in (2.151).

Proof: Pln+1 =
P

Aj3!n+1
= 0, so that ~Pl is as in (2.151). The result follows from

(2.143), once ~� is sorted.

From the condition (2.153) above, S, while technically de�ned on 
0, actually has

weight only for A � 
, and so exists con�ned to the simplex 2
 � 2

0

. Dimensional

extension ((2.150) and (2.152)) projects S into the rest of the space involving the

new element !n+1.

As an example, consider the random set

S = fhfxg; :6i ; hfyg; :4ig

de�ned on 
 = fx; yg with ~Pl = h:6; :4i. From dimensional extension (2.150),

�0 = h1; :6; :4i (once �0 is sorted) de�ned on 
0 = fx; y; zg. The �nal random set

Ŝn+1 is

Ŝn+1 = fhfx; zg; :6i ; hfy; zg; :4ig;

as shown in Fig. 2.7. When S is taken to be in 
0, then ~Pl = h:6; :4; 0i, as shown in

the �gure.
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Figure 2.7: An inconsistent random set in a normal and extended universe, and its

dimensional extension.
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2.8.3 Maximum Entropy Approaches

There are other methods in the literature which have been used to select, given the

values of a plausibility assignment, a random set from the equivalence class of those

with that plausibility assignment (the one-point coverage problem). These methods

could have some value for the current problem (selecting a consistent approximation

of a given inconsistent random set). However, both of these are inappropriate for a

possibilistic approach to git.

� When S is inconsistent, it might be interesting to derive a consistent approxi-

mation by considering the compatibility between � and the maximum entropy

probability distribution pS of (2.122)

S� := max
Ŝi2�(S)

Z(~p
S ; ~�!i):

This is similar to the approach that Chanas and Heilpern [30] take to the one-

point coverage problem. However, this method gives precedence not just to the

probabilistic nature of S, but its probabilistic nature based on a distortion of

~Pl through an uncertainty principle (themep) which is valid only in probability

theory.

� Another approach in the literature is to apply the mep not to the Aj them-

selves, but rather to the evidence distribution m considered strictly as a prob-

ability distribution on 2
. For example, the unconstrained mep would assign

uniform weight

8; 6= A � 
; m(A) =
1

2n � 1
:

Therefore it might be interesting to consider

S� := max
Ŝi2�(S)

H(m);

again similarly to Chanas and Heilpern [30]. But this approach is even less

satisfactory, relying on the probabilistic mep, but in a domain where it is com-

pletely inappropriate, and which is completely indiscriminate of any structure

of the focal sets Aj .

2.9 Possibility, Probability, and Fuzzy Sets

All of the mathematical theories considered in Secs. 2.2{2.6 are related in the gen-

eral context of git. Most of them are contained within the context of �nite fuzzy

measures and their speci�c manifestations in random sets, and thereby in evidence
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theory. And distributions, fuzzy measures, evidence functions, indeed, any function

to [0; 1], de�ne fuzzy sets, as shown for fuzzy measures and their distributions (2.34),

evidence functions (2.53), and distributions on random sets (2.72).

But the history and literature of possibility theory suggests that there is a special

relationship between possibility theory and fuzzy theory, in fact that they are almost

identical. As discussed in Sec. 2.3, there is at least the obvious linguistic motivation

to look for a deeper relation between fuzzy measures and fuzzy sets. And while

we question Sugeno's use of the term \fuzzy" in fuzzy measures, there is clearly a

relation between fuzzy sets and measures. But examination of this relation leads

us to question the traditional understanding of the relation between possibility,

probably, and fuzzy set theories.

2.9.1 Zadeh's Possibility from Fuzzy Sets

Although Shackle [260] was the �rst to introduce the mathematics and concepts of

possibility theory, it was Zadeh [325] who �rst developed possibility in the context

of git. He de�ned a possibility distribution as a fuzzy set. Beginning with a fuzzy

set eF e� 
, Zadeh derives a possibility distribution, here denoted �eF , based on eF :
8!i 2 
; �eF (!i) := �eF (!i): (2:154)

Zadeh's interpretation of possibility strictly in terms of fuzzy sets has deeply

joined these ideas in the literature of git, to the extent that fuzzy concepts have

come to dominate the work on possibility theory. Possibility distributions are in-

terpreted strictly as \fuzzy restrictions" on variables, and the terms \possibilistic"

and \fuzzy" are used synonymously. Textbooks and anthologies have been written

with titles like Fuzzy Sets and Systems, Possibility Theory, and Special Topics [173],

Advances in Fuzzy Sets, Possibility Theory, and Applications [294], and Fuzzy Set

and Possibility Theory: Recent Developments [314], in which the two mathematical

theories are conated. To a very large extent, possibility theory has come to be

regarded as a branch of fuzzy theory.

This view is unfortunate and inaccurate, and has retarded the development of

both an independent possibility theory and a view of the true relation between

probability and fuzzy sets. A deeper consideration of the relation between fuzzy sets

and measures in light of the concepts of general distributions from Sec. 2.5.2 shows

that neither is fuzzy theory specially related to possibility theory, nor is possibility

theory the only form of information theory related to fuzzy sets.
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2.9.2 Fuzzy Sets and Normalization

Since a given possibility distribution � is a fuzzy measure distribution qPl, therefore

from (2.34), � induces the fuzzy set e�. However, Zadeh's de�nition (2.154) does not

follow strictly from the mathematical possibility theory of Sec. 2.2 and Sec. 2.5.3.2.

That is because �eF derived from eF is not necessarily normal:

8!i; �eF (!i) < 1!6 9!i; �eF (!i) = 1:

Thus it is required that eF be normal (in the fuzzy set sense of (2.41)) for �eF to be a

possibility distribution. (2.154) in fact motivates two mappings, the �rst from fuzzy

sets to possibility distributions, dependent on normalization:

Normal( eF � 
) 7! �eF := �eF ; (2:155)

and the second from possibility distributions to fuzzy sets, which holds in all cases:

� 7! e� := �; e� � 
: (2:156)

Instead of (2.154), what would we think if Zadeh had suggested

peF (!i) := �eF (!i); (2:157)

de�ning probability in terms of a fuzzy set? We would surely object, since for almost

all �, this condition (2.157) would not yield an actual probability distribution. It

would, however, yield an abnormal probability distribution, one which was either

subnormal (
P
pi < 1) or supernormal (

P
pi > 1).

So by the same argument, even though (2.154) holds for those maximally normal

� (admittedly, for more � than (2.157) holds), nevertheless it similarly rarely yields

a maximally normal possibility distribution.

But, for those few cases when � is in fact additively normal, then (2.157) could

indeed hold. So if (2.154) were su�cient to de�ne possibility, then why is it not

su�cient to de�ne probability? It cannot, since then there would be no restriction

on what a probability distribution is: any string of numbers from the unit interval

would be a probability distribution.

It can only be concluded that any given fuzzy set � could de�ne either a prob-

ability distribution or a possibility distribution, or even both, depending on the

properties of �. But in no way does it follow that possibility theory is particular to

fuzzy sets. On the contrary, it must be recognized that both probability distributions

and possibility distributions are special cases of fuzzy sets.

The following, critical result from de F�eriet [131], and translated into our nota-

tion, is useful here.
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Theorem 2.158 (de F�eriet) Assume a fuzzy set eF e� 
. Let 
+ :=U( eF ) = f!ig
be countable, and let h
+;�; �i be a fuzzy measure to [0; 1] on 
+ such that

8!i 2 
+; �(!i) = q�(!i) = �(f!ig):

Then X
i

�(!i) � 1$ � = Pl; (2:159)

X
i

�(!i) � 1$ � = Bel;

for some plausibility Pl and belief Bel.

Proof: The conditional  of (2.159) has been proved with Corollary (2.70). See

[131] for the rest.

Corollary 2.160 Given the conditions of de F�eriet's theorem (2.158), thenX
i

�(!i) = 1$ � = Pr :

Proof: This has already been proved by probabilistic speci�city (2.124).

So obviously the relation between fuzzy sets and the distributions of fuzzy mea-

sures in general, let alone possibility measures, is not as simple as Zadeh's de�nition

(2.154) would have us believe.

As an example of the kind of equivocation resulting from interpreting a fuzzy

set necessarily as a possibility distribution, consider a fuzzy set represented as the

string of numbers
~eF = hfii = h:2; :7; :8; :5i. Clearly W fi 6= 1 6=P

fi. Can
~eF be seen

as a possibility distribution? If so, then it is subnormal. But we can ask just as

easily if
~eF is not a probability distribution? If so, then it is supernormal.

~eF is, of

course, properly a fuzzy set. But there is no a priori justi�cation to interpret it as

either an abnormal possibility distribution or an abnormal probability distribution.

2.9.3 Possibilistic Normalization

It is true that maximization is a simpler operation than addition. But this does

not entail that normalization in possibility theory can be overlooked any more than

stochastic normalization can be in probability theory: a subnormal possibility dis-

tribution is no more a \real" possibility distribution than a sub- (or super-) normal

probability distribution is a \real" probability distribution. Normalization is an es-

sential feature for any general distribution of a random set, as outlined in Sec. 2.5.2.

In fact, this discussion draws into question an aspect of the axiomatization of

possibility from Sec. 2.2.1. The condition �(0) = 0 from the de�nition of the general
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eF e� 
 �eF : 
 7! [0; 1]em e� 2
 m: 2
 7! [0; 1]
P

A�
m(A) = 1e� e� 2
 �: 2
 7! [0; 1] A � B ! �(A) � �(B)eq� e� 2
 q� : 
 7! [0; 1]
L

!i2

q�(!i) = 1ep e� 2
 p: 
 7! [0; 1]

P
!i2


p(!i) = 1e� e� 2
 �: 
 7! [0; 1]
W
!i2


�(!i) = 1

Table 2.4: Fuzzy sets encountered in git.

possibility measure (2.8) (for random sets, �(;) = 0) is an axiom. And although it

is true from the boundary conditions on evidence measures (2.60) that �(
) = 1

necessarily holds for evidence measures on random sets, in general the condition

�(1) = 1 from general possibilistic normalization (2.11) (�(
) = 1 from standard

possibilistic normalization (2.22)) is only a de�ned property which may or may not

hold for a given measure �. Thus the possibilistic normalization conditions of (2.91)

are dependent on a normal possibility measure.

But the corresponding condition from probabilistic normalization (2.83) is an

axiom, an essential condition. Why should it be any less so for possibility?

2.9.4 Fuzzy Sets and Distributions in git

Clearly a possibility distribution is a fuzzy set. But, in departure from Zadeh's view,

possibility distributions are not the only fuzzy sets in the context of git. Consider

the summary in Tab. 2.4 of the various fuzzy sets which have been proposed (from

(2.33), (2.34), (2.53), and (2.72)), assuming that � is a fuzzy measure to [0; 1].

The conclusion is obvious and immediate: there are many fuzzy sets induced by

the mathematical relationships in git, and each one has an associated condition

(additivity, monotonicity, or normalization). In particular, all general distributions,

including all probability and possibility distributions, are in fact fuzzy sets; all such

distributions are points in the fuzzy power set [0; 1]
. Probabilistic (
P
� = 1) and

possibilistic (
W
� = 1) fuzzy sets are known to have special properties which make

them distributions, and by which they can be mapped to fuzzy measures Pr and �

on 2
.

But any fuzzy set � could be a fuzzy measure � to [0; 1], an evidence function

m, or a distribution q if the appropriate conditions hold ; in the case of distributions,

if there is some fuzzy measure � with an appropriate operator �.
In fact, the situation is even worse for possibility distributions than for the other
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structures mentioned above. An obvious extension to de F�eriet's theorem (2.158)

would be _
i

�(!i) = 1$ � = �;

but this is false.

Corollary 2.161 Given the assumptions of de F�eriet's theorem (2.158), then_
i

�(!i) = 1 6! � = �:

Proof: Clearly follows from the su�ciency of consistency for maximum normaliza-

tion (2.127), assuming Pl is a plausibility on a consistent, non-consonant random

set.

So this leads to another critique of Zadeh's de�nitions of possibility. There are

many consistent random sets all of which have plausibility assignments equal to a

given normal fuzzy set. It is only when the explicit, unjusti�ed, and stronger (from

the su�ciency of consonance for consistency (2.126)) assumption of the consonance,

not the consistency, of the random set is included that a possibility measure is

recoverable from a normal fuzzy set.

Thus (2.155) and (2.156) are insu�cient, since they do not allow for the possi-

bility of a consistent, but non-consonant, random set which generates a maximum

normalized plausibility assignment equal to the fuzzy set. Instead, they allow only

the recovery of the constructed possibility measure ��, which from Dubois and

Prade's result (2.133) is only an optimal approximation to a whole class of consis-

tent random sets.

So the relation Zadeh postulated between � and � does not entail that possibility

has a privileged position with respect to fuzzy sets. In particular, a membership

function can meet the requirements for many other objects in git, perhaps even a

probability distribution.

The understanding of this deeper relation between probability and fuzziness was

noticed by Kosko [164], and used by him to argue that fuzziness was not divorced

from probability. In his graphical representation, probability distributions occupy

points along the negative diagonal (n � 1){dimensional hyper-tetrahedron of the

fuzzy power set. Similarly, possibility distributions occupy all hyper-faces of the

hypercube which do not include the origin, as shown in Fig. 2.8 for 
 = fx; yg
(Dubois and Prade have made a similar observation [69]). The crisp possibility

distributions occupy the vertices h1; 0i and h0; 1i.
To summarize our position, both possibility and probability measures determine

unique, appropriately normalized fuzzy sets from their respective distributions. But
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Figure 2.8: Probability and possibility distributions in the fuzzy power set.

Fuzzy Set = Distribution Random Set = Fuzzy Measure

Probability Additive normalized Measure from evidence on singletons

On diagonal hyper-tetrahedron

Possibility Maximum normalized Measure from evidence on nest

On upper hyperfaces

Table 2.5: The relations among fuzzy sets, fuzzy measures, and their distributions.

in order to derive possibility or probability measures from a fuzzy set, further condi-

tions need apply. In the case of probability, only additive normalization is required,

while in the case of possibility, maximum normalization and the consonance as-

sumption is required.

Thus the overall e�ect is that both probability and possibility can be derived as

special cases from the perspectives of either fuzzy sets or fuzzy measures, as summa-

rized in Table 2.5. There is no necessary coupling between fuzzy sets and possibility

(or probability) theory. From the perspective of possibility theory, a probability dis-

tribution is just another subnormal distribution. From the perspective of probability

theory, a possibility distribution is just another supernormal distribution.

2.9.5 Fuzzy-Possibility Linkage

The view expressed here appears to be antagonistic to those of both the probabilistic

and fuzzy communities. On the one hand, some probability theorists have exercised

themselves a great deal to dismiss fuzzy theory outright [33]. While it would cer-

tainly be a retreat on their part to even admit that fuzziness was necessary, albeit

only another method in the broader git, it would be an outright defeat for them to

admit that probability itself can be considered as a case of fuzziness.

On the other hand, while git practitioners are happy to live in the mixed world

of fuzziness and probability, many git theoreticians try to distance themselves from

\old-fashioned" probability theory and classical information theory. Along with
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Zadeh, they claim that possibility theory is the kind information theory which is

\appropriate" to deal with fuzziness.

There are a number of reasons why possibility and fuzzy sets have been linked

in git, and conversely why probability and fuzzy sets have been divorced.

2.9.5.1 Historical Linkage

First and most obviously, probability theory has been in existence for many cen-

turies, whereas both fuzzy sets and possibility theory appeared at the point of the

development of git. Both fuzzy sets and possibility theory are departures from the

classical information theory, and thus there is a desire to both group them together,

and also distinguish them both from probability. Indeed, much confusion has result-

ing from the misinterpretation of membership grades as probability values, and a

great deal of e�ort is taken by git researchers to distinguish them. It is interesting

that a corresponding confusion of membership grades with possibility values has not

troubled these researchers.

2.9.5.2 Weakness of Possibilistic Normalization

Possibilistic normalization is weaker than probabilistic normalization. The measure

of the number of possibility distributions on the unit hypercube of dimension n is n,

while the measure of the number of probability distributions is the measure of the

hyper-tetrahedron with side length
p
2 and dimension n� 1 which is less than n for

n � 2 (for n = 1 then h1i is both the only possibility distribution and probability

distribution).

In the possibilistic normalization methods considered in Sec. 2.8, either the possi-

bility of an element is changed to 1, leaving the others unchanged, or a unitary value

is appended. Either of those methods will work for any possibilistically subnormal

fuzzy set. Geometrically, dimensional extension projects a subnormal fuzzy set to

unity in a direction orthogonal to all existing dimensions, while focused consistent

transformations projects it to unity on one of the existing dimensions.

An example is in Fig. 2.9 for the subnormal plausibility assignment ~Pl = h:6; :8i
regarded as a fuzzy set in [0; 1]fx;yg. There are two focused consistent transforma-

tions ~�x = h1; :8i and ~�y = h:6; 1i. The dimensional extension is ~�n+1 = h:6; :8; 1i
for z = !3.

Possibilistic normalization is so weak that it can be easily accommodated or

overlooked. But it can no more be ignored as a requirement in possibility theory

than stochastic normalization can in probability theory. And while it is true that

there are far more possibility distributions in the fuzzy power set than probability
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Figure 2.9: Dimensional extension and focused consistent transformation normal-

ization.

distributions, nevertheless it is also true that there are far more fuzzy sets which

are neither possibility nor probability distributions, and which �ll the n-cube.

2.9.5.3 Fuzzy Set Normalization

The criteria for a fuzzy set eF to be \normal" (2.41), is both necessary and su�cient

for �eF to be normal. This seems on the surface to be an historical accident in the

usage of the term \normal" in each of these mathematical contexts. But the ease

of maximal normalization is reinforced by the common treatment of fuzzy sets on a

continuous 
, for example the ubiquitous \fuzzy numbers" of (2.44) and (2.45) [62].

Then the height of the fuzzy set
W
� 2 �( eF ), is the most obvious feature of the

curve, and the height being maximal is equivalent to possibilistic normalization.

In the same situation stochastic normalization results in regarding �eF as a prob-

ability density, so that for stochastic normalization
R

 �eF (!) d! = 1 would have to

be satis�ed. A unitary area is not an obvious, visual feature of a curve.

2.9.5.4 Alpha Cuts and Focal Elements

It is suggestive that the alpha cuts eF� of a fuzzy set eF form a nest

�1 > �2 ! eF�1 � eF�2 :
Indeed, if eF is normal then the eF� are just the Aj = f!1; !2; : : : ; !jg constructed
according to the possibilistic formulae (2.95), and �i = �i = �eF (!i). This result

has been used to justify a special equivalence between a fuzzy set and a consonant

random set, and thus the corresponding distribution. But there are a number of

problems with this view.

First, our rejection of Zadeh's de�nition of possibility leads to a reasoning process

which is the opposite of what is suggested above. Because of the non-determinancy

of possibility measures from maximum normalized fuzzy sets, it is not justi�ed to
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simply assume a nest of alpha cuts and derive equivalent focal elements. Rather,

given a normal fuzzy set eF , and then the assertion that the alpha cuts are the

focal elements of a random set, then it is the possibility distribution derived from

that random set which is equivalent to eF . From the de�nition of alpha cuts (2.37),

the ordering used in the expression f!i : �eF (!i) � �g induces the ordering of the

�i := �(!i),

�1 � �2 � � � � � �n;

which is so critical to possibility theory as discussed in Sec. 2.5.3.2 and Sec. 2.8.1.2.

Furthermore, the alpha cuts of a subnormal fuzzy set also form a nest, but this

does not mean that a consonant random set can be constructed from it.

Corollary 2.162 Let eF be subnormal with

1 > �1 � �2 � � � � � �n � �n+1 = 0; Aj = f!1; !2; : : : ; !jg

and from the possibilistic formulae (2.95), let m(Aj) = �j � �j+1 under relabeling.

Then fhAj ; m(Aj)ig is not a random set.

Proof: X
i

mi =
X
i

�i � �i+1 = �1 < 1;

which violates the de�nition of random set (2.62).

So the mere fact that the alpha cuts of a fuzzy set (even of a probability distri-

bution) form a nest in no way lessens the normalization requirement for possibility.

Finally, while the alpha cuts of a fuzzy set can be mapped to the focal elements

of a consonant random set under the conditions speci�ed above, the focal elements

of a speci�c random set can also be easily constructed from a fuzzy set. Indeed,

because of the isomorphism between probability distributions and speci�c random

sets from (2.125), the derivation is trivial, consisting of the singleton sets 8!i 2
U( eF ); Ai = f!ig. In this case, unlike in the possibilistic case, no further assumptions

are required: the singleton sets compose the focal elements of a speci�c random set

whose probability distribution is the original fuzzy set. But as with the possibilistic

case, stochastic normalization must still hold.

Corollary 2.163 Let eF be such that under relabeling
P

j �j 6= 1, and let Aj =

f!jg; m(Aj) = �j , as in Corollary (2.125). Then fhAj ; m(Aj)ig is not a random set.

Proof: X
j

m(Aj) =
X
j

�j 6= 1;
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which violates the de�nition of random set (2.62).

Again, neither probability nor possibility is wedded to fuzzy set theory: each is a

case of it. A probability distribution yields a consonant class based on the ordering

of the pi just as well as a possibility distribution, almost always resulting in a

subnormal possibility measure. Similarly, a possibility distribution can be taken as

weights on singletons as easily as a probability distribution, almost always resulting

in a supernormal probability distribution.

2.9.5.5 The Possibilistic Operator and Fuzzy Unions

Clearly the most obvious reason to conate fuzzy theory with possibility theory is

the use of the _ operator as both the possibilistic operator (2.73) and the canonical

union operator (2.35) in fuzzy set theory:

�eF[eG = �eF _ �eG:
However, for a variety of reasons this similarity is deceptive.

In general, the fuzzy union operator (2.35) can be any conorm t, not just _. It
is true that _ is canonical, and in some ways more justi�ed than other conorms, but

formally any will su�ce, and in practice others are used.

This contrasts with both possibility theory and fuzzy measure theory. _ is the

unique possibilistic operator; indeed, it de�nes the very domain of applicability of

possibility theory, as seen in Sec. 2.2.

And while _ is indeed a conorm, in the general theory of distributions of fuzzy

measure, the operator � need not be a conorm. Indeed, the other fundamental

special case has � = +, and + is not a conorm.

Thus again the confusion between fuzzy and possibilistic operation is under-

standable, but regrettable. The point is that _ is a very weak and exible operator.

It can serve in many algebraic capacities, as both a distribution operator and a

conorm. But this mere fact alone is not prima facia evidence to support the identi-

�cation of possibility theory with fuzzy theory.

2.9.5.6 Possibilistic Operations on Fuzzy Sets

It is instructive to note that many applications of fuzzy sets stress the importance

of maximum normalization, of fuzzy sets having a nonempty core. For example,

\fuzzy arithmetic" [139,312] is built from fuzzy numbers (2.45), which are normal.

To the extent that normalization is required, then indeed these fuzzy numbers yield

to a possibilistic interpretation. But then since the essence of possibility theory is
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the requirement of maximum normalization, by parsimony it is more appropriate

to regard such \fuzzy mathematics" as a branch of possibility theory proper, rather

than as an application of fuzzy theory.

2.10 Probability and Possibility

In establishing a git, it is important to understand the parts that compose it,

their relations to each other, and their historical development. In particular, we are

interested in the status of possibility theory as a part of git, and in comparison

with probability theory both as a part of git and as the essential core of classical

information theory.

The questions that arise include: Are possibility and probability values neces-

sarily related? Is possibility more general than probability? Do they express a form

of duality, symmetry, opposition, or independence? Many of the factors which a�ect

these questions are decidedly semantic in nature. Thus they are not inherent in the

formalism, and will be considered more fully in Chap. 3. Some of the formal aspects

of this problem will be considered here, with the conclusion that while probability

and possibility are complementary and symmetric, nevertheless possibility expresses

a weaker form of uncertainty than probability.

2.10.1 Probabilistic and Possibilistic Independence

One view is provided by Klir, and strongly supported by the development of Sec. 2.5.

[Probability and possibility theory] are not comparable. Neither of them

is more general than the other. In fact, either theory represents a partic-

ular set of bodies of evidence for each given 
, and these two sets do not

overlap except for the special body of evidence that describe a situation

with full certainty (full information): m(f!g) = 1 for some particular

! 2 
. [153, p. 16]

Klir's �nal observation is reected directly by the graphical representation of

general distributions in Fig. 2.8. The probability and possibility distributions can

be seen as \orthogonal", overlapping only at the atoms of the lattice. These distribu-

tions correspond to all the certain distributions ~1i, on which the two normalization

conditions coincide, so that
P
qi =

W
qi = 1, as shown in Sec. 2.5.3.3.

A further representation of this property can be seen in Fig. 2.4 and Fig. 2.5. In

a stochastic random set the focal elements occupy the lowest row of the power set,

the atoms of the boolean lattice. In a possibilistic random set the focal elements
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occupy one of the n! possible chains from the lattice 1 to lattice 0. All of these

chains can be seen as \orthogonal" to the atoms.

Thus on a purely formal view, probability and possibility are virtually indepen-

dent. They refer to distinct kinds of uncertainty, each with its own internal logic

and rules of operation. Within git they form a complementary pair. This view is

strongly supported by the development of Sec. 2.5.3 especially, where possibilistic

and stochastic properties are developed in parallel, with almost completely symmet-

rical results.

2.10.2 Possibilistic Weakness

But on consideration of other factors, it can be seen that while probability and

possibility are formally complementary, nevertheless possibility expresses a less con-

straining form of uncertainty than probability (see also a discussion of this issue by

Dubois and Prade [75]). Thus while possibility is not more general than probability,

it is weaker. This weakness can actually be of great value, because it allows rea-

soning about uncertainty without the excess constraints which probability theory

brings.

This weakness in comparison with probability is manifested in a number of ways:

Strictness of Probability: Probability is a very special case of an evidence mea-

sure. In general, in evidence theory the focal elements, the only subsets on

which positive evidence is presented, are generic subsets of 
 with varying car-

dinalities. Under these conditions the evidence measures establish the interval

[Bel;Pl] with Bel � Pl. But also Bel and Pl are dual under (2.58).

Under the strictest conditions, the cardinalities of the focal elements collapse

to unity, and this interval [Bel;Pl] collapses to a point, so that Bel = Pl,

and Pr = Bel = Pl, and the duality is lost. Thus probability is the strictest

form of evidence measure, and every proper belief and plausibility is a weaker

fuzzy measure than a probability. Since possibility is a proper plausibility,

possibility also is weaker than probability.

Lastly, under a \meta-probabilistic" interpretation of a random set as a true

probability distribution on subsets of a universe,4 the occurrence of a proba-

bility distribution as the distribution of the random set appears as the special

case where there is a collapse between the two levels of the evidence function

as a distribution on sets and the measure distribution as a distribution on

singletons.

4This idea has actually been little explored, perhaps only by Fung and Chong [90].
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Ease of Normalization: Another reection of the weakness of possibility is the

ease with which a fuzzy set can be possibilistically normalized, as described

in Sec. 2.9.5.2. Given a generic fuzzy set eF , an !i 2 
 is selected, and �i is

raised to 1; or simply a 1 is appended.

This is contrasted with the di�culty of stochastic normalization by such min-

imal modi�cations of eF . In general, for n � 2, if
P
�i > 2, then a minimum of

dP�ie � 1 values will require modi�cation. Of course, unlike possibility, this

method of stochastic normalization is not well justi�ed. But stochastic nor-

malization methods that are more appropriate for probability distributions are

far more complex, and in general require modi�cation of all �i, completely dis-

torting the information in eF . Thus stochastic normalization is much harder to

satisfy, making the ease of possibilistic normalization all the easier to dispense

with by comparison.

Number of Focal Sets: For a �xed universe of discourse, there are vastly more

consonant (let alone consistent) than speci�c random sets. Given j
j = n, then

there is exactly one complete speci�c focal set F = ff!1g; f!2g; : : : ; f!ngg.
However, as noted in Sec. 2.10.1, there are n! complete nests.

Possibility as Maximally Weak: (2.28) establishes upper and lower bounds on

the fuzzy measure of the intersection and union of two subsets of the universe.

This bound is achieved only in the cases of necessity and possibility respec-

tively, and therefore possibility (and necessity in the dual) are the weakest

possible fuzzy measures.



Chapter 3

Semantics of Possibility Theory

The existence of an invariant over a set of

phenomena implies a constraint, for its

existence implies that the full range of variety

does not occur. As every law of nature implies

the existence of an invariant, it follows that

every law of nature is a constraint.

| W. Ross Ashby

The mathematical systems we construct are enticing in their elegance and beauty.

It is easy for mathematicians to revel in their complexities, and lose sight of their

dependencies and limits. It is easy to commit referrential fallacies, confusing the

meaning for the token, the territory for the map. It is easy to focus completely on

our symbol strings, and lose sight of the underlying processes of measurement and

interpretation. This is something we must avoid by clearly developing a well-justi�ed

semantics for possibility theory.

The history of modern science can be seen as a ongoing, interrelated develop-

ment of mathematical formalism and scienti�c theory. Advances in mathematical

systems are matched by their applications in science, in turn furthering mathemat-

ical development. This reciprocal relationship can be seen as a relation between

a mathematical syntax, or the formal properties of mathematical systems; and a

scienti�c semantics, or the interpretations and meanings of those formalisms. To-

gether, syntax, semantics, and pragmatics (the study of the use of formal systems)

compose the �eld of semiotics [15, 78, 79,188, 259], which can be described as the

general science of symbol systems.

This dissertation can be seen as a work in the semiotics of possibility theory.

Chap. 2 concerned the mathematical syntax of possibility theory, and the pragmatics

of possibility will be considered in Chaps. 6 and 7.

The semantics of possibility theory will occupy Chaps. 3 through 5. First, in
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this chapter some of the requirements for a coherent, objective semantics for possi-

bility theory that can be used to ground applications of possibility theory to natural

science will be outlined. We will begin by considering the general nature of seman-

tic relations in semiotic systems, in particular the importance of measurement

procedures in the application of formal systems. After some discussion of the logi-

cal and probabilistic criteria for possibilistic semantics, the variety of concepts and

representations which inhere in possibility theory will be examined. Finally we will

critique traditional semantics of possibility, including subjective estimation, con-

verted frequency methods, possibility as statistical likelihood, and objective

measurement methods for fuzzy sets.

3.1 Possibility Theory in the Semiotics of Modeling

Relations

Our basis for the semantics and interpretation of possibility theory will rest on ideas

from semiotics about sign-functions and codings, and the isomorphic ideas from

Systems Science about models. These concepts will be central to the development

of an objective possibilistic semantics in this chapter, to possibilistic measurement

methods in Chap. 4, and to possibilistic models in Chap. 5.

3.1.1 Symbol and Meaning

One of the key points from semiotics concerns the general nature of the relation

between a symbol and its meaning. First, following the early semioticians de

Sassure [254] and Peirce [206], a symbol is understood as a relation between a

signi�er, which is the physical marker or token; and a signi�ed, or referent,

which is a general phenomena, otherwise called themeaning of the token. Together,

the signi�er and the signi�ed formwhat de Sassure calls a sign-function. In another

sense it can be said that the token represents the signi�ed in virtue of the coding

of the sign-function.

This formulation is deceptively simple. In fact, in the de�nition of the sign

function one of the primary manifestations of the mind-body problem can be seen,

where a material token is related to a possibly immaterial \meaning". The prob-

lem of reference, which has occupied philosophers of language for centuries (but

not us here speci�cally), results: what is the nature of the sign-function, of the

coding relation, of reference and representation? How is it established, manifested,

maintained? What does \meaning" itself mean?
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3.1.2 The Semantics of Modeling Relations

Very similar ideas arise in cybernetics and systems science in the general theory of

models. The basics of modeling theory are well established.

De�nition 3.1 (General Model) [149,241,290] Assume setsW = fwg andM =

fmg; an object system S1 = hr;W i ; r:W 7! W ; a modeling system S2 =

hf;Mi ; f :M 7! M ; and a coding function o:W 7! M . Then O := hS1; S2; oi is a

model if r; f , and o form a homomorphism, so that 8w 2 W; o(r(w)) = f(o(w)).

A general model is shown in Fig. 3.1, where the diagram must commute.

W

W
?

r

S1
M

M
?

f

S2-

-

o

o

O

Figure 3.1: A general modeling relation.

We can say that within the model O the modeling system S2 models the object

system S1. Semiotically, o is a sign-function between the w 2 W and the m 2 M ,

so that given m = o(w), then m represents the referent w in virtue of the coding

o. Thus the coding o serves a semantic function within the model, encoding the

meaning of the w in terms of the m, while the functions r and f serve syntactic

functions, transferring the w and the m through some dynamical processes into the

future.

3.1.2.1 Formal Semantics

The nature of M and W have yet to be speci�ed. In the history of semantics, it is

common for both S1 and S2 to be formal systems, so that both the m and w are

tokens. This results in models which e�ectively translate expressions between these

formal systems. Many examples are possible, including the rewrite rules of formal

languages and the theory of \denotational semantics". Under these conditions, the

symbols m are translations of the w, and e�ectively serve as meta-symbols.

This is unsatisfactory here because the e�ect is simply to create yet another

formal system: the formalism S2 is simply subsumed into another model at a higher
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level. None of the essential features of the use of mathematics for scienti�c modeling,

where the referents are real systems, is captured.

It should be noted that exactly such a formal approach is what is developed in

the so-called theory of measurement [167]. This is concerned with models where the

modeled system S1 is a general formal system, and within the modeling system S2,

M is a set of subsets of IRn. The theory is then concerned with the formal properties

of the various possible homomorphisms between S1 and S2. Yager [311] has applied

this formal measurement theory to possibility theory.

3.1.2.2 Symbol Grounding in Natural Semantics

Natural science is concerned with the case where S1 = hW; ri is a system of causal,

ontological entailments, an aspect of the natural world. In this context the semantic

coding function of o is understood as the processes of measurement [25, 200,202].

In a measurement procedure some aspect of the natural world enters into in-

teraction with a measuring device, perhaps as simple as a counting mechanism,

or as complex as an elaborate scienti�c instrument, resulting in a symbol m of the

formalism. Then natural law can be described as the establishment of a modeling

relation between the causal system S1 and the inferential system S2 which brings

them into congruence through the coding o.

Here Fig. 3.1 takes the form of Fig. 3.2. Both S1 (the world) and S2 (the model)

are now parameterized in time, where t and t0 indicate prior and subsequent time.

The measurement ot = o(wt) at time t is used to instantiate the model. Then the

output of the modelmt0 = f(mt) = f(ot) is corroborated against the measurement

ot0 = o(wt0). If these are equal, then it is a good model.

\Reality" r

Initial Conditions

f Prediction

Corroboration

ot = o(wt)

ot0 = o(wt0)

�

�

�

�
wt0 = r(wt)

�

�

�

�
wt mt = ot

ot0 = f(mt)?

- -

- -

Measurement

Measurement

??

Figure 3.2: Models in natural science.
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So in natural science the problem of reference becomes the problem of establish-

ing a good measurement function o from the natural system S1 to the formalism S2.

In the research programs of arti�cial intelligence and arti�cial life, the problem of

reference has been described as the \symbol grounding problem" [117, 199]. These

disciplines look to the ways in which encoding and decoding occurs in real systems.

It has been suggested, by Rosen [242] among others, that all living systems fall into

this class, being biosemiotic systems which through their metabolic and reproduc-

tive processes are constantly involved with interpretation. More particularly, the

scienti�c process itself can be seen as such a modeling relation, where S2 is simply

the body of scienti�c theory, and S1 the world in general.

3.1.3 Freedom and Constraint in Semiotic Systems

One of the crucial, and seemingly paradoxical, aspects of sign-functions, and thus

of models, is the relation between token and meaning seen in terms of freedom and

constraint. On the one hand, this relation is arbitrary. Meanings of expressions are

not, and cannot be, inherent in the formalism. Rather they are constrained by the

formalism to take on only those meanings which are consistent with the formalism.

In the most general semiotic systems, when S2 has no extra structure, then we

arrive at the hallmark property of symbols: that interpreting agents are completely

free to take any token to have any meaning. But on the other hand, once a given

symbol is used in a model, its meaning must remain �xed. Thus within one system

of representation there is the mixed, necessary presence of both ultimate freedom

and ultimate constraint.

This can be seen in the modeling formalism in Fig. 3.1. While the entailments

r and f within S1 and S2 are given and �xed, the coding relation o between W

and M itself is not entailed by them. Multiple codings are possible, whether O is

a good model or not. From the perspective of either S1 or S2, the other system is

completely free. If in fact the coding o composes a good model, so that O commutes,

then the system O as a whole becomes �xed, but the parts of O are still free with

respect to each other.

This bears out the semantic nature of o: there is no necessary relation between

the entailments within W and M and that of the coding. Thus semantic codings,

in particular measurement procedures in scienti�c models, are a central concern for

any formal method, and will be in particular for a well-grounded possibility theory.
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3.1.4 Meta-State Representations of Uncertainty

Our purpose here is to substitute possibility theory for S2. So the formalism S2 is

deterministic, but we want it to represent nondeterminism and uncertainty. Are our

e�orts doomed?

This question comes up routinely, particularly in introductory discussions of

fuzzy theory. What, people ask, could this apparently oxymoronic term \fuzzy

logic" possibly mean? Are the rules of fuzzy logic fuzzy? What value is there in

fuzzy rules? (It is instructive to note that people do not (at least any more) ask the

same about probability: are the rules of probability random?)

Of course, all representations of uncertainty are themselves certain. Instead,

a theory of uncertainty stands as a \formalism translation" model as discussed in

Sec. 3.1.2.1. They all encode uncertainty in terms of meta-states (for example,

probability distributions, possibility distributions, or fuzzy sets), and then propose

deterministic rules that act on them at this meta-level. They do not \capture"

actual uncertainty, but rather succeed in \pushing certainty back one level". Just

as the laws of probability are not random, so the laws of fuzziness are not vague,

and the laws of possibility are not imprecise.

This has been remarked on quite well by Goodman and Nguyen.

: : : in order to prevent a possibly in�nite regress of nested multi-truth

evaluations, the meta-level of description must be classical. Perhaps

someday (the authors are unaware of any work in this direction), serious

textbooks will be published which might typically include: \Pr(TheoremA) =

0:3", or \Pr(Pr(TheoremA) > x) = q(x), for most x 2 B", with all

\proofs" developed through multi-valued or multi-multi-valued logic.

However, until that time arrives, we must be content with this apparent

paradoxical situation. [104, p. xvii]

In the modeling language, the system S2 is not a simple function, but is itself a

model of uncertainty in terms of these meta-states. Thus in all models of uncertainty,

including possibility theory, O is not a simple model, but rather a meta-model.

This type of state-space recursion is quite common, for example in the treatment

of nondeterministic automata in machine theory, or the probabilistic representation

of states in quantum theory. Both automata theory and quantum physics are quite

deterministic at this higher level.
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3.1.5 Models with Uncertainty

Finally we arrive at the presentation of models with uncertainty, and possibilistic

models in particular. Figs. 3.3 and 3.4 show stochastic and possibilistic models

respectively.

\Reality" r

Initial Conditions

f Prediction

Corroboration

~p t = o(wt)

~p t0 = o(wt0)

�

�

�

�
wt0 = r(wt)

�

�

�

�
wt mt = ~p t

~p t0 = f(~p t)?

- -

- -

? ?

Figure 3.3: A stochastic model.
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�

�
wt0 = r(wt)

�

�

�

�
wt mt = ~�t

~�t0 = f(~�t)?

- -

- -

? ?

Figure 3.4: A possibilistic model.

Here M = f~p g, a set of probability distributions, or M = f~�g, a set of possi-

bility distributions, respectively. Thus each meta-state of the model represents the

probability or possibility of the world existing in each of the states w 2 W .

The measurement procedures of initialization and corroboration, as well as pre-

diction methods, must also be modi�ed to the cases with uncertainty. Stochastic

measurement has been well established for many decades. Standard methods in-

clude curve-�tting to frequency histograms, maximum likelihood estimation, etc.

Stochastic prediciton methods are also well known, including Markov processes and

Bayesian networks.

The corresponding concepts in possibility theory are signi�cantly underdevel-

oped. For measurement, in the vast majority of approaches in the literature, o

is simply a person who provides a subjective judgment. The general character of

this problem will occupy much of this chapter, and the technical details for possi-
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bilistic measurement will be presented in Chap. 4. Possibilistic prediction methods

are equally scarce in the literature. Possibilistic processes, including possibilistic

Markov processes, will be de�ned in Chap. 5.

3.2 Criteria for a Possibilistic Semantics

As discussed in Sec. 3.1.3, potential interpretations of a formal theory are not deter-

mined, but are only constrained, by the speci�cs of the formalization. Within those

constraints, however, we are free to construct whatever interpretations we choose

which are consistent with the mathematics. In deriving a semantics of possibility,

we must be cognizant of the history and alternative development of these concepts,

and adhere to them wherever possible.

The concept of possibility and the closely related concepts of necessity, impos-

sibility, and contingency have a long history in philosophy. There is discussion

from Aristotle on about the meaning of possibility and the kinds and varieties of

possibility and impossibility.

In this section we will consider criteria which restrict the semantics of possibil-

ity, including general logical criteria, crisp modal logics, and the relation between

possibilistic and probabilistic mathematics.

3.2.1 Graduated Possibility

The fundamental question for the semantics of possibility has classically been \What

could it mean to be possible?" In exploring the semantics ofmathematical possibility

theory, as outlined in Chap. 2, the question becomes \What could it mean to be

somewhat possible?". This is the central issue for mathematical possibility theory,

and for which it is unique: the interpretation not of \crisp" possibility, but possibility

which admits to degrees, speci�cally the representation of graduated possibility in

terms of possibility distributions.

The philosophy of possibility is almost exclusively dedicated to crisp possibility.

Very few have considered the speci�c question of graduated possibility. Giles o�ers

a brief musing.

To assert `A is impossible' is at least as strong as, and perhaps for all

practical purposes equivalent to, asserting `:A'. The assertion `A is pos-

sible' is more ambiguous: does the speaker mean `A is just possible' or

`A is entirely possible' or something in between? The �rst statement

implies that A is unlikely; the second seems to entail no commitment

at all | whether A is, or is not, found to hold the speaker cannot be
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contradicted. This ambiguity suggests that we should : : : admit `de-

grees of possibility', say ranging from zero (impossible) to one (entirely

possible). [98]

But the �rst, and still most extensive, serious consideration of the meaning of

degrees of possibility was by Shackle [260]. He equates a degree of possibility with

a degree of \surprise."

This state or act of mind [that rejects that a given thing will happen],

expressed in other words, is a judgment that the thing in question is im-

possible. The occurrence of something hitherto judged impossible would

cause a man a degree of surprise which is the greatest he is capable of

feeling. If this be so, we have, corresponding to perfect possibility, a zero

degree of surprise; corresponding to impossibility, an absolute maximum

degree of surprise. Can there be degrees of possibility? : : : There are

degrees of surprise. If surprise corresponds to possibility, then we can

say that there are degrees of possibility. The greatest surprise is caused

by the occurrence of the impossible. If a lesser degree of surprise occurs,

it must surely be because the occurrence was judged not quite impossi-

ble : : : A very slight surprise indicates something which the individual

had little di�culty in imagining to come true. Surprise provides us with

a means of knowing how strongly we doubted the possibility of a given

happening or a given outcome of some act of our own. [260, p. 68, italics

original]

Shackle then quali�es his position by de�ning possibility as potential surprise, since

uncertainty statements, such as probability statements, must concern some expec-

tation of future events.

If we identify the \degree of potential surprise" with 1��, Shackle develops an

axiomatic system which is essentially equivalent to that of mathematical possibility

theory, including the dual nature of belief in the context of possibility (2.10), the

independence of the possibility values of a statement and its complement (2.18), the

maximum operator (2.24), and joint and conditional possibility (see Chap. 5).

Shackle also laid out many of the semantic consequences of mathematical pos-

sibility theory. For example (all of these will be discussed later in this chapter), he

emphasizes the superior representation of complete ignorance, the independence of

possibility from the cardinality of the universe, and the corresponding dependence

of probability on the establishment of a �xed frame.

Possibility, and particularly the concept of \equi-possibility", has been used his-

torically in the philosophy of probability beginning with Leibniz and Laplace. They
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were not concerned with developing a full theory of possibility per se, but rather

with �nding a mechanism to motivate the fundamental postulates of probability.

But, as argued by Hacking [112, Chapter 14] and Reichenbach [235], even this e�ort

is seriously awed.

3.2.2 Physical Possibility

Hacking [111, 112], in his modern survey of the philosophical issues surrounding

possibility, traces the fundamental distinction between de re and de dicto possi-

bility (literally the possibility \of things" and \of statements" respectively) back

to the Scholastics. This distinction reects the similar distinction at the heart of

probability theory, where objective, aleatory, ontological, \physical" probabilities

are determined from frequencies; and subjective, epistemic, \mental" probabilities

are determined from (typically Bayesian) estimation. In fact, various views of this

distinction have resulted in the various schools of philosophy of probability and a

vast literature (see [83] for an introduction).

This distinction is also a central concern for this work, since git is dominated by

subjective methods for determining e.g. fuzzy membership values, evidence values,

and possibilities (a subject which will occupy Sec. 3.4). Our interest is to help

construct the methodological and conceptual basis for de re, graduated possibility.

Hacking reects this distinction by contrasting the phrases \it is possible that

X happened" and \it is possible for X to happen".

The �rst possibility is relative to our state of knowledge and has long

been called epistemic. The second possibility says it is physically possible

for [X , nothing prevents it]. `Possible that' tends to be epistemic (unless

preceded by the adverb `logically'), while `possible for' goes with actual

abilities independent of our knowledge of them. [112, p. 123]

While graduated (as opposed to crisp) possibility has not been especially interesting

to philosophers, physical (as opposed to subjective) possibility has been. Clearly the

classical founders of probability, in their use of the concept of \equipossibility" to

ground probability theory, resorted (at least sometimes) to possibility in the physical

sense. In other words, it was argued that it was objectively observable which were

the (equally) possible cases in order to count frequencies or make estimations about

their probability.

A classical example from Laplace concerns a biased coin where Pr(H) = a 6=

Pr(T ) = b; a 6= 0 6= b, but it is not known whether a > b or b > a. So since

a > b! a2 > ab > b2; a < b! a2 < ab < b2;
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therefore no matter whether TT or HH is expected, neither TH or HT is expected.

Laplace says

One regards two events as equally probable when one can see no reason

that would make one more probable than the other, because, even though

there is an unequal possibility between them, we know not which way,

and this uncertainty makes us look on each as if it were as probable as

the other [112, quotation on p. 132].

Here Laplace is referring to graduated, de re possibility. It is graduated, since while

the possibilities are unequal, clearly they must also both be somewhat possibility,

and thus non-zero. And it is de re, since the unfairness of the coin is a property of

the coin itself, rather than our knowledge of the coin.

There is an additional uncertainty about the unfairness of the coin, whether

T or H should be favored. This may in fact be a de dicto uncertainty, but is an

uncertainty which is whether to favor TT or HH , and not in the fact that both TH

and HT should not be most favored.

But of course Laplace was not interested in pursuing a theory of possibility fur-

ther. The task of this work is to delineate what kind of meaning there is in possibility

values which are both physical, de re, and graduated, admitting to degrees.

3.2.3 Modal Possibility

In modern philosophy possibility has been formally represented in the modal logics

of the early 20th century [124, 169]. Modal logic is a relatively simple extension

to propositional logic. Modal operators on a proposition p are available, M(p) for

the statement \p is possible" and L(p) for \p is necessary". These are related by a

duality similar to that of mathematical possibility and necessity (2.10)

M(p) = :L(:p); L(p) = :M(:p): (3:2)

From there a variety of additional axioms are available, and a variety of classes of

modal logics follow.

Modal logic since Aristotle has been a crisp theory: propositions are explicitly

possible, necessary, impossible or contingent. \Quanti�ed" modal operators have

been introduced to extend predicate logic, allowing expressions such as 8x; L(p(x)).

But no multi-valued or graduated modal logic has been introduced to allow expres-

sions of the form L:5(p) or L(p) = :5, meaning \p is half-necessary".

There have been some attempts to unite modal and fuzzy measure possibility

[217,239, 244]. Dubois and Prade [70] suggest an obvious translation of the basic
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terms

L(p) := �(p) = 1; M(p) := �(p) = 1;

and a more interesting de�nition of necessary implication

L(p! q) := (�(p! q) = 1)! (p! q):

The prevailing semantic basis of modal logic is the \many-worlds" interpretation.

This can be summarized as saying that propositions can be evaluated in multiple

contexts (\worlds"), that necessity indicates truth in all contexts, and possibility

truth in at least one context. An obvious extension to quantify modal operators

would be to introduce a relative measure of the number of true worlds to false

worlds, but none of them take this approach.

Although this entire subject deserves further consideration, it can be said that

modal logic generally remains a highly mathematical form of philosophy, with lit-

tle or no application in science, and, in particular, no measuring or interpretation

procedures. It provides a robust mathematical theory of crisp possibility, but little

more.

3.2.4 Natural Language Possibility

Aside from the formalism of possibility theory, the criteria for possibilistic semantics

are also constrained by purely logical and methodological considerations. In partic-

ular, we are not free to ignore the results of the above modal possibilistic concepts,

and ordinary language \common sense".

For example, we look at a six-sided die and say that there are six possible

outcomes of a toss, so that 
 = f1; 2; 3; 4; 5; 6g. This is clearly a crisp sense of

possibility: the expression is not modi�ed or quanti�ed, the various options are just

possible, that is with possibility 1. We may then question whether the die is fair

or not, and consider the distribution of occurrences of the various faces. But this

is then embarking on a probabilistic analysis: there is never any question that each

face is completely possible, no matter how unevenly likely they may be.

Another factor in the common language usage of crisp possibility is the relation

of possibility to occurrence. One de�nition of \possibility" o�ered by Webster is

\being something that may or may not occur [301]". N�ather observes: \The popular

meaning of possibility [is]: events which take place at least one time are possible

(but not necessarily probable)" [193]. The conclusion is obvious: something that

actually happens must be (or have been) possible. This property will be crucial in

the following development: if an event A � 
 is observed to occur, then �(A) = 1.
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But just because an event has not occurred does not mean that it is not possible,

perhaps even completely possible. On the contrary, some event may be possible, but

simply has not occurred yet. The die may be hidden to us before it is rolled, and

each roll may produce a new face not previously seen. Just because a �ve has not

yet appeared does not mean that a �ve is not possible, only that it may or may not

be possible. But once all six faces have been observed at least once, then they must

be given unitary possibility. Therefore 0 < �(A) � 1 means that A is possible, that

is, not prohibited, but also not necessarily seen.

Finally, consider the use of the common English phrase that \X is not a prob-

ability, but it is a possibility," or \X is possible, but not probable." How can this

be interpreted? First, whereas we have begun with a non-problematic sense of crisp

possibility, and are trying to derive a graduated sense, when interpreting this phrase

we begin with a graduated sense of probability, and are searching for a crisp one:

what does it mean to be just \probable" or \improbable"? On �rst consideration,

it would seem to mean Pr > :5 or Pr < :5 respectively. Then the possibilistic clause

of the phrase could be interpreted as � = 1. But how is it justi�ed that crisp prob-

ability simply means \likely", so that Pr > :5? If Pr(A) = :49, is A not \probable"?

Or does Pr(A) have to reach :75, :90, or :99 before it could be called probable? Can

any crisp cuto� be justi�ed? If not, then why cannot \A is probable" simply mean

Pr(A) > 0? Or �nally, perhaps the phrase could simply mean that while A is a

possibility, so that �(A) = 1 or �(A)� 0, that Pr(A) is somehow indeterminate?

3.2.5 Probabilistic Criteria

As discussed in Chap. 2, possibility exists as part of a greater git which includes

other speci�c formalisms. Possibility stands in closest relation to probability, both

being examples of fuzzy measures with distributions. While we intend to develop

possibility theory as a kind of information theory distinct from probability, there

is no desire to jettison the wealth of history which probability theory provides us.

Therefore in moving away from crisp possibility to consideration of the semantics of

graded possibility, it is appropriate to take the semantics of probability into account.

3.2.5.1 Gaines-Kohout Compatibility

We begin with a remark of Kosko, who reminds us that \After the fact `randomness'

looks like �ction [164]." Here he is referring to the well-known \paradox" of prob-

ability statements: if after ipping the coin a heads is observed, what sense does

it make to say that the probability of heads is one half? Probability statements

are necessarily predictive, statements of what is to be, not what is. With increasing
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time, there is less to predict, and their value is dissipated. Some suggest that after

the occurrence of an event A, it should realistically be said that Pr(A) = 1. Surely

then it must also be that �(A) = 1, in keeping with the observation from Sec. 3.2.4

that occurrence implies complete possibility.

In their seminal articles on possibility theory [91, 92], Gaines and Kohout go

further in considering the status of possibility and probability statements over time.

They observe that a \likely" event A, here interpreted as Pr(A) > 0, actually has

the property of eventuality: with increasing time the aggregate probability of A

occurring during that time approaches arbitrarily close to one. Their discussion

deserves quotation at length.

In our studies of system stability and control we have been very

concerned to embody in our formulation the distinction between possible

events that may not occur and possible events that are guaranteed to

occur sooner or later. The former events correspond to problems that

may arise and have to be avoided. They relate to regions of states which

are reachable in terms of stability analysis but not reachable in terms

of control. The second type of possible event, however, is responsive to

feedback control since if the situation is continually re-created in which

it may occur then it eventually will occur.

Note that probability theory does not provide an explicatum of the

�rst type of possible event. If for the purposes of analysing an uncer-

tain system we assign an uncertain event a non-zero probability then

we imply that not only may it occur but also, in a sequence of occur-

rences each of which may be that event, it eventually will occur with a

probability arbitrarily near one. The notional assignment of a de�nite

probability to an event also fails to provide an adequate event because it

has the stronger implication that the relative frequency of such events in

a sequence will tend to converge to the given probability with increasing

length of sequence.

Either or both of these connotations which probability has over pos-

sibility may be too strong in practical situations where the concepts of

probability theory are being used to express the e�ects of uncertain be-

havior. For example, we are often faced with situations where an event

E may occur, but there is no guarantee that E actually will occur, no

matter how long we wait. If we ascribe some arbitrary probability to E

then we certainly express that it is a possible event. However we are in

a position to derive totally unjusti�ed results based on the certainty of
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some eventual occurrence of E, or meaningless numeric results based on

the actual \probability" of occurrence of E. [92]

Kosko also notices this property: \Unlike fuzziness, probability dissipates with

increasing information [164]". That is, at any particular time the event A could

happen, and as time passes, in the limit A becomes certain to occur.

Gaines and Kohout attempted to merge probabilistic and modal possibilistic

concepts by distinguishing among so-called \eventual" and merely \possible" events.

While their concept of possibility is still crisp, nevertheless we can draw from their

observations.

In Sec. 3.2.4 it was said that the occurrence of an event A must mean that

�(A) = 1. So by Gaines and Kohout's reasoning, this idea should be extended to

say that if an event A must occur sometime, that is, is eventual, then similarly it

should be that �(A) = 1.

The following de�nition will be important in considering this relation of possi-

bility and probability.

De�nition 3.3 (GK-compatibility) A function f isGaines-Kohout-compatible,

or just GK-compatible, with a function g on a set X = fxg if f; g:X 7! [0; 1] and

8x 2 X; f(x) > 0$ g(x) = 1:

Corollary 3.4 If f is GK-compatible with g on X then

8x 2 X; f(x) = 0$ g(x) < 1:

Proof: Follows trivially from the restrictions f(x); g(x) 2 [0; 1].

The following principle then relates possibility and probability measures.

Principle 3.5 (Probability-Possibility Compatibility (ppc)) Given a proba-

bility measure Pr and possibility measure � then Pr is GK-compatible with � on

2
.

Simply stated, 8A � 
,

Pr(A) > 0$ �(A) = 1; Pr(A) = 0$ �(A) < 1: (3:6)

This states that something having non-zero probability is, following Gaines and Ko-

hout, likely, and therefore eventual, and therefore equivalent to its being completely

possible. Conversely, a properly possible event (�(A) < 1) must be of probability

measure zero, and probability zero may or may not indicate proper possibility.

If a probability and possibility measure are GK-compatible, then so are their

(discrete) distributions.
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Theorem 3.7 (Distribution Compatibility) If Pr is GK-compatible with � on

2
 then p is GK-compatible with � on 
.

Proof: p: 
 7! [0; 1] and �: 
 7! [0; 1], so the �rst condition of (3.3) is satis�ed.

Case 1: Assume 8! 2 
; p(!) > 0 6! �(!) = 1. Then 9!; p(!) = a > 0; �(!) =

b < 1. Then Pr(f!g) = a;�(f!g) = b, which violates the GK-compatibility of

Pr with � on 2
. Therefore 8! 2 
; p(!) > 0 ! �(!) = 1. Case 2: Assume

8! 2 
; �(!) = 1 6! p(!) > 0. Then 9!; �(!) = 1; p(!) = 0. Then �(f!g) =

1;Pr(f!g) = 0, which violates the GK-compatibility of Pr with � on 2
. Therefore

8! 2 
; �(!) = 1! p(!) > 0.

Corollary 3.8 If Pr is GK-compatible with � on 2
 then �(A) > 0! Pr(A) > 0,

and �(A) = 0! Pr(A) = 0.

Proof: If �(A) > 0, then by (2.19), �(A) = 1, and so by ppc, Pr(A) > 0. If

�(A) = 0, then by (2.19), �(A) < 1, and so by ppc, Pr(A) = 0.

Thus an event may have zero probability, and yet still have some degree of

necessity, or a positive probability and no degree of necessity.

3.2.5.2 Compatibility in the Literature

The standard probabilistic sense of the term \possibility" is that a possible state is

one with a non-zero probability. Just one example of this view is provided by Starke

from his book on automata.

We can apply non-deterministic automata to describe the \possibilities"

of a given stochastic automaton in that we call \possible" those things

which have a positive probability of being turned out. [273, p. 145]

On this view \grades" of possibility are not recognized, only crisp possibility and

impossibility, and thus the interpretation is that Pr(A) > 0 ! �(A) = 1. ppc is

obviously completely in keeping with this idea, since (3.6) equates unitary possibility

with non-zero probability.

GK-compatibility is a very strong criteria, implying both DP-compatibility and

Z-compatibility (from Sec. 2.6.3.3).

Theorem 3.9 If p is GK-compatible with � in 
, then they are Z-compatible.

Proof: If pi > 0 then �i = 1 so that pi�i = pi. If pi = 0 then pi�i = 0. ThereforeP
pi�i =

P
pi = 1.

Corollary 3.10 If Pr is GK-compatible with � on 2
 then they are DP-compatible.
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Proof: Follows trivially from (2.119) and (3.9).

Corollary 3.11 The converses of neither (3.10) nor (3.9) hold.

Proof: The counterexamples are situations where

9A � 
; �(A) = 1;Pr(A) = 0; 9! 2 
; �(!) = 1; p(!) = 0

respectively.

Therefore for these weaker compatibility measures, (3.6) is replaced by

Pr(A) > 0! �(A) = 1; Pr(A) = 0 �(A) < 1; (3:12)

which is actually an axiom of compatibility measures for Delgado and Moral [47].

Thus compatibility other than GK-compatibility signi�cantly weakens the prob-

abilistic identi�cation of complete possibility with positive probability. They allow

complete \possibilistic" possibility for events that are \probabilistically" impossible:

having probability zero.

But remarks from some of the founders of possibility theory support ppc. Giles

observes

To assert `A is impossible' is at least as strong as, and perhaps for all

practical purposes equivalent to, asserting `:A'. The assertion `A is

possible' is more ambiguous: does the speaker mean `A is just possible'

or `A is entirely possible' or something in between? The �rst statement

implies that A is unlikely; the second seems to entail no commitment

at all | whether A is, or is not, found to hold the speaker cannot be

contradicted. [98]

Shackle recognizes that the relation between frequency and possibility is problem-

atic.

Plainly for every individual faced with the knowledge that out of every

n trials of a particular kind, a speci�ed outcome A has proved right

about m times, there will be some numerical value of m=n below which

the outcome A will seem somewhat surprising or less than perfectly

possible. The critical level of m=n will vary with the individual and

the circumstances. In this book we have little to say about the exact

psychic process of forming those judgments which we are supposing to

be expressed by means of an uncertainty variable. [260, p. 72]
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However, not all within the fuzzy research community present a similar view.

Kandel suggests the following, even stronger than ppc, although with neither justi-

fying arguments nor references to supporting opinions.

An important aspect of the concept of a possibility distribution is that

it is nonstatistical in nature. As a consequence, if pY is a probability

distribution associated with Y , then the only connection between �Y

and pY is that impossibility (i.e., zero possibility) implies improbability

but not vice versa. Thus, �Y cannot be inferred from pY nor can pY be

inferred from �Y . [134, p. 31]

Interpretation of this statement rests with the word \improbability", which can

mean either p < 1 or p = 0, where p is taken for p(!) for some !. ppc (and

Distribution Compatibility (3.7) in particular) is then consistent with the statement

� = 0! p = 0;

but not with

� = 0! p < 1;

although of course p = 0! p < 1.

3.2.5.3 Consequences of GK-Compatibility

Note that ppc is not a de�nition. Probability and possibility have been well de�ned

in Sec. 2.5.3.

Nor is it a theorem. Recall that probability is only de�ned on speci�c random

sets, while possibility is only de�ned on consonant random sets. Thus probability

and possibility are almost never even de�ned on the same random sets in order to

be compared according to ppc, as shown in (2.98).

Instead, ppc is a principle, asserted as a semantic criteria. As all semantic

relations, it is neither a property of nor determined by the mathematical formalism

itself, as discussed in Sec. 3.1.3. It's source is methodological, outside of the speci�c

formalisms of git, and intended to relate together di�erent usages of aspects of git

in a manner which is in accordance with these extra-theoretical considerations.

Zadeh emphasized this point when he advanced the Z compatibility measure.

It should be understood, of course, that the possibility-probability prin-

ciple is not a precise law of a relationship that is intrinsic in the concepts

of possibility and probability. Rather it is an approximate formalization

of the heuristic observation that a lessening of the possibility of an event

tends to lessen its probability, but not vice-versa. [325]
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As did Shackle.

If any and every probability greater than zero can correspond to perfect

possibility then any bi-unique mapping of potential surprise is purely

arbitrary and arti�cial. [260, p. 113]

Since � and Pr are not generally de�ned on the same random sets, ppc interprets

statements about possibility (resp. probability) in the context of a given speci�c

(resp. consonant) random set.

For example, given the possibility distribution � on IR shown in Fig. 3.5 with

core C(�) = [1; 2], what is the status of the expression p(x)? ppc allows p to be any

probability distribution in the class of distributions on IR

fp : x 2 [1; 2]$ p(x) > 0g;

e�ectively restricting the range of p to the core [1; 2]. From the proof of (3.11),

under Z-compatibility the condition is weaker, not forcing values in [1; 2] to have

positive probability. ppc provides no further information to determine p, and so by

the mep, we should choose p to be uniform on [1; 2].

�
�
� @

@
@

6 �

p�

-

1:0

0:5

1 2 3 4 !

Figure 3.5: A possibility distribution and its maximum entropy GK-compatible

probability distribution.

Or in the die example above, there are six possible faces, so that by ppc, for

1 � ! � 6, �(f!g) = 1;Pr(f!g) > 0, yielding distributions ~p = hpii with pi > 0

and ~� = ~��. Depending on the weightings of the dies, the pi have yet to be �xed,

but as long as all six remain possible, with some positive probability of occurrence,

the possibility values �i must remain at 1.

Similarly, given a Gaussian probability distribution p(x); x 2 IR, what is the

status of the expression �(x)? Since 8x 2 IR; p(x) > 0, by ppc, we must have the

possibility distribution 8x 2 IR; �(x) = ��(x) = 1.

The status of measure-zero events is of course an interesting one in probability

theory. Whether full possibility should be allowed for such events (whether GK-

or Z-compatibility should be used) is partly a methodological consideration. In the

sequel the stronger GK-compatibility will be used, while noting that Z-compatibility

still has the key property outlined above: a likely event must be completely possible.



94 CHAPTER 3. SEMANTICS OF POSSIBILITY THEORY

Indeed, we can see that under ppc, any probability distribution with a positive

value on 8! 2 
 yields the maximally uninformative possibility distribution ~��.

For an ! with p(!) = 0, GK-compatibility is not more helpful, saying only that

�(!) < 1. And Z-compatibility does not even require that.

Our conclusion is that under ppc, a standard probabilistic analysis yields es-

sentially no information of a possibilistic nature. This is in keeping with our un-

derstanding of the formal relationship between probability and possibility: they are

logically independent, but possibility is a much weaker representation of uncertainty.

It is also in keeping with our common sense reasoning: when something is some-

what probable everywhere, surely it must be at least possible everywhere. These

probabilistic cases do not imply that all possibilistic analyses must be so uninfor-

mative, only those with a probabilistic source, which themselves necessarily have a

very strong informational structure.

3.3 Possibilistic Concepts

We can now characterize the nature of possibilistic categories, processes, and con-

cepts. We do so here in a decidedly semi-formal manner. This discussion is intended

to be suggestive, not de�nitive. It is intended to provide standards which guide fu-

ture use of possibilistic concepts, an image of possibility which we will try to adhere

to in later formal development.

Our thinking about uncertainty and indeterminism has necessarily been deeply

molded by two centuries of concepts and methods which have arisen in probability

theory and statistics. This is natural, since probability is the most strict represen-

tation of uncertainty. But now, given the advent of the git methods, some of these

concepts may need to be modi�ed, if not abandoned completely. Since this work in

general, and this section in particular, is part of an attempt to break these existing

mental models about how uncertain and indeterminate systems work, therefore a

fair amount of time will be spent contrasting traditional stochastic with possibilistic

systems.

3.3.1 Possibilistic Mathematics

The mathematics of possibility theory itself provide some indications of how to

interpret possibilistic statements.
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3.3.1.1 Nonspeci�city

Probability is distinguished from possibility, and indeed from all other classes of

fuzzy measures on random sets, primarily in the fact that the evidence values mj

are attached to singletons, and thus essentially to elements !i. Therefore, assuming

no further underlying structure in 
, probabilities can be compared only in value.

But in general, evidence values mj are attached to subsets Aj . It is true from

Sec. 2.5.2 that the existence of a distribution q establishes a structural aggregation

function mapping the focal elements to the universe elements. But the evidence is

still essentially valued on nonspeci�c subsets. And random sets with distributions

are generally rare, since they have small cardinalities (� n). Therefore in general

two pieces of evidences m1; m2 can not only be compared by value, but also in other

ways:

� In terms of the relative cardinalities jA1j; jA2j.

� In terms of the amount of \overlap" between A1 and A2, measured by the

relative cardinalities jA1 [A2j; jA1\A2j; jA1�A2j, and jA14A2j, where 4 is

the symmetric di�erence operator.

These additional properties are exactly what is captured by the uncertainty

measures discussed in Sec. 2.6, such as nonspeci�city N, strife S, and its special

case entropy H.

3.3.1.2 Normalization

Issues of nonspeci�city extend to all non-probabilistic random sets. But possibilistic

random sets in particular have further restrictions. One is the normalization of

(2.91), which requires a non-empty core C(S) � 
, whose elements are shared by

all evidential claims.

Normalization places a restriction on which collections of values can be properly

considered as \well-formed" statements of possibility by adhering to the require-

ments of possibility theory. Since mathematically, normalization is the requirement

that there exists an element with unitary possibility, semantically this means that

there must exist an element which is completely possible. Thus possibilistic varia-

tion posits the existence of a core of certainty around which the data set or process

uncertainly varies, and which is common to all events.

Stochastic normalization also places a restriction on which collections of values

can be properly considered as \well-formed" statements of probability, now by ad-

hering to the requirements of probability theory. But by contrast, additive stochastic
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normalization makes the requirement that all knowledge be accounted for in its divi-

sion among the various hypotheses. So stochastic variation posits the existence of a

total quantity of certainty, with uncertain variation among its distinct components.

While a plausibility assignment ~Pl which is probabilistically abnormal may be

either subnormal (
P
Pli < 1) or supernormal (

P
Pli > 1), one which is possibilis-

tically abnormal can only be subnormal (
W
Pli < 1), since necessarily Pli 2 [0; 1].

A similar normalization method can be used on either subnormal probability or

possibility distributions. This is, in the possibilistic case, the dimensional extension

method considered in Sec. 2.8.2, simply appending an element !n+1 with �(!n+1).

In the stochastic case, the same idea results in appending an element !n+1 with

p(!n+1) = 1�
nX
i=1

p(!i):

In either event, this method introduces a residual hypothesis !n+1, which is

appended to the distribution as a normalizing element to account for an amount of

\missing" possibility or probability not present in the original distribution. Dubois

and Prade [69] have remarked on this idea. Shackle [260] has described the use

of this residual hypothesis in possibility theory, expressing the idea that something

must always be completely possible, and that is the new element !n+1.

In fact, Shackle generally recognized the importance of possibilistic maximal

normalization, foreseeing (2.18).

There is one constraint upon the relation between the degrees of poten-

tial surprise accorded respectively to a hypothesis and its contradictory

[complement]: one or other of these degrees must be zero. For the hy-

pothesis and its contradictory constitute between them an exhaustive

set of rival hypotheses : everything that can happen is included by the

individual under one or other of these heads. And provided that the

question is a meaningful one, the individual is logically bound to sup-

pose that there is some right answer to it. [260, p. 74]

In fact, where some modern possibility theorists do not stress the importance of

possibilistic normalization, for Shackle it is of paramount importance, which \seems

to us to impose itself invincibly. [260, p. 85]"

3.3.1.3 Consonance and Ordinal Information

The �nal essential property of a fully possibilistic random set is consonance, the

nesting of focal elements within each other. The core then becomes the smallest focal
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element with the smallest cardinality, the innermost box of a nest which spreads out

from it.

This nested structure imparts a strong linear ordering to a possibilistic random

set, as discussed in Sec. 2.5.3.2. This is manifested in many ways:

� In the ordering of the focal elements by inclusion Ai�1 � Ai in a nest by (2.89).

� In the ordering of the possibility values 1 = �1 � �2 � � � � � �n > 0 by (2.92).

� In the ordering established on the elements !i so that Ai = f!1; !2; : : : ; !ig

and �(!i) = �i under relabeling (2.77).

� In the ordering of the membership grades of the corresponding fuzzy set 1 =

�e�(!1) � �e�(!2) � � � � � �e�(!n) > 0 as in (2.154).

Thus a discrete possibility distribution1 can be seen as consisting of two compo-

nents:

� The selection of one of the n! permutations of the universe considered as a

vector ~
 = h!ii. The �rst element of the string is the core.

� The assignment of possibilistic weights to the !i with the only requirement

that �(!1) = �1 = 1.

The ordering speci�es a particular path through the universe, while the weights

represent the \distance" in certainty values between them. This ordinal property

of possibilistic information is crucial: we are not concerned with the division of

knowledge among a set of otherwise indistinguishable entities, but rather over a set

of entities which has a decidedly linear structure.

3.3.2 Possibilistic Processes

Because of nonspeci�city, traditional ideas of randomness are completely altered

in random set, and especially in possibility, theory. In probability theory we think

of a given universe which is fundamentally a partition, a division of the space into

distinct units. Each unit is precise and speci�c, and we are only uncertain as to

which unit is selected, and measure the dispersion over those distinct units. Dubois

and Prade comment

1Continuous possibility distributions are signi�cantly more complex [230].
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Probability measures apply to precise but di�erentiated items of infor-

mation, while possibility measures reect imprecise but coherent items

(i.e., which mutually con�rm each other) : : : A probabilistic model is

suitable for the expression of precise but dispersed information. Once

the precision is lacking, one tends to quit the domain of validity of the

model. [64, pp. 6, 13]

But when thinking about random sets, or data sets or processes which are gov-

erned by general evidence theory, and in particular possibility theory, the concepts

we bring to bear are very di�erent from probability. The fundamental units, the

observed events themselves, cannot in general be partitioned into additive blocks,

and eventually decomposed to atomic constituents.

We can introduce the concept of a stochastic set-process, which is essentially

an active process governed by the dynamics of random sets, rather than simple

probability distributions. This is illustrated in Fig. 3.6, where for a six element

universe each of the focal elements is the region labeled by its evidence value. Instead

of a simple stochastic process, where individual random outcomes result, we have

the image of a variety of randomly occurring subsets, with a greater or lesser degree

of irreducible overlap, and with a complex, interlocking structure. The size and

relative overlap of events in a stochastic set-process are constantly changing as it

moves not through states ! 2 
, but rather through meta-states A � 
, in a

non-deterministic manner.
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Figure 3.6: (Left) A general stochastic set-process. (Middle) Probabilistic case.

(Right) Possibilistic case.

On the left of Fig. 3.6 is a generic stochastic set-process. Focal elements are re-

lated indiscriminately: disjoint, included, and properly intersecting. Because of the

lack of any coherence, no distribution, and no element-subset aggregation function,

is possible.

In the center is a stochastic process, here identi�ed not on the singletons of 
,

but on a disjoint class of 
. Each of these disjoint focal elements can be recognized

on equivalence classes, and thus points in a lower dimensional space where n = 4.

Nevertheless, the fundamental property of speci�c random sets still holds: knowledge
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is divided among the disjoint subsets, so that there is no ambiguity in the outcome

of the stochastic set-process.

Finally on the right is a possibilistic process. Here the innermost focal element

is the core, around which the set-process is coherent. In virtue of this coherence,

the possibility distribution is available on the universe 
 from which the original

stochastic set-process can be generated. While probability represents ambiguity, an

uncertain choice among distinct alternatives, possibility represents a lack of speci-

�city, an uncertain, but monotonically nondecreasing, distance from the central

core. In a possibilistic process the core remains �xed, and the observed state varies

in extent around it.

3.3.3 Statistical Interpretations

Because in a possibilistic process there is a variation not just of state, but of the

size of the state, we have a visual image not of a point traversing a state space, but

of a shifting granularity, tolerance, or precision. In statistical terms, we do not see a

shifting sample mean, but rather a shifting variance around a �xed mean, the core.

It is well known that as the size of a statistical sample of a stationary stochastic

process increases, the sample variance converges to a �xed value. Thus possibility

theory may be appropriate to model non-stationary processes, where the sample

variance will continue to shift around the sample mean.

Also, by the law of large numbers, large samples provide su�cient information

to justify the inductive inference of taking a frequency distribution as a probability

distribution, and thus to satisfy the strong constraints of stochastic representations.

So possibility theory may be appropriate in modeling problems with small sample

sizes. Here the weakness of the small sample is matched by the weakness of possi-

bilistic information, while the strength of a large sample is matched by the strength

of stochastic information. In fact, it might be hoped that with increased sample size,

that a possibilistic analysis would become less useful, just as a stochastic treatment

of the same problem would become more accurate.

Turksen has noted that probabilistic measurement depends on large numbers of

observations (under classical, objectivist, probability theory, to the limit), and has

suggested that possibility theory could be of some value where this was not possible.

The implication of this view is that response data must be observed by

an analyst an in�nite number, or at least a large number of times for

every experimental setting in a measurement study. This is generally

possible in measurement experiments of physical attributes. However,

it is almost an impossibility when the response data are to be provided
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by human subjects as in the case of subjective evaluations in general

and measurement of fuzziness in particular : : : In these cases, only a few

points of response data may be observed under ordinary circumstances.

Thus probabilities of fuzzy events may not in general be computed due

to lack of su�ciently \large" trials. [291]

Turksen made this observation in the context of measurement of human re-

sponses, but the point holds whenever only small samples are available. But he

o�ers no valid mathematical formulation for what possibilistic measurement might

be. Instead, he simply de�nes the possibility value as the observed relative fre-

quency from a �nite number of trials. Yet this is obviously an additive distribution

with an additive measure, and in no way a possibility function.

3.3.4 Possibilistic Locality, Extensibility, and Mutability

Possibilistic normalization provides a useful observation about the nature of possi-

bility. While stochastic normalization is necessarily a property of the whole distri-

bution
Pn

i=1 pi = 1, possibilistic normalization can be satis�ed by a single element

of the distribution: 9! 2 
; �(!) = 1. The existence of a normalizing element need

not be unique, and in the maximally uninformative possibility distribution ~�� all

elements of the possibility distribution are unitary.

Thus possibility is much more of a local property. For example, the possibilistic

normalization methods of Sec. 2.8 require only the modi�cation or appending of a

single element. However, there is a tradeo� in that after normalization a reordering

of the �i might be necessary, in keeping with (2.92).

So possibility is also highly mutable: individual elements �i can be modi�ed

without requiring any other elements to be changed (again within reordering limits).

Similarly, possibility is highly extensible, since (as in the dimensional extension

normalization method of Sec. 2.8.2) any possibility value, either unitary or non-

unitary, can be appended to a possibility distribution without any requirement of

global rescaling, renormalization, or recalculation (although again reordering may

be required).

These properties have been recognized by Ramer and Puea-Ramer in their

description of a normalization method very similar to the focused consistent trans-

formations of Sec. 2.141.

Such [a] `do-nothing' strategy may appear somewhat unusual, but it

actually captures well the notion of possibility. Unlike probabilities, pos-

sibility values are not interrelated; for example, [the] possibility of Y is
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not tied to [the] possibility of X � Y , unlike the complementary rule for

probabilities. [232]

3.3.5 Possibilistic Independence from the Universe

Together, these properties obviate one of the most often criticized features of prob-

ability theory, namely its dependence on an a priori speci�ed universe of discourse,

or \frame of discernment". This point has been dealt with in detail by Dubois and

Prade [69], and has also been stressed by Shackle.

The circumstances in which we can fall back on probabilities | or at

least on the orthodox classical concept of probability | are in fact

severely limited. We must �rst have a clearly delimited �eld of pos-

sibilities or contingencies, logically exhaustive and mutually exclusive

| what von Mises called a `collective' and modern statisticians call an

`ensemble'. [260, p. 99]

The most obvious manifestation of this limitation is in the representation of

ignorance, and the resulting consequences for statistical estimation. The uniform

probability distribution ~p � is dependent on n, itself a property of the universe 
,

while the maximally uninformative possibility distribution ~�� is not. When using

Bayes theorem to update an a priori probability distribution, vastly di�erent results

will be achieved depending on what the assumed size of the universe was. Or as

Dubois and Prade comment

Probability theory o�ers no stable, consistent modeling of ignorance.

Thus, the way a question is answered depends upon the existence of

further information which may reveal more about the structure of the

set of possible answers : : : An important part of probabilistic modeling

consists of making up a set of exhaustive, mutually exclusive alternative

before assessing probabilities : : : Quoting Cheeseman [32], `if the problem

is unde�ned, probability theory cannot say something useful'. [69]

The uncertainty measures N;S, and T from Sec. 2.6 are dependent on the car-

dinalities of the Aj . But for additive probability itself, independent of any further

measure of a distribution, its requirement for an a priori frame reects and results

from its general dependence on the cardinalities not only of the universe, but of all

the sub-events recognized within the universe. Possibility theory is free from this

requirement. Shackle also discussed this.
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To sum the degrees of possibility assigned to various rival hypotheses is

to fall back on the idea that it is the number of its rivals which gives a

hypothesis its status, rather than its own particular character. [260, p. 92]

3.3.6 Possibility, Complexity, and Emergence

The observation in Sec. 3.3.3 about systems with small sample sizes brings us to

a discussion of complexity. There is a great deal to say about the meaning of

complexity and its relation to information (the reader is referred to at least [144,300]

out of a large literature base). But one point of note is that complex systems can be

said to be \historically bound". That is, they have evolved to their present states

through a long series of very speci�c actions.

Complex systems are thus relatively impervious to traditional experimental

methods. It can be very di�cult, if not impossible, to establish them in initial

conditions for multiple time trials. Once a measurement is made, the system can

become perturbed, never to return to its previous state.

Thus complex systems generally do not yield the kind of strong time-series data

required for stochastic descriptions, yet their behavior is full of uncertainty. Instead,

it seems completely appropriate to attempt possibilistic analyses of such systems,

which requires only weak information.

Indeed, as Weaver describes [300], stochastic methods are especially appropriate

for dealing with repeated experiments on simple systems. The simplest systems

are indistinguishable, as the move to Bose-Einstein counting in quantum physics

requires. Here statistical techniques are paramount, as in statistical physics and

thermodynamics.

\Degenerate" systems, which lack internal structure or coherence, like a mere

pile of rocks or a mole of ideal gas, are best described as \aggregates". As their

internal constraint and structure, and thus complexity, increases, they gain in dis-

tinguishability. In truly complex systems this can grow to be actual uniqueness, for

example in organisms, as noted by Elsasser [82]. It is in these limit cases where

repeated experiments are truly impossible.

A hallmark property of complex systems is exactly the properties of possibility,

as opposed to eventuality, described by Gaines and Kohout in Sec. 3.2.5.1. By a mild

abuse of language, complex systems can be described as being highly \non-ergodic".

In other words, given a very large state space, only a very small portion of that space

might actually be visited. This issue is discussed very clearly by Kampis [129]. Thus

in such systems there will be a large number of properly possible states, while a small

number of \eventual" states, perhaps even none.
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In a rare, and admirable, but yet incomplete, attempt to apply fuzzy theory to

a physical system, Singer relates the semantics of fuzziness directly to complexity

and measurability.

Mechanical quantities, such as distance and velocity can be measured

to a relative error of 10�3%. Electrical measuring devices such as those

for current or potential allow a relative precision of 0:1%. The achievable

limit in entropy and enthalpy measurements is about 1%. Even higher

are the errors in chemical processes, due to autocatalysis and reaction

mechanism, not de�ned sharply, and last, but not least, due to the fact

that the velocity constants can be measured in general only indirectly,

these constants are uncertain to 5% and more.

In accordance with these facts, it seems justi�ed to presuppose some

unsharpness in all physical processes a priori in the sense of fuzzy set the-

ory. This unsharpness is very small in simple mechanic [sic] and electric

[sic] processes but must be taken into account in complex phenomena

governed by non-equilibrium thermodynamics. [267]

Kampis suggests that this property of complex systems should actually be re-

garded as fundamentally emergent, since making a prediction in the state space

usually requires (at least!) an intractable computation. Thus the occurrence of

each of these rare states appears as a fundamentally novel, unpredictable, and thus

uncertain event. It may be that the properties of possibilistic mutability and ex-

tensibility discussed above make possibility theory more appropriate to model the

\surprises" such systems provide.

Possibilistic independence from the universe is also crucial here. Consider again

the six-sided die from Sec. 3.2.4. When a universe of discourse can be speci�ed (the

six faces), then each member of it is identi�ed as being completely possible, and a

probabilistic analysis begins.

But instead of being simple, imagine that the die is actually a highly complex

system, much of it hidden from view, which produces a number as its output. Say

further that we have been led to believe that the number will be between 1 and 6,

so that the a priori universe is as before. But in virtue of the system's complexity,

a 7 may appear as an \emergent" event, causing us to extend the (known) universe.

A possibilistic analysis will handle this situation gracefully, with a probabilistic one

will not.

Shackle also shares in the understanding of the nature of choice in complex

systems and the special inapplicability of stochastic methods to emergent systems.
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: : : in all such instances [like the decision to marry or not, or the decision

by a general as to a certain battle plan] the entire subsequent career of

an individual or a nation is swung into one rather than another of two

wholly di�erent channels. After such a decision there can be no going

back to the state of a�airs which prevailed while the choice was still open.

It is, accordingly, logically impossible for a person who has to make a

decision in such an instance to contemplate repeating his experiment:

such experiments are self-destructive. [260, p. 56]

This is, of course, common in complex physical or mechanical systems. Shackle de-

scribes this as either a lack of multiple occurrences of a single event (non-divisibility)

or a lack of a population over which single occurrences are observed (non-seriability),

or both.

Isolated and, above all, self-destructive experiments, numerous enough

and of crucial and dominating importance when they arise, are inherently

untouchable by [probability]. [260, p. 61]

As mentioned, models of complex systems risk intractability by \combinatorial

explosion". The computational e�ciencies discussed above also make possibility

theory attractive for complex systems modeling. Some results of possibilistic com-

putational e�ciency are described by Wierman [304].

So when reviewing classes of systems, we can place them along a dimension relat-

ing complexity, probability, and possibility. First, in simple systems (like the die, or

an ergodically mixed mole of gas), beginning with complete (crisp) possibility of the

states, from ppc positive probability results, in the limit a uniform distribution with

average maximal probability. But in a complex system, states may be impossible,

or at most properly possible, so that probability is still zero.

3.3.7 Capacity vs. Frequency Concepts

These observations once again emphasize that possibilistic data are not frequency

data, since possibility values can be changed without reference to the overall sample.

Possibility thus cannot be regarded in the context of other concepts which are related

to frequency, such as likelihood, chance, tendency, propensity, or proportion.

Instead, possibility suggests interpretations in the context of capacity. Given a

set of \buckets", they can all either be completely full, many can be empty, or they

may be in some intermediate state, as long as at least one is full (for possibilistic

normalization).



3.3. POSSIBILISTIC CONCEPTS 105

Thus possibility can be seen as relating to the general constellation of concepts

surrounding capacity, including intensity, degree of ful�llment, ease of ful�ll-

ment, distance from optimality, degree of satisfaction, similarity, resem-

blance, elasticity, and preference. Dubois and Prade [75] in particular make this

argument, and Wood and Antonson [309] use a membership function to describe a

preference relation.

These concepts are all ordinal, measuring states by their distance from some

state of maximal capacity (intensity, preference, etc.). Kosko echoes this view, but

in the context of general fuzziness, not possibility.

Fuzzy theory [is] the theory that all things admit degrees, but admit them

deterministically. Fuzziness describes event ambiguity. It measures the

degree to which an event occurs, not whether it occurs. Randomness

describes the uncertainty of event occurrence. An event occurs or not,

and you can bet on it. [164]

3.3.8 Physical Interpretations of Possibility

A point moving around a state space in a stochastic process assumes a �xed parti-

tion and a device which can observe a speci�c element of that partition, a speci�c

event. We must ask what possible ontological status might attach to a non-speci�c

event. Do we assume in a possibilistic process that this widening \exists" in the

world, or are we just constructing models which have such variations in their obser-

vations? Is there an \actual" possibilistic process to be observed, or is there perhaps

a deterministic or ordinary non-deterministic process which we are just modeling by

possibility theory, and perhaps could have been modeled in some other formalism?

To a large extent these issues will be left as philosophical questions. But it can

be seen that while the fundamental categories in probability theory are �xed, in

possibility theory these categories are constantly shifting. Thus possibility can be

said to be concerned with the very de�nition and identi�cation of events, rather

than assuming given events and then inquiring about their properties.

3.3.8.1 Elastic Constraints

The term \elastic constraint" was used by Zadeh [325] to describe the e�ect of a

\fuzzy restriction" on a variable. It is interesting to consider the possible interpre-

tations in a physical system of a physical elastic constraint, expressed in possibilistic

terms, and related to the capacity concepts described above.
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Klir has suggested2 a few potential examples. Consider a cork being pushed

into a bottle. At �rst it can be pushed easily, then only with more force, and

�nally cannot be pushed further. While good mechanical models are available which

describe this as a deterministic system in terms of static and dynamic friction, this

simple system can be regarded qualitatively as well (qualitative modeling techniques

will be discussed more fully in Sec. 7.1). In this case, then, there is uncertainty about

the degree of force needed, or the distance the cork could be pushed in. But this

uncertainty is not random: the same cork will be able to be pushed in the same

distance on each trial.

As another potential example, consider a bending rod, which when bent beyond

some unknown critical point c will break. For a sample of rods, a frequency distri-

bution of observed values of c can be obtained, and for a large sample, a statistical

model is available. But assuming that such random, probabilistic variations are

small (the rods are drawn from a highly uniform stock), then the critical point is

essentially deterministic, and does not vary. Again, deterministic mechanical models

are available.

But as a qualitative problem, there is uncertainty as to the value of c. A natural

language interpretation of the problem yields a crisp possibility distribution: before

actual breakage, breakage is always possible; after breakage, it is no longer possible.

3.3.8.2 Quantum Fuzziness

It is important here to mention a very large exception to our general indictment of

the lack of applications of git methods to physical problems, and that is a growing

movement to apply fuzzy logic to quantum physics [226]. It should be noted that

this is a movement primarily from the physics, and not the git, community.

It has taken two branches. The �rst is in so-called \quantum logic", which uses

non-distributive logics to model the causal and epistemic properties of quantum

events [223, 225]. It has been suggested that Zadeh's fuzzy logics could be very

useful as an alternative to the traditional probabilistic quantum logics [27,183].

The other approach is to model quantum uncertainty not as the stochastic su-

perposition of two crisp observables, but as a single unsharp observable [185].

3.3.8.3 Other Attempts

A very few other researchers have attempted fuzzy or possibilistic models of physical

systems. Cao [23] and Cao and Chen [24] use fuzzy relations to model meteorological

2Personal communication.
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systems. And Roberts [240] applied fuzzy graph theory to the modeling of forest

succession. Although not subjective evaluations, the measurement methods used by

these researchers, as discussed in Sec. 3.4.4.2, is decidedly ad-hoc.

As mentioned in Sec. 3.3.6, Singer [267] has attempted to interpret thermody-

namical systems in the context of fuzzy theory. However, he falls somewhat short

of providing a sound methodological basis for the application of fuzzy theory to

physical systems. For example, Onsanger's law

Ii =
nX
i=1

LikXi

where the Ii are ows, the Xi forces, and the Kik coupling relations among them,

is fuzzi�ed according to eIi = nM
i=1

eLik � eXi;

where e� is a triangular fuzzy number and �;� are the standard addition and multi-

plication operators for fuzzy numbers [139]. The choice of which variables to fuzzify

is driven by considerations of system complexity:

In most cases the appropriate fuzzy expressions can be simpli�ed, con-

sidering only a part of the variables as fuzzy. It is in all cases reasonable

to consider the rate constant [of a stoichiometric equation] k1 as a fuzzy

quantity. k1 is measured only indirectly and its `true' value is a�ected in

many cases by badly de�nable autocatalytic e�ects, as well. K; cBe
and

cB [the reaction equilibrium constant, and the concentration of species

B at equilibrium and in general] are results of relatively precise mea-

surements and therefore these can be regarded in most cases as crisp

quantities. For reactions approaching equilibrium state slowly, K and

cBe
are fuzzy quantities as well. [267]

This analysis results in fuzzi�ed versions of some standard versions of thermody-

namic formulae, for example

eL = (RT )�1cBe
� ek1; eX = RT (1 +K)(�1 + cB=cBe

)

But in explaining the choice of the triangle membership function, Singer says only

For simplifying further considerations it is assumed that the membership

functions are of triangular form. In reality, the membership functions

can in many cases be approximated with su�cient accuracy by triangles.

[267]
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One struggles to understand what sense of \in reality" is being used here. He is

equally vague and deferring about the source of the speci�c memberships used,

tossing o� at the very end a comment which refers the reader to the standard

subjective evaluation methods.

3.4 Traditional Semantics of Possibility

A perennial question of fuzzy systems theory is \where do the numbers come from"?

While there has been a great deal of work devoted to this subject in fuzzy systems

theory, there has been very little attention in the literature speci�cally to the se-

mantics of possibility.3 What attention has been paid to possibilistic semantics has

been dominated by a few kinds of methods:

Possibility as Fuzziness: Under the interpretation of possibility as fuzziness, cri-

tiqued in Sec. 2.9.1, possibility values are determined according to the mem-

bership grades of a fuzzy set, which are themselves determined by subjective

estimation.

Possibility as Probability: Under the interpretation of probability and possibil-

ity as distinct forms of information, possibility values are determined by per-

forming a mathematical transformation of a probability distribution, itself

determined by an appropriate stochastic measuring procedure.

Possibility as Likelihood: A small number of researchers have interpreted pos-

sibility values, without maximal normalization, as probabilities, but as prob-

abilities not of a common distribution. These values are thus very similar to

likelihood values in stochastic estimation theory.

Objective Measurement of Fuzziness: There are a few methods which deter-

mine membership values from objective measurement methods, and one recent

method (possibilistic clustering) to objectively measure possibility distribu-

tions. However, for a variety of reasons presented below, these methods are

insu�cient or incomplete.

3.4.1 Subjective Semantics of Possibility

There is a virtual consensus in the git research community that fuzzy sets, and

therefore, in virtue of the linkage critiqued in Sec. 2.9.1, possibility distributions,

3A notable exception is some of the work of Dubois and Prade [60, 64, 65, 68, 74], which helps

inform our objective method presented in Chap. 4.
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represent the psychological uncertainty and doubt of human subjects.

3.4.1.1 Subjective Methods

There are a variety of subjective methods in the literature by which fuzzy sets,

and thereby possibility distributions, are derived from heuristic principles and the

opinions of people.

Researcher Opinion Sometimes a certain distribution is simply asserted based

on the opinion of the researcher and the theoretical, methodological, or other ad

hoc heuristic considerations which they bring to bear on the problem. For exam-

ple, Giering and Kandel [97] develop a fuzzy model of resource competition among

species, and introduce membership functions of optimality of a given species for a

given resource. They posit that these memberships should be maximally normal

(and thus possibility distributions), and then present some graphed curves with no

discussion, just \Several hypothetical optimal resource membership functions : : :

are plotted in �gure 3".

Expert or Subject Polling In other cases people who have expert knowledge

of the modeled system are submitted to sophisticated polling techniques to provide

their opinions of the possibility values. Examples are too numerous to survey even

sparely. Zimmerman [328, pp. 344-349] and Hisdal [119] both provide good surveys

of these \knowledge engineering" methods, and another example is the work of Hall,

Szabo, and Kandel [114].

Fuzzi�cation Perhaps the most prominent technique, used in virtually all fuzzy

control systems, for the determination of membership values is called \fuzzi�cation".

Under fuzzi�cation, measured crisp data are compared against a set of possibility

distributions determined from some subjective method, and then aggregated to give

an overall distribution of the measured data.

For example, in Fig. 3.7, three fuzzy sets, typically fuzzy numbers and thus

possibility distributions, eF ; eG, and eH, are shown. Then for a given crisp observed

value ! 2 
, a vector of values

~�(!) :=
D
�eF (!); �eG(!); �eH(!)E

is available. In the example,

~�(x) = h1; 0; 0i ; ~�(y) = h0; b; ai :
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Figure 3.7: An example of fuzzi�cation.

A typical example from the literature is the report by Gurocak and de Sam

Lazaro [109]. In their fuzzy controller, the input space of the o�set of a robot

wrist is divided into four equally spaced fuzzy numbers labeled with the linguistic

variables \very small", \small", \medium", and \big".

As a method for the determination of membership values, fuzzi�cation is com-

pletely dependent on the fuzzy sets provided, as in the �gure. Thus the question

of its validity is simply begged to the question of the validity of these fuzzy sets.

Typically, the number, positions, and shapes of these curves are completely ad-hoc,

or at best, themselves determined by subjective methods.

Neural and Genetic Training One of the most recent subjective methods for

deriving membership grades is based on training a neural network, as described by

Kosko [165]. Connections among neurons in a net are modeled by weights that are

usually numbers in the unit interval. The net is trained through an iterative process

of being exposed to input stimuli, in the form of examples which the net is supposed

to recognize. Updating occurs by strengthening connections for correct identi�ca-

tions, and weakening those for incorrect identi�cations. The net equilibrates (even-

tually), and the weights become stable. Methods using genetic algorithms [198] are

similar in that iterative training is used.

It is natural to interpret the resulting weights as the membership grades of a

fuzzy set. It may also be tempting to see this as an objective method. However,

the method is crucially dependent on the selection of examples by the researchers,

and perhaps more importantly on the choice by the researcher of what constitutes

a correct response. The net is trained to make a distinction, but that distinction is

still only a reection of that in the mind of the trainer.

3.4.1.2 Insu�ciency of Subjective Methods

Even Shackle developed his possibility theory on a purely and very deliberately

subjective basis.

With us, `possible' will mean intuitively or subjectively possible, possible

in the judgment of a particular individual at a particular moment. [260,
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p. 54]

His reasoning about the nature of possibility and necessity echoes Gaines and Ko-

hout's.

A man cannot, in general, tell what will happen, but this conception

of the nature of things, the nature of men and of their institutions and

a�airs and of the non-human world, enables him to form a judgment as

to whether any suggested thing can happen. [260, p. 67]

But Shackle is open to criticism from a natural language argument concerning the

relation between the meanings of \surprise" and \possibility" when ontological pos-

sibility is being considered (see Sec. 3.4.3).

Shafer is almost adamant in his rejection not only of additivity, but also of an

objective (frequency) basis for probabilities (for him, beliefs or evidence values).

For 250 years our culture's conception of probability has been dominated

by two ideas: the idea that probabilities concerning practical matters are

obtained from frequencies, and the idea that probabilities are necessarily

additive. These two ideas may well have been essential to the tremen-

dous progress that probability has made during this period. But future

progress may require that we lessen our dependence on them, and this,

in turn, may required that we rediscover the alternatives provided by

Bernoulli and Lambert. [262]

His resolution is that additivity is not required in the context of subjective prob-

ability, but he does not consider the possibility of non-additivity in the context of

objective probability.

What is the meaning of the determined but not fully known probability

P that is supposed to lie between the bounds p� and p�? If P can be

interpreted as a frequency or as an aleatory probability, as in Boole's

work, then we can make sense of the idea that P is unknown. But

an unknown epistemic probability is a contradiction in terms | an un-

known feature of our knowledge. Most of the recent writers on upper and

lower probabilities more or less acknowledge the absence of a meaningful

interpretation for the unknown additive epistemic probability P ; they

treat P as a metaphor and stress that one's knowledge is fully expressed

by the pair hp�; p�i. But they still struggle to place some signi�cance

on the additivity of this metaphor, and when they try to interpret the

numbers hp�; p
�i they reveal their puzzlement as to why one's knowledge
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should fall short of an additive probability : : : p�� p�, called one's `con-

fusion', is thought to reect an uncertainty which somehow di�ers from

the uncertainty reected by additive probabilities. [262]

A few people have been troubled by the lack of an empirical basis for fuzzy sets,

for example Kovalerchuk and Taliansky.

It is very important to make progress with this old problem [of the em-

pirical foundation of fuzzy sets] before an examination of other problems;

many of them unfortunately do not have this foundation. [166]

However, almost without exception even these researchers are content to understand

\empirical evidence" as the collection of the subjective evaluations of individuals.

For them, subjective evaluation is gathering empirical data, and they do not look

further to data gathered from non-human instruments.

Now this is not to say that subjective evaluations cannot be empirical; indeed, in

many kinds of psychology the subjective evaluations of humans are exactly the kinds

of empirical evidence required. But at the very least, subjective evaluations and

objective measurements are very di�erent kinds of data. Aside from methodological

questions about the nature of the data gathered by psychological reports, which

still trouble the foundations of psychology, the git community should not cut itself

o� from objective measurement. This view is expressed by Dubois and Prade,

where they simultaneously look forward to the measurement procedure presented in

Chap. 4.

The identi�cation of a membership function on a simple set is a prob-

lem in empirical psychometry, which is not especially di�cult. But : : :

the expression of membership functions in terms of random sets enable

statistical interpretations to live alongside pure psychometric interpre-

tations of fuzzy sets. [70]

This issue is also discussed in Sec. 3.4.4.1.

In probability theory subjective methods also serve a useful role. But, as de-

scribed by Fine [83], probability theory includes a number of other bases for de-

termining probability values, including a variety of relative frequency, logical, and

complexity-based methods.

Jain is one of the very few who explicitly recognizes the possibility for construc-

tion of a possibilistic (fuzzy, for him) semantics on either objective or subjective

bases. He describes this in an early work on fuzzy mathematics and the construc-

tion of algebraic networks of fuzzy components.
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It should be mentioned here that the fuzzy values assigned to various

components may be due to the ill-de�ned nature of the components,

or due to subjective speci�cation of component values. The �rst case

is usually encountered in mechanistic systems and the second case is a

common occurrence in humanistic systems. [125]

Jain does not elaborate on this idea, and does not attempt a general objective

semantics for fuzziness. He does suggest that existing tolerance data could be used

to assign fuzzy values. This method would be a frequency conversion method, which

will be discussed below in Sec. 3.4.2.

Our purpose here is not to critique subjective methods per se. There can be

no quarrel with their usefulness in git. They are an important component in an

overall semantics of git, and no doubt there are situations in which they are either

necessary or completely su�cient. For example, these methods are natural and

useful when people control and intervene in system operation, and so psychological

disposition is a serious factor. In other circumstances, there may be a good theory

of the system being modeled and little or no access to physical measurement.

But the predominance of the subjectivist view for possibility has limited the

areas in which possibility theory has been applied. These include applications in

\knowledge" or \informational" engineering such as knowledge-based control sys-

tems, approximate reasoning, and decision support systems. In these applications

the subjective semantics of possibility is appropriate, and is used to replace a human

\expert" with an approximate reasoning system. Just glancing at any conference

proceedings will attest to this, as well as some of the anthologies and textbooks

which describe applications of git [64, 104,322,325].

In the �rst real textbook on git, Dubois and Prade mention that fuzzy theory

has not yet being applied to \real" systems [55]. Not much has changed in fourteen

years. Subjective methods are unsatisfactory at best for the modeling of physical

systems or other systems in which individuals do not provide direct input. These

require measurement methods which use empirically derived data, and a semantics

of possibility which is not wedded to human psychology. Where possible, data

should be derived from physical measurements in a manner which directly captures

the possibilistic nature of that data.

3.4.1.3 Predominance of Subjective Methods

The extent to which subjective semantics of fuzziness and possibility dominates git

is truly remarkable. This view was established by Zadeh in his earliest papers, and

indeed provided most of the impetus for his development of fuzzy theory: for him,
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the purpose of fuzzy theory is to model human psychology in a way that traditional

information theory cannot. To that end he introduced the use of \linguistic vari-

ables" [324], which essentially use natural language terms as the values of variables.

Much of the information on which human decisions are based is possi-

bilistic rather than probabilistic in nature. In particular, the intrinsic

fuzziness of natural languages : : : is, in the main, possibilistic in ori-

gin. [325]

In this quotation we see the pillars of the Zadeh interpretation of possibility in

terms of fuzzy sets: the reliance on possibility as a measure of uncertainty in human

cognition for the purposes of modeling human decision making. Zadeh's linguistic

calculus is necessarily purely psychological and humanistic.

The main applications of the linguistic approach lie in the realm of

humanistic systems | especially in the �elds of arti�cial intelligence,

linguistics, human decision processes, pattern recognition, psychology,

law, medical diagnosis, information retrieval, economics and related ar-

eas. [324]

Hisdal suggests that the very �rst tenet of fuzzy theory is that

It is possible to handle inexact information and linguistic values of vari-

ables in a mathematically well-de�ned way which simulates the process-

ing of information in natural-language communication. [120]

Here can be seen the conuence of concepts in the standard fuzzy model: not

only that the inexactitude of fuzzy information models the inexactitude of human

psychological states, and that people represent this inexactitude in linguistic terms,

but that this domain is the only legitimate one for fuzzy information theory. Another

of her papers [119] is also steeped in the implicit view that fuzziness is subjective

uncertainty, nothing more.

This view was also taken up by Sugeno in his development of fuzzy measures

and integrals.

As can be readily seen from their de�nition, fuzzy measures formally

include probability measures as a special case. However, the concept of

fuzzy measures is not used in a probabilistic environment but in a fuzzy

environment where human subjectivity particularly plays an important

role. [277]
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Thirty years after Zadeh's introduction of the fuzzy set, a student of his echoes

the identical view, speci�cally with regards to the \fuzzi�cation" method for sub-

jective evaluation.

Fuzzi�cation is related to the vagueness and imprecision in a natural

language. It is a subjective valuation which transforms a measurement

into a valuation of a subjective value, and hence it could be de�ned as

a mapping from an observed input space to fuzzy sets in certain input

universes of discourse. [174]

To my knowledge, this view has received remarkably little criticism over the

years. But it must be emphasized that our argument here is not that Zadeh's view

is wrong, only that it established unnecessary limits on the available interpretations

of possibility.

Most researchers are fully cognizant of this marriage of subjectivity and possibil-

ity/fuzziness, and indeed they champion it in their theory and applications. Perhaps

the most telling example is the entry in Singh's Systems and Control Encyclopedia,

which de�nes fuzziness as being related to human language [268, p. 1862]. Even

the most prominent researchers parrot the subjectivist view without any critique or

analysis. Yager o�ers the following.

In using either fuzzy or crisp subsets the determination of membership

grades is based upon some subjective criteria of the decision maker. [315]

In a paper which introduces the purely formal concept of a fuzzy random variable,

Puri and Ralescu feel compelled to justify the task in terms of a subjective theory.

In practice we are often faced with random experiments whose outcomes

are not numbers (or vectors in IRn) but are expressed in inexact linguistic

terms. [224]

Even in the introductory pages of Possibility Theory, Dubois and Prade assert the

supremacy of subjective methods in possibility theory, without any further discus-

sion or justi�cation.

Possibility functions are : : : more natural for the representation of sub-

jective information: we do not expect that a single individual will pro-

vide us with very precise data, but we would expect the greatest pos-

sible coherence in his statements. On the other hand, precise but vari-

able data are the usual results of carefully observing a physical phe-

nomenon. [64, p. 13]
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Kandel does the same.

Probability is an objective characteristic; the conclusions of probability

theory can, in general, be tested by experience. The membership grade

is subjective, although it is natural to assign a lower membership grade

to an event that, considered from the aspect of probability, would have

a lower probability of occurrence. [134, p. 74]

The pattern of identifying fuzziness with speci�cally linguistic variables is almost

universal in the literature on fuzzy systems. An exception is Sugeno and Yasukawa,

who carefully try to disambiguate linguistic variables from their underlying fuzzy

sets.

In an ordinary fuzzy model that is used in fuzzy control such as

1. if x is positive small, then y is negative small,

2. if x is positive medium, then y is positive small,

then the terms \positive small", \negative small", etc., are the labels

conventionally attached to fuzzy sets, where the fuzzy sets play an im-

portant role, not the labels. [278]

They go on to develop a method of inductive modeling whereby fuzzy sets which

approximate observed data in a control system are �rst derived, and then a level of

linguistic description is added on top of that.

Subjective methods are used even in models of physical systems which use fuzzy

or possibility theory. For example, fuzzy dynamical systems and fuzzy di�erential

equations can be de�ned as a natural generalization of their crisp counterparts

[22, 161], as can fuzzy automata (as we shall see in Chap. 5). One would have

imagined that such systems would be able to be applied in much of the same areas as

crisp dynamical systems, for example in physics. But these systems are almost never

applied. Instead, applications are made in systems which are regular di�erential

equations whose parameters are fuzzy values, themselves determined by subjective

methods.

An example is in the work of Kandel [132, 133], who applied these kinds of

systems to subjective meteorological forecasting. In an application to mechanical

systems, Sarna and Wojnarowski [253] parameterize their systems with fuzzy prob-

ability distributions. Yet even here, where there is access to stochastic information,

heuristic methods are used even for determining the probabilities of the model.

The work of Antonson, Otto, and Wood [197, 309] is an innovative attempt to

involve git in engineering design. But here as well, their use of fuzzy sets and

possibility is limited to the subjective involvement of the human designer.
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In engineering design, stochastic (probabilistic) uncertainty won't ade-

quately represent all uncertainties. Some uncertainties are subjective,

rather than measured, for example, the coe�cient of friction of a brake

shoe under a variety of possible operating conditions. These subjective

uncertainties can be represented by possibility, introduced by Zadeh.

[310, p. 28]

In Blockley's otherwise exemplary application of git to civil engineering [14],

fuzzy relations are used to represent the truly distributed nature of relations such

as Miner's rule, which relates the number of stresses a body takes to the damage it

sustains. Normally these are treated as crisp functions, which Blockley replaces with

a fuzzy relation which he brazenly declares is derived from a subjective estimation.

Blockley justi�es this approach on the grounds that he is simply making explicit

the subjective judgments which are always a necessary part of modeling. While

this is undoubtedly true, it is not a su�cient justi�cation for ignoring the lack of

an objective semantics. We must ask: what are the empirical sources of Miner's

rule? What is the nature of the distribution of the relations in question? And

how can that distribution be expressed in information theory, either stochastically,

possibilistically, or fuzzily?

Kosko, on the other hand, actually does try to make a strong case for \ontological

fuzziness", that is for using possibility as a measure of uncertainty in models of

physical systems. He trumpets that \fuzziness exists", but even he makes nominalist

and referential fallacies.

Even if science had run its course and all the facts were in, a platy-

pus would remain only roughly an mammal, a large hill only roughly

a mountain, an oval squiggle only roughly an ellipse : : : The only sub-

sets of the universe that are not fuzzy are the constructs of classical

mathematics. [164]

Here, in a section of his paper titled \The Universe as a Fuzzy Set", Kosko misses

the point. A platypus \is" neither a mammal, a non-mammal, nor or a partial

mammal independently of our (subjective) construction of the linguistic categories

\animal" and \mammal". Nor are there any \subsets" in \the universe", nor \is" it

one itself, any more than an electron \is" a wave-function. Adoption of this kind of

mathematical realism serves only to reinforce the original Zadeh view of fuzziness,

relegating it to a sophisticated method of naming, of de�nition, rather than as a

tool for discovery, for modeling, for increasing knowledge.
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3.4.2 Converted Probabilities

Subjective methods derive possibility values directly, either in terms of an equivalent

fuzzy set or as possibility values per se. The other major method derives possibil-

ity distributions indirectly, working �rst with a probability distribution which is

then transformed into a possibility distribution. None of these methods take mea-

surements in a decidedly possibilistic manner, and they all generally violate both

GK-compatibility and Z-compatibility.

3.4.2.1 Frequency Distributions and Measures

In stochastic models, observations are made of the occurrence of one or another

outcome !i.

De�nition 3.13 (Frequency Distribution) Assume a counting function c: 
 7!

W such that ci := c(!i) is the count of the occurrences of !i. Then a frequency

distribution is a function f : 
 7! [0; 1] where

f(!i) = fi :=
ciP
i ci

:

Denote the vector ~f := hfii.

De�nition 3.14 (Frequency Measure) Given a frequency distribution f , then

the frequency measure is a function P : 2
 7! [0; 1] where 8A � 
,

P (A) :=
X
!i2A

fi:

~f is a natural probability distribution with normalization
P

i fi = 1, and P is a

natural probability measure as in (2.83).

3.4.2.2 Conversion Methods

A variety of frequency conversion methods are available which convert an ob-

served frequency distribution to a possibility distribution ~f 7! ~�. Some of the more

prominent ones are outlined here.

Superscripts on � will be used to indicate the various methods. Indices on

summation and maximization will be used only where necessary, and will otherwise

be obvious from context.



3.4. TRADITIONAL SEMANTICS OF POSSIBILITY 119

Maximum Normalization From (2.32) and (2.73), the signi�cant di�erence be-

tween probability and possibility is the distribution operator �, which is + for

probability and _ for possibility. It is tempting, therefore, to create possibility the-

ory directly from probability theory by simply replacing + with _. As will be seen

in Chap. 5, this approach has some validity.

This view can be applied to a frequency distribution (3.13) to arrive at the

most common and obvious (see Klir [145, p. 104], for example) method to derive a

possibility distribution.

De�nition 3.15 (Maximum Normalization Frequency Conversion) Given a

frequency distribution f , then let �m: 
 7! [0; 1] be a possibility distribution where

�m(!i) = �mi :=
ciW
i ci

:

(3.15) derives possibilities directly from the counts c 7! �m. It is easily seen that

this is also equivalent to a frequency conversion ~f 7! ~�m, which Klir [148] describes

as a ratio scale.
Corollary 3.16

�mi =
fiW
fi

Proof: Because
P
ci is a positive constant,

fiW
fi

=
ciP
ci

�_�
ciP
ci

�
=

ciP
ci

�W
ciP
ci

=
ciW
ci
= �mi :

The converse relation �m 7! f is given by [148]

fi =
�miP
�mi

: (3:17)

The Z-compatibility of f and �m is therefore

Z(f; �
m) =

X
fi�

m
i =

X
fi

fiW
fi

=
X f2iW

fi
=

P
f2iW
fi

so that only the maximally uninformative f is Z-compatible with the maximally

uninformative �m.

Theorem 3.18 If Z(f; �
m) = 1 then ~f = ~p � and ~�m = ~��.

Proof: In general, fi �
W
fi, so that

fiW
fi
� 1; fi

fiW
fi
� fi; Z =

X
fi

fiW
fi
�
X

fi = 1:

In order for the equality to hold, it must be that 8i; fi=
W
fi = 1 so that 8i; fi =

W
fi,

and therefore 8i1; i2; fi1 = fi2 . Denote this shared value of all the fi as a constant f0.

So
Pn

i=1 f0 = nf0 = 1, and therefore f0 = 1=n. Now, 8i; �mi = f0=
W
f0 = f0=f0 = 1.
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Uncertainty Invariance In a series of recent papers [95, 147, 148, 150,152, 156,

158{160], Klir and his colleagues have developed methods for and results from using

the uip to derive a well-justi�ed frequency conversion method which is related to

maximum normalization.

Since a frequency distribution is a natural probability distribution, a frequency

conversion transforms a probability distribution to a possibility distribution, and

thus is a candidate for the uip.

De�nition 3.19 (Uncertainty Invariance Frequency Conversion) [95] Given

a frequency distribution ~f , let ~�u be a possibility distribution such that T(~f ) =

H(~f ) = T(~�u).

Proposition 3.20 (Log-Interval Invariance) [95] The best justi�ed ~�u is

�ui =

�
fiW
fi

�a
; (3:21)

where a is solved numerically from

H(~f ) =
nX
i=2

�
fiW
fi

�a
log2

�
i

i� 1

�
: (3:22)

Let s :=
P

i �
1=a
i . Then conversely, ~� 7! ~fu where

fui :=
�
1=a
i

s
(3:23)

and a is solved numerically from

T(~�) = �
X
i

�
1=a
i

s
log2

 
�
1=a
i

s

!
:

Corollary 3.24 If N(~�m) = H(~f ), then ~�u = ~�m when ~�u is determined by log-

interval scale.

Proof: From (3.22), (3.16), and (2.109), a = 1 i�

H(~f ) =
nX
i=2

(�mi )
a log2

�
i

i� 1

�
= N(~�m):

Then from (3.21) and (3.16), �mi = �ui .
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Necessity from Probabilistic Di�erence Dubois and Prade [58] have sug-

gested that the degree of \necessity" between two elements !i1 and !i2 is naturally

expressed by the di�erence fi1 � fi2 , and so their \possibility" would be 1 minus

that quantity. A frequency conversion method is then available.

De�nition 3.25 (Probabilistic Di�erence Frequency Conversion) [58] As-

sume a frequency distribution f ordered so that fi � fi+1, and let fn+1 := 0. Then

let �d be a possibility distribution where

�di := 1�
i�1X
j=1

(fj � fi) = ifi +
nX

j=i+1

fi =
nX

j=1

fi ^ fj

Conversely,

fi =
nX
j=i

1

j
(�dj � �dj+1):

This method is actually an application of the mep as discussed in Sec. 2.6.4.2.

Proposition 3.26 [58] Let S�
d

be the constructed consonant random set deter-

mined by �d and (2.128), with evidence function md. Then f is the maximum

entropy probability distribution from (2.122) of S�
d

, so that

f = pS
�
d

; fi =
X

Aj3!i

md(Aj)

jAj j
:

For Z-compatibility,

Z(f; �
d) =

X
i

fi�
d
i =

X
i

fi

nX
j=1

fi ^ fj

which achieves unity under the same conditions as maximum normalization.

Theorem 3.27 If Z(f; �
d) = 1 then f = ~p � and ~�d = ~��.

Proof: Because
P

i fi = 1, therefore if Z(f; �
d) =

P
i fi
Pn

j=1 fi ^ fj = 1, it

must be that 8fi;
Pn

j=1 fi ^ fj = 1. Since fi ^ fj � fi, by the same reasoning,

8fi; fj; fi = fj , and thus 8fi = 1=n. Then since
Pn

j=1 fi ^ fj =
P
fi = 1, therefore

�d(!) = 1.
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Additivity on a Probabilistic Nest Another observation derived from the

mathematics of possibility is that, given a consonant random set S = fhAj ; mjig,

from (2.94), each value of a possibility distribution can be expressed as the sum

of some of the mj . Since each of the mj is an element of a probability distribu-

tion, albeit one on 2
, not on 
, therefore a possibility distribution \looks like" a

cumulative probability distribution on 2
.

Also recall from Sec. 2.9.5.4 that the alpha cuts of any ordered fuzzy set, even

a probability distribution, form a consonant class on 
.

These factors are combined in another popular and common frequency conversion

method of Dubois and Prade [57,71]

De�nition 3.28 (Additive Frequency Conversion) [57] Assume a permuta-

tion of the universe ~
 = h!1; !2; : : : ; !ni, and let Ai := f!1; !2; : : : ; !ig. Then given

a frequency distribution f , let fn+1 := 0 and �c be a possibility distribution where

�ci := P (Ai) =
iX

j=1

fj

Conversely, let �c0 := 0, then

fi = �ci � �ci�1

Corollary 3.29

81 � i � n;

iX
j=1

fj =
i_

j=1

�cj

Proof: 82 � i � n,

�ci�1 =
i�1X
j=1

fj �
iX

j=1

fj = �ci :

The result follows.

This method does not preserve maximum uninformativeness.

Corollary 3.30 If ~f = ~p � then 81 � i � n; �ci = i=n.

Proof: Trivial.

For Z-compatibility,

Z(f; �
c) =

X
i

�ci fi =
X
i

fi

iX
j=1

fj

so that ~f is Z-compatible with ~�c only for the certain distribution with weight 1 on

the �rst element of the permuted universe.
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Theorem 3.31 If Z(f; �
c) = 1 then ~f = ~� = ~11.

Proof: Since
Pn

j=1 fj = 1, therefore 81 � i � n;
Pi

j=1 fj � 1, with equality

only for i = n. In order for Z(f; �
c) =

Pn
i=1 fi

Pi
j=1 fj = 1, it is required that

81 � i � n;
Pi

j=1 fi = 1, and so 81 � i � n; i = n. This can only be the case if

n = 1, and so ~f = ~11. j~�j will then also be 1, with ~� = ~11.

This method is ambiguous, since there are n! permutations ~
. Dubois and

Prade [71] suggest that ~
 should be chosen so that fi � fi+1. Then ~�c yields the

\smallest" possibility measure that contains the additive frequency measure P , so

that �c (derived from �c by (2.91)) and P will be DP-compatible.

3.4.2.3 Insu�ciency of Frequency Conversions

Each of the frequency conversion methods above has its own justi�cation and ra-

tionale. Each has advantages and disadvantages. Our concern here is not to choose

among them, but rather to question the general prospect of deriving a possibil-

ity distribution based on any frequency distribution ~f , especially one which yields

highly Z-incompatible possibility distributions.

There can be no doubt that ~f is naturally an additive probability distribution.

It thus generates a speci�c random set, denoted Sf , with an additive probability

measure P . So as discussed in Sec. 3.2.5.3, possibility is not even de�ned on Sf .

Instead, when we posit a frequency conversion ~f 7! ~�, we are in fact creating a new

random set S� based on Sf . Such a new random set must be a distortion of the

measured data ~f : the data are being transformed into a form in which they do not

actually exist. The measured data are maximally speci�c; the new random set is

almost completely nonspeci�c.

There may in fact be a good conversion ~f 7! ~�. We have asserted GK-compatibility

as the criteria for a good conversion, and have seen that most of the above methods

satisfy Z-compatibility only for special cases. This is not surprising either. As we

have seen, GK-compatibility is highly uninformative: every occurring event must

be maximally possible, while non-occurring events can have any non-unitary possi-

bility. Frequency conversion methods, on the other hand, try to provide a distinct,

generally non-unitary, positive possibility for each distinct positive probability.

The problem with using frequency conversion methods is deeper, it is in ~f itself.

Surely frequency conversions must be used when only frequency data are available.

But the possibilistic representation ~� is never ultimately appropriate for data gath-

ered by a frequency distribution ~f . Instead, we should try to obtain data in a form

more directly similar to the ultimate possibilistic representation. And this is what

will occupy us in Chap. 4.
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x y

� � 

a 0.2 0.1 0.4

b 0.3 0.9 0.4

c 0.5 0.0 0.2

Table 3.1: An example conditional probability matrix.

3.4.3 Possibilities as Likelihoods

Of course numbers in and of themselves have no objective \identity" as either prob-

abilities, possibilities, or anything else. It is only a set of numbers in relation to

each other which can have the properties of one kind of distribution or another.

Statistical likelihoods share some, but not all, of the properties of probabilities, and

a few researchers have suggested that they can form the basis for possibility theory.

3.4.3.1 Likelihoods as Non-Additive Probabilities

Consider a conditional probability distribution presented as a matrix P = [p(xjy)] as

shown in Table 3.1. This matrix is singly stochastic, that is 8y;
P

x p(xjy) = 1, but

9x;
P

y p(xjy) 6= 1. So when y is interpreted as an independent parameter, then p

is a probability distribution in x. On consideration of the transpose PT = [p(yjx)],

now y is regarded as the variable and x the parameter. The p(yjx) can still be

regarded as probabilities (after all, they are derived from a table of conditional

probabilities), but they are not additive in y for a �xed x. Instead, the p(yjx)

are likelihoods denoted L(yjx) in a statistical inference problem, typically that of

deriving the parameter value y from some measured datum x.

It is clear that the L(yjx) form a fuzzy set, exactly as probabilities and possibil-

ities do. And so on the Zadeh interpretation of possibility, the L(yjx) can be taken

as a possibility distribution. Hisdal [119], presenting her TEE method, takes this

approach (in a slightly di�erent formal context).

Although P (�j�) denotes a probability, it is not a probability distribution

over �, but over the di�erent elements [� 2 �]. P (�j�) is conditioned on

the value of �. As a function of � (for a given �), it is called a \likelihood

distribution over �" in statistical terminology. Notice that although

likelihoods are probabilities, there is no requirement that the ordinates

of the likelihood function must add up to 1. However [generally] the

sum of the likelihoods over all elements of � must add up to 1 for each
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�. [119]

The de�ciency of this method is obvious: likelihoods are not possibilistic normal,

although possibilistic normalization is an absolutely essential property of possibility

distributions. Natvig [190], expressing a view very similar to Hisdal's, explicitly

recognizes this problem, but simply dismisses out of hand any necessity for the

normalization of possibility distributions.

Of course it is also true that neither possibilities nor likelihoods are additive, and

this may attract people to considering likelihoods as something other than probabil-

ities, perhaps even possibilities. And on the Zadeh interpretation of possibility, any

fuzzy set, including a probability distribution, can be taken as a possibility distribu-

tion. So Natvig and Hisdal's view correctly restricts the class of possibilistic fuzzy

sets to non-additive ones, but does not restrict it su�ciently to maximally normal

ones.

3.4.3.2 Surprise and Likelihood

In Sec. 3.4.1.2, Shackle's identi�cation of possibility with lack of potential surprise

was criticized because of its necessarily subjective basis. Instead, there are reasons

to consider that \potential surprise" might be an even better description of the

concept of likelihood than it is of possibility.

Recall the following quotation from Shackle.

The occurrence of something hitherto judged impossible would cause a

man a degree of surprise which is the greatest he is capable of feeling. If

this be so, we have, corresponding to perfect possibility, a zero degree of

surprise; corresponding to impossibility, an absolute maximum degree of

surprise. [260, p. 68]

While these extreme cases are acceptable, the �nal idea that surprise is somehow

quantitatively related to possibility cannot hold in general when considering not

one's mental state with respect to an imagination of a possibility, but rather the

physical possibility of an event occurring.

As an example, consider a pack of cards with 52! possible shu�es. Were I to

produce a shu�e which appears well-ordered (for example, aces to kings by suit),

my surprise would be very high. Indeed, among all the 52! shu�es (the speci�ed

frame), it may be maximal. Of course some event occurring outside of this frame

(for example, a pink elephant appearing and eating twenty of the cards) might be

even more surprising.
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In what sense is the well-ordered shu�e less possible than any other shu�e?

First, clearly every shu�e is equally probable. On a probabilistic analysis we can

determine by the mep that each shu�e has probability 1=52!.

Further, each shu�e is also completely possible. First, by ppc, because each

shu�e has probability 1=52! > 0, therefore every shu�e has possibility 1. And

leaving aside ppc, on a strictly philosophical analysis, there is nothing preventing

any of the shu�es from appearing.

Since all 52! shu�es are equally likely, and indeed equally, that is to say maxi-

mally, possible, therefore I should be just as surprised by the appearance of any of

the 52! shu�es if I was able to recognize them distinctly. I am more surprised by

the well-ordered shu�e because my surprise is not a function of the absolute odds

of having that shu�e turn out, but rather of my cognitive capacities to recognize it

as a special shu�e; I recognize it as belonging to a subset of shu�es which are rare

with respect to all 52! shu�es. Since the most I can recognize are broad groupings

of shu�es (those that look \random" vs. those that look \ordered"), then a well-

ordered shu�e surprises me because within the equivalence classes of \well-ordered

shu�es" vs. \not well-ordered shu�es", the well-ordered shu�e has low frequency:

the marginal probability within the equivalence classes of a well-ordered shu�e is

small compared to that of a random-appearing shu�e.

In contrast, the appearance of a 1 resulting from a roll of a six-sided die is not

surprising at all because I can recognize all six faces distinctly. But in a roll of

two die, snake eyes and box cars are surprising, although equally likely outcomes

(assuming the die are distinctly identi�ed, e.g. 3 4 is distinct from 4 3), not only

because my perceptual system is biased to recognize doubles and other extreme

values, but because the marginal probability of the sum of the die being 2 or 12 is

low (1/36). Similarly, any relatively rare, but completely possible event results in

high surprise.

So surprise is really an epistemic measure of probability, not of possibility, be-

cause it is really low frequency or likelihood events which are the most surprising.

But, as Shackle goes to great length in arguing, both possibility and surprise are

non-additive (\non-distributional" for him): a low degree of surprise in any one

event need not a�ect the degree of surprise of another. So how can we move sur-

prise from a measure of possibility to one of probability, while still relinquishing

additivity? This is possible if we identify surprise with likelihood, which we have

seen has neither stochastic nor possibilistic normalization.

It is signi�cant to note that Shackle's argument for possibilistic normalization

discussed in Sec. 3.3.1.2 is critically dependent on the assumption of a closed uni-

verse. This is despite the fact that we have seen in Sec. 3.3.5 that the lack of the
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requirement for a closed universe is a key advantage for mathematical possibility,

and also despite Shackle's own criticism of probability being dependent on closed

universes.

A distributional [additive] uncertainty variable is peculiarly liable to mis-

interpretation. It assumes that the suggested answers in some �nite

list are all that need be taken into account for some particular ques-

tion. [260, p. 51]

ppc provides some reconciliation between surprise, rare events, likelihood, and

proper possibility. If we regard high surprise as low likelihood (a probability, not a

possibility), then both properly possible (the pink elephant) and rare but completely

possible (the shu�e) events show high surprise, since by ppc the elephant requires

zero, and thus low, probability. Further, maximal surprise (zero probability) requires

proper possibility. That is to say the \emergent" pink elephant, and anything else

from outside the frame, would be more surprising than the simply rare ordered

shu�e. While the appearance of the shu�e would be surprising, it would not be

so surprising as to call the frame into question. Anything inside the frame (and

thus somewhat probable, and maximally possible) is less surprising than anything

outside the frame.

Further, on the interpretation of surprise as low likelihood (low probability),

Shackle's criteria from the �rst quotation are completely consistent with ppc, de-

pending on whether we understand them as implications or biimplications. Shackle

states that perfect possibility corresponds with zero, and impossibility with maxi-

mal, surprise. By combining our interpretation of surprise and ppc, it can be derived

that:

� Zero surprise implies maximal likelihood, and thus positive probability and

complete possibility. But the converse does not hold: a completely possible

event might have any positive probability, and thus still be somewhat surpris-

ing (like our well-ordered shu�e).

� On the other hand, impossibility implies zero probability, and thus maximal

surprise. But again the converse does not hold: a maximally surprising event

(like the evolution of the wing, or the Great Depression), even a zero prob-

ability event, might have any degree of (proper) possibility, and thus not be

impossible.
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3.4.4 Objective Measurement of Fuzziness

Despite the protestations above, there actually are some objective measurement

methods to determine fuzzy set membership grades (sometimes even possibility

values). However, they all have signi�cant weaknesses and disadvantages for the

objective measurement of possibility.

3.4.4.1 Objective Measurement of the Subject

First, it must be recognized that there is not necessarily a clear dichotomy between

\subjective" and \objective" types of measurement, and in fact there is interaction

between them. Through the mediation of human action, human subjective states of

mind are manifested as objective facts which are objectively observable.

So there is a real sense in which all of the subjective methods discussed in

Sec. 3.4.1.1 are objective methods: they are the objective measurement of a human

subject. In fact, there is a serious argument as to whether or not any other methods

(for example, polling) are even possible when it is the human subject which is being

measured. In other words, given that you want to construct a possibilistic model of

a human operator or expert, then clearly the subjective methods are what will be

used, and those will then be objective methods.

But this argument does little except move our objection to a di�erent place.

Rather than criticizing the fuzzy community for relying only on subjective methods,

we must still criticize them for only modeling human subjects.

3.4.4.2 Fuzzy Relations from Frequencies

Two groups of authors have advanced methods to derive two-dimensional fuzzy

relations from frequency distributions. Cao [23] and Cao and Chen [24] compare

a frequency distribution to itself to derive a reexive and symmetric fuzzy relation

which is possibilistic normal.

De�nition 3.32 (Cao-Chen Measurement) [24] Given a frequency distribu-

tion ~f = hfii, let eR := [sij ] e� 
2 be a fuzzy relation where 81 � i; j � n,

s0ij = 1� jfi � fj j; sij =
s0ij �

V
i;j s

0

ijW
i;j s

0

ij �
V
i;j s

0

ij

Roberts [240] compares two distinct frequency distributions by a number of ad hoc

methods (not detailed here) to derive a general fuzzy relation.

These methods are not su�cient for our purposes, not only by the same argument

as used against frequency conversions in Sec. 3.4.2, but also because they are ad hoc

and highly specialized to produce only two-dimensional relations.
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3.4.4.3 Fuzzy and Possibilistic Clustering

Pattern recognition problems have been one of the primary applications of fuzzy

theory for a long time. Clustering methods [305] have been a major method for

inductively building up a pattern from measured (usually visual data). The fuzzy

c-means method was developed early as a fuzzy method for pattern recognition.

Recently more possibilistic approaches have been attempted.

Fuzzy c-Means The following de�nitions form the basis of the fuzzy c-means

algorithm, and are derived from Windham [306] and Bezdek et al. [13].

De�nition 3.33 (c-Partition) LetX := f~xkg be a set of data points, each ~xk; 1 �

k � n a real m vector. Then 8k, let U := [uik]; 1 � i � c, a c� n real matrix, be a

c-partition of X if

8k;
cX

i=1

uik = 1; (3:34)

8i; k; uik 2 [0; 1]; 8i;
nX

k=1

uik > 0:

De�nition 3.35 (Fuzzy c-Means) Let: ~v := h~vii
T be a c � n real matrix, with

each cluster prototype ~vi; 1 � i � c a real n vector; 1 � m < 1; and the

objective function be

Jm(U;~v) :=
X
k

X
i

(uik)
mdik (3:36)

where dik := j~xk � ~v
�

i j
2 and j � j is an inner product induced norm.

Let ~v� and U� be the optimal prototypes and c-partition of X respectively.

The algorithm iterates the following formulae to convergence.

~v�i =

P
i(u

�

ik)
m~xkP

k(u
�

ik)
m

; u�ik =

8<:
�Pc

j=1(dik=djk)
1

m�1

��1
; 8i; dik > 0

0; 9i; dik = 0
:

Possibilistic Clustering Note the odd additivity requirement of (3.34). The rows

of U are hypothesized to be fuzzy sets, but the columns are conditional probabilities.

In fact, while U is a fuzzy relation, it is also a stochastic matrix (recalling that all

stochastic matrices are fuzzy relations).

To move fuzzy c-means towards possibilistic clustering, it seems reasonable to

replace the requirement (3.34) with

8k;
c_

i=1

uik = 1; (3:37)
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making U a possibilistic matrix (matrix of conditional possibilities, see Sec. 5.3.2.4).

Krishnapuram and Keller [170] have suggested a possibilistic modi�cation of

fuzzy c-means, replacing (3.36) with

Jm(U;~v) :=
X
k

X
i

(uik)
mdik + �i(1� uik)

m;

where �i can be determined in a variety of ways, and is generally on the order of

dik.

Instead of (3.37), they require

8k;
c_

i=1

uik > 0;

The possibilistic normalization of (3.37) is dependent on a prototype being a data

point, although this can be forced by choosing ~vi to be the ~xk closest to the cluster

center (mean). Thus their approach is awed from the perspective of mathematical

possibility theory.

Another possibilistic clustering approach which shows some merit is the so-called

\mountain method" of Barone et al.

De�nition 3.38 (Mountain Function) [9] Let: X := f~xkg be a set of data

points, each ~xk ; 1 � k � n a real m vector; F := f~flg be a set of grid points, each

~fl a real m vector; d(~xk; ~fl) be a distance between ~xk and ~fl; and � > 0 arbitrary.

Then 8~fl, the mountain distribution is the possibility distribution

�l(~xk) := e��d(~xk;
~fl);

and the mountain function is

M(�l) :=
nX

k=1

�l(~xk):

The algorithm proceeds by �rst identifying max~fl
M(�l), and hypothesizing it as the

�rst cluster center ~vl, then deleting ~vl from F, adjusting the ~fl to reect the loss,

and then iterating.

The function �l(~xk) indicates the possibility that ~fl is a point contained in the

same cluster as ~xk, andM(�l) serves as an information measure of ~fl. It is thus useful

to consider this as a problem of data induction, and apply the mup by replacing

M(�l) with N(�l).



Chapter 4

Possibilistic Measurement

A concept without a percept is empty; a

percept without a concept is blind.

| Kant

To the extent that git researchers are satis�ed with the more modest goals of

\informational engineering", then the nominal Zadeh program, where fuzzy sets

which more or less reect our natural language de�nitions are constructed ad hoc,

may be su�cient. But a real \ontological" program for possibility must moreover

try to �nd good de�nitions speci�cally in accordance with possibilistic mathematics.

Acceptable de�nitions must be constrained by something in the world, and some-

thing other than our will and whim. This is the essence of empiricism, to open

our eyes and only to construct our theories to be consistent with what is seen; and

beyond that, to learn to see new things and thus extend our categories.

From the arguments of Secs. 3.1 and 3.4.1, possibilistic measurement procedures,

methods of empirical observation, are required. In Sec. 3.4.2 it was shown that

probabilistic measurement procedures which yield frequency distributions are not

su�cient. Such data are necessarily speci�c, and thus not appropriate for possi-

bilistic representations. Speci�c data have very strong informational structures,

much stronger than the very weak possibilistic structures. The di�erence between

stochastic and possibilistic information, as expressed by ppc, is extraordinary: prob-

ability distributions provide virtually no possibilistic information, and thus virtually

all conversions from frequency distributions yield incompatible possibility distribu-

tions.

Instead measurement procedures are required that yield data in accordance with

the semantic aspects of possibility theory outlined in Secs. 3.2 and 3.3, and thus

governed by possibility measures and distributions. In particular, non-speci�c data

are necessary, which do not yield traditional frequency distributions.

131
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4.1 Measuring Devices

As discussed in Sec. 3.1.2.2, measurement is the general process of encoding an

aspect of the \real world" into its representation in a formal system. It is only

through measurement procedures that we can gain knowledge about the world; it

is through the results of measurements that the world is \presented" to us. In our

case, this formal system is the universe of discourse, the set 
 = f!g. For the

moment, the structure of 
 is not speci�ed.

4.1.1 Physical Measuring Devices

We generally think of a measuring device as producing a measured value which is

a number ! 2 
. For example, a thermometer calibrated in integral degrees in the

interval [0; 100] would yield a result, say 72 degrees, 72 2 f0; 1; : : : ; 100g.

On closer examination, however, we recognize that there is uncertainty on the

readout of the thermometer. The thermometer is in fact a glass tube, a continuous

object, which we will represent as 
 � IR. The tube is marked at certain points, say

dj , marked with a certain number of degrees. When the thermometer equilibrates,

the mercury stops at some point almost always between two of the marked points.

While we can use subjective estimation to interpolate between these two points,

within the formalism (or for a digital, electronic thermometer) only an interval, say

[dj ; dj+1) denoted as Bj , can be reported as the result of the measurement. While

any particular interval Bj is usually identi�ed by and reported as a single number,

either dj or dj+1, it must always be kept in mind that it in fact indicates the entire

interval [dj; dj+1). Observation of a speci�c position of the mercury (an ! 2 Bj)

must yield an interval readout Bj . Thus observation of only the interval Bj leaves

uncertainty as to the \actual" value ! 2 Bj .

4.1.2 General Measuring Devices

The following de�nition is used in order to incorporate such uncertainty into mea-

suring devices.

De�nition 4.1 (General Measuring Device) A general measuring device is

a class

C := fAj0g � 2
; 1 � j0 � N 0 := jCj;

where each Aj0 � 
 is called a measurable set.

C is the collection of all subsets which are observable by the device. Each time

a measurement is taken, an Aj0 � 
 results as a report of C. The nature of the
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measuring device will depend on the elements and structure of C. In the thermometer

example, C = fBjg is the collection of disjoint, equal length, half-open intervals

Bj = [dj ; dj+1).

This usage is in keeping with the representations of \events" as subsets in mathe-

matical measure theory, both classical [115] and fuzzy [299]. C as a measuring device

is also a direct generalization of the standard sense of a point measuring device from

Sec. 4.1.1, since if 8Aj0 2 C; 9! 2 
; Aj0 = f!g, then the number-reporting device

is recovered.

De�nition 4.2 (General Measurement Record) Assume a general measuring

device C. Let each distinct measurement result be indexed by s for 1 � s � M ,

and denote observation s from C as As, so that 8s; 9!j0; As = Aj0 . Then a general

measurement record is a vector

~A := hAsi =
D
A1; A2; : : : ; AM

E
:

4.1.3 Empirical Random Sets

Since ~A is a vector, it may be that 9s1; s2; A
s1 = As2 .

De�nition 4.3 (Empirical Focal Set) Given a general measuring device C with

measurement record ~A, let

FE := fAjg = fA1; A2; : : : ; ANg

be an empirical focal set derived by eliminating the duplicates from ~A, where:

1 � j � N; FE � C; N � N 0; N �M; 8Aj 2 F
E; 9As 2 ~A;As = Aj ;

and inclusion of an element in a vector is de�ned as appropriate.

Each of the Aj0 is one of the N
0 measurable sets; each of the M sets As is a record

that one of the Aj0 has been observed; and �nally each of the Aj is one of the N

sets which was actually observed at one time or another.

Now proceed in a manner analogous to frequency distributions (3.13).

De�nition 4.4 (Set-Frequency Distribution) Given a general measurement record

~A and empirical focal set FE, then let C:FE 7! W be a set counting function,

where 8Aj 2 FE; Cj := C(Aj) is the number of occurrences of Aj in ~A. Then a

set-frequency distribution is a function mE :FE 7! [0; 1] where

mE(Aj) :=
CjP

Aj2F
E Cj

=
Cj

M
; mE

j :=mE(Aj):
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Corollary 4.5 mE is an evidence function.

Proof: Since
P

j Cj = M , therefore
P

j m
E
j =

P
j Cj=M = 1. The result follows

from the de�nition of evidence functions (2.52).

De�nition 4.6 (Empirical Random and Focal Sets) Given a set-frequency func-

tion mE, let the empirical focal set SE be the random set derived as in the

de�nition (2.62), with empirical focal set FE.

Set-based statistics and empirically derived random sets have only a small pres-

ence in the literature. Within git they have been used primarily by Wang and

Liu [296, 297] and Dubois and Prade [65, 68, 74]. Fung and Chong [90] provide an

interesting example of the use of set statistics in their critique of Dempster's rule

of combination (however, their argument is awed, and there are errors in a crucial

table).

It should also be noted that there is an entirely di�erent sense of \set-valued

statistic", as used by Degroot and Eddy [46]. Here it does not mean a mathemat-

ical property of some measured subset data, but rather an indeterminate value for

the parameter of a probability distribution. For example, a uniform probability

distribution would have a set-valued parameter if it was de�ned on a disconnected

subset of the line, for example [1; 2][ [5; 6].

4.1.4 Disjoint Measuring Devices

The key feature of a classical instrument described in Sec. 4.1.1 is that its measurable

sets are disjoint.

De�nition 4.7 (Disjoint Measuring Device) A general measuring device C is

a disjoint measuring device if 8A1; A2 2 C; A1 ? A2.

Generally, scientists strive to construct disjoint measuring devices. In such devices

C is an equivalence class on 
, establishing observations of ! 2 
 in an equivalence

relation, and yielding the observations As 2 C unambiguous. Because the Aj are

disjoint, observation of any one particular subset admits to no uncertainty at the

level of description of C.

Furthermore, when C is a partition, that is
SN 0

j0=1Aj0 = 
, then C covers 
,

yielding all observations possible. Alternatively, even when C does not cover 
, C

does cover the sub-universe
�SN 0

j0=1Aj0

�
� 
. Measurement of a given Aj0 2 C leaves

us with uncertainty about the value ! 2 Aj0 . The cardinalities jAj0 j relative to j
j

indicates the precision of the thermometer.
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So in this case C can itself be considered as a new universe of discourse 
0 :=

C = fAj0g. Of course 
0 is essentially equivalent to 
. The di�erence is just that

in 
0 the ! are grouped into the sets Aj0 , and 
0 is considered as a collection of the

Aj0 , not of the !.

Because the Aj0 are disjoint, so will the actual observed subsets Aj . Then ~A

becomes a time-series data set on points in 
0, and the empirical evidence function

mE becomes a frequency distribution over the disjoint Aj0 , as a true probability

distribution, and not as an evidence function.

Proposition 4.8 If C is a disjoint measuring device, then as in Sec. 3.13, let

c0: 
0 7! W f 0: 
0 7! [0; 1]; P 0: 2

0

7! [0; 1]

be a point counting function, frequency distribution, and frequency measure respec-

tively, where 81 � j0 � N 0 and 8B � 
0,

c0(Aj0) := C(Aj0); f 0(Aj0) := c0(A0j)=M;
X
j0

c0(Aj0) = 1; P 0(B) =
X

Aj02B

f 0(Aj0):

Thus time-series data on classical instruments necessarily generate probability

distributions. As argued in Sec. 3.4.2.3, a frequency conversion f 0 7! � can be

constructed, but it is better to continue the search for appropriately possibilistic

measured data.

4.1.5 Incomplete Observations

Consider a classical measuring device which yields counts (here denoted simply

ci := c(!i)), and assume that a certain observation is missing from the data set. Such

a missing observation is anywhere in 
, and the count of such missing observations

can be denoted as c0 with frequency f0.

The frequency f0 can be regarded as an observation of the completely nonspeci�c

subset 
, and thus the point data stream, together with its missing observations,

can be regarded as resulting from measurements on a special device.

De�nition 4.9 (Augmented Speci�c Measuring Device) Given 
, let

C+ := ff!1g; f!2g; : : : ; f!ng;
g

be the augmented speci�c measuring device.

C+ is almost completely speci�c, consisting of the singleton sets together with the

whole universe.
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Corollary 4.10 If C = C+, then 81 � i � n;Pli = fi+f0, where fi is the frequency

of !i, f0 is the frequency of 
, and Pl is the plausibility on SE.

Proof: From the plausibility assignment formula (2.68),

Pli =
X
Aj3!i

mE
j = mE(f!ig) +mE(
) = fi + f0:

For a simple example (illustrated in Fig. 4.1), assume that a system with three

states 
 = fa; b; cg is observed at ten uniformly distributed times, with a and c each

seen twice, b seen three times, and three cases where the sensor made no report. In

the augmented speci�c device, these �nal three cases are recorded as observations

of 
, and the speci�c observations replaced with observations of the singleton sets

fag; fbg, and fcg respectively. The overall empirical random set is then

SE = fhfag; 1=5i ; hfbg; 3=10i ; hfcg; 1=5i ; h
; 3=10ig

with plausibility assignment ~Pl = h1=2; 3=5; 1=2i, which is neither an additive prob-

ability distribution nor a maximal possibility distribution.
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Figure 4.1: An augmented speci�c random set for incomplete point observations.

Other researchers have considered this issue. In some sense the observation of 


acts as the \residual hypothesis" as used by Shackle, and as discussed in Sec. 3.3.1.2.

Shafer [262] has discussed Lambert's use of a ternary calculus valued on the amount

a of support for a proposition, that amount e opposed, and that amount u which

is neutral. Shafer has shown that Lambert's results are equivalent to a random

set from an augmented speci�c device on a two-dimensional universe, such that a

and e value the singletons, and u the universe (u being neither a nor not-a = e).

Bogler [17] discusses observations of the universe in the context of evidence theoretic

measurement, and Klir [146] describes the special case with two binary variables.

Dubois and Prade [69] consider the maximum entropy distribution on fA;B;
 �

fA;Bgg. And Gertler and Anderson [96] consider Dempster's combination rule with

mixed singleton/universe focal sets.
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4.1.6 Continuous and Discrete Spaces

In the earlier chapters 
 has been a �nite space. But as we move to discuss possi-

bilistic measurement, it will be desirable to let 
 = IR, and the measurable subsets

Aj0 be closed intervals in IR. Mathematical complications can be avoided as long as

SE is �nite, that is as long as only �nitely many observations N are taken. This

is because an interval A = [a; b] � IR can be characterized completely by the two

endpoints a and b. With each new observation, N grows by at most 1, and so the

number of endpoints grows by at most 2. It is only these endpoints that need to

be recorded, and none of the properties of the continuum of points between them is

signi�cant. Therefore �nite random sets on IR can be represented as random sets

on the �nite space of the set of all these interval endpoints. This will be completely

discussed below in Sec. 4.2.1.

4.2 Possibilistic Histograms

Possibility distributions derived from consistent empirical random sets can be prop-

erly described as possibilistic histograms, similar to ordinary (stochastic) his-

tograms, but resulting from overlapping interval observations, and thus governed by

the mathematics of random sets.

De�nition 4.11 (Possibilistic Histogram) Assume SE is consistent, or is a con-

sistent approximation. Then a possibilistic histogram is the possibility distribu-

tion � determined from the plausibility assignment formula (2.68).

Corollary 4.12 (Possibilistic Histogram Formula) If � is a possibilistic his-

togram, then 8! 2 U(�),

�(!) =
X
Aj3!

mE
j =

P
Aj3!

Cj

M
:

Proof: Follows immediately from the plausibility assignment formula (2.68) and

the set-frequency function distribution de�nition (4.4).

4.2.1 The Form of Possibilistic Histograms

In order to analyze the properties of possibilistic histograms it is necessary to math-

ematically describe their components. The following de�nitions are summarized in

Table 4.1, and are illustrated in the example in Sec. 4.2.2 and in Fig. 4.2.

De�nition 4.13 (Empirical Focal Set Components) Let 
 = IR, and assume

a random set SE.
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� Let each observed subset Aj 2 F
E be a closed interval denoted by its endpoints

Aj := [lj ; rj].

� Let l(j) and r(j) be the order and \reverse order" statistics [44] of the left

and right endpoints, so that

l(1) � l(2) � � � � � l(N); r(N) � r(N�1) � � � � � r(1): (4:14)

are permutations of the lj ; rj.

� Denote the vectors of endpoints and ordered endpoints as

~El := hl1; l2; : : : ; lNi ; ~Er := hr1; r2; : : : ; rNi ; ~E := hl1; l2; : : : ; lN ; r1; r2; : : : ; rNi :

Ê :=
D
l(1); l(2); : : : ; l(N); r(N); r(N�1); : : : ; r(1)

E
:

Theorem 4.15 (Consistent Endpoints) If FE is consistent then

max
j

lj = l(N) � r(N) = min
j

rj ;

so that C(�) = [l(N); r(N)].

Proof: Let C(�) = [l; r], and assume lj1 < lj2 . Then 8! 2 [lj1 ; lj2) ; ! 62 A2. So

since 8! 2 C(�), therefore 6 9lj < l, and so l � max lj = l(N). If the inequality is

strict, then 9! 2 (l(N); l), which cannot be, since l(N) is the leftmost left endpoint,

and there are no other Aj available for ! to be a member of. Therefore the equality

holds, and l = l(N). The result r = min rj = r(N) follows by an analogous argument.

Finally, l(N) = l � r = r(N).

Note that if l(N) = r(N) then � has a point core.

Corollary 4.16 (Endpoint Ordering) If FE is consistent then the joint linear

order on Ê is

l(1) � l(2) � � � � � l(N) � r(N) � r(N�1) � � � � � r(1):

Proof: Trivial from the de�nition (4.13) and consistent endpoint conditions (4.15).

De�nition 4.17 (Possibilistic Histogram Components)

� Let

E := fekg; El := felklg; Er := ferkrg
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be the sets of endpoints with duplicates omitted from ~E; ~El and ~Er respec-

tively, ordered as for endpoints (4.16), where

8ek 2 ~E; 8erkr 2 ~Er; 8elkl 2
~El;

1 � k � Q := jEj; 1 � kl � Ql := jElj; Qr := jErj � kr � 1;

so that E = El [Er and Ql + Qr = Q.

� Let

Gk :=

8>><
>>:

[ek; ek+1); ek ; ek+1 2 El

[ek; ek+1]; ek 2 El; ek+1 2 Er

(ek; ek+1]; ek ; ek+1 2 Er

for 1 � k � Q� 1.

� Let

Tk := fhx; yi 2 IR � [0; 1] : x 2 Gk; y = �(x)g:

for 1 � k � Q� 1.

� For an (open or closed) interval I � IR and y 2 [0; 1], let �(I) = y denote that

8x 2 I; �(x) = y.

Theorem 4.18 N + 1 � Q � 2N

Proof: The inequalities in (4.14) will be strict or not depending on whether a

pair Aj1 ; Aj2 share an endpoint. All the Aj are distinct, so they cannot share both

endpoints. This forces most, but not all, of the lj ; rj to be distinct. Consider �rst a

single observation A1 := [a; b]. When a = b then A1 is a point observation. When a

second observation A2 := [c; d] is made, then there are four possibilities:

c = d 2 fa; bg; c 2 fa; bg; d 62 fa; bg; c 62 fa; bg; d 2 fa; bg; c 62 fa; bg; d 62 fa; bg:

As distinct, consistent, observed intervals are added, in one limit all the lj; rj are

distinct, so that Q = 2N ; in the other they all share only a common point core

r(N) = l(N), so that Q = N + 1.

Each of the ek is equal to at least one of the (left or right) observed endpoints lj

or rj , and � is completely determined by the coordinates hek; �(ek)i. � is piecewise

constant, consisting of the intervals Tk. Each ek marks a discrete jump either up to

�(ek) or down to �(ek + 1), depending on whether ek 2 Er or ek 2 El.

Theorem 4.19 (Possibilistic Histogram Form) If � is a possibilistic histogram,

then:
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1. C(�) = [el
Ql ; e

r
Qr ].

2. U(�) = [el1; e
r
1] =

SQ�1
k=1 Gk.

3. �([�1; el1)) = �((er1;1]) = 0.

4. 8ek 2 El; �(Gk) = �(ek).

5. 8ek 2 Er; �(Gk�1) = �(ek).

Proof:

1. Since el
Ql = l(N) and erQr = r(N), this follows from consistent endpoint prop-

erties (4.15).

2. From the endpoint ordering (4.16), eQl+1 = eQr and eQl+2 = eQr�1, and for

1 � k � Qr; eQl+k = eQr�k+1. Therefore

Q�1[
k=1

Gk =

0
@Ql�1[

k=1

Gk

1
A [GQl [

0
@ Q�1[
k=Ql+1

Gk

1
A

= [e1; e2) [ [e2; e3) [ � � � [ [eQl�1; eQl)[ [eQl; eQr ] [

(eQr�1; eQr�2] [ � � � [ (eQ�1; eQ]

= [e1; eQ] = [el1; e
r
1] = [l1; r1] = [Nj=1Aj = U(�):

3. Follows immediately from (2) and the de�nition of support (2.39).

4. Fix ek 2 El, and �x x 2 Gk = [ek; ek+1). Since there is no Aj for which

ek < lj < ek+1 or ek < rj < ek+1, therefore

8x1; x2 2 Gk; fAj : x1 2 Ajg = fAj : x2 2 Ajg:

The result follows from ek 2 Gk .

5. Follows from an analogous argument to (4).

4.2.2 An Example

Fig. 4.2 shows an example of a possibilistic histogram for 
 = [1; 5] and the mea-

surable set C is the Borel �eld of 
. Four subset measurements are made yielding

the measurement record

~A = h[1:5; 3:5); [1; 2); [1; 2); [1:5; 4)i :
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Group Components Bound Description

C Aj0 N 0 Measurable class
~A As M Measurement record

FE Aj N Empirical focal set
~E lj ; rj 2N Endpoints vector
~El; ~Er lj ; rk N Left and right endpoints vectors

Ê l(j); r(j) 2N Ordered endpoints vector

E ek Q Endpoints set

El; Er el
kl
; erkr Ql; Qr Left and right endpoints

Gk Q� 1 Domain interval of �

Tk Q� 1 Function interval of �

N � N 0; N �M; N + 1 � Q � 2N; Q = Ql + Qr

Table 4.1: Summary of components of possibilistic histogram �.

After eliminating duplicates, then the set of observed intervals FE with N = 3 <

M = 4 and random set SE are

FE = f[1; 2); [1:5; 3:5); [1:5; 4)g; SE = fh[1; 2); :5i ; h[1:5; 3:5); :25i ; h[1:5; 4); :25ig:

FE is consistent with

C(FE) = [1:5; 2); U(FE) = [1; 4]:

The possibilistic histogram is the step function on the right of Fig. 4.2 with

�([1; 1:5)) = :5; �([1:5; 2]) = 1; �((2; 3:5]) = :5; �((3:5; 4]) = :25

and �(x) = 0 elsewhere. The components of the focal set are

~E = h1:5; 1; 1:5; 3:5; 2; 4i ; ~El = h1:5; 1; 1:5i ; ~Er = h3:5; 2; 4i ;

Ê = h1; 1:5; 1:5; 2; 3:5; 4i ;

and the components of the possibilistic histogram are

E = f1; 1:5; 2; 3:5; 4g; El = f1; 1:5g; Er = f2; 3:5; 4g:

with Q = 5; Ql = 2; Qr = 3 and the Gk and Tk identi�ed in the �gure. Since FE is

not consonant, the plausibility measure of SE is not a natural possibility measure,

but the constructed possibility measure �� can be determined from (2.128).
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Figure 4.2: (Left) (top) A measurement record. (middle) SE (bottom) Components

of �. (Right) Possibilistic histogram � with more components.

4.2.3 Possibilistic Histograms as Fuzzy Numbers

Possibilistic histograms are natural representations of possibility distributions. Since

possibility theory is a weak representational form for uncertainty, it is appropriate

that they produce meaningful forms of possibility distributions even given very few

observations, as discussed in Sec. 3.3.3. In particular, possibilistic histograms are

fuzzy intervals, and those with point cores are fuzzy numbers.

Lemma 4.20 A possibilistic histogram � is monotone nondecreasing from �1 to

C(�) and monotone nonincreasing from C(�) to 1.

Proof: Let x 2 IR. The proof will be carried out for x 2 [�1; r(N)]. The remaining

argument follows analogously for x 2 [l(N);1]. Recall that endpoint ordering (4.16)

carries over to the el and er.

1. From (4.19{3), if x < el1 then �(x) = 0.

2. Let 1 � k � Ql and let xk 2 Gk, so that from (4.19{4) and the possibilistic

histogram formula (4.12)

�(xk) = �(elk) =
X

Aj3xk

Cj

M
=

X
Aj�Gk

Cj

M
:

From the consistent endpoint formula (4.15) and endpoint ordering (4.16),

8elkl ; e
r
kr ; elkl � elkl+1 � elkl+2 � erkr :
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Therefore

jfAj :Aj � Gkgj � jfAj:Aj � Gk+1gj;

and so �(xk) � �(xk+1) � 1.

3. From (4.19{1), when x 2 [el
Ql; e

r
Qr ] = C(�), then �(x) = 1.

Theorem 4.21 A possibilistic histogram � is a fuzzy interval.

Proof: We need to show that both conditions of the de�nition of fuzzy interval

(2.44) hold.

1. Possibilistic normalization follows from the de�nition of fuzzy set normaliza-

tion (2.41), the su�ciency of consistency for possibilistic normalization (2.127),

and the consistency of FE.

2. Convexity follows from the following three cases, which themselves follow from

the lemma (4.20). Let x; y; z 2 IR; x � y � z.

(a) If x � y � erQr then �(x)^ �(y) = �(x) � �(z).

(b) If el
Ql � x � y then �(x)^ �(y) = �(y) � �(z).

(c) If x � el
Ql � erQr � y then: if x � z � erQr , then �(x) � �(z); similarly, if

el
Ql � z � y, then �(y) � �(z). Therefore �(z) � �(x)^ �(y).

Corollary 4.22 If 9x 2 IR;C(FE) = fxg, then the possibilistic histogram � is a

fuzzy number.

Proof: Trivial from the de�nition of fuzzy number (2.45).

4.3 Continuous Approximations

Possibilistic histograms play the role in possibility theory that ordinary histograms

do in traditional statistics. As maximum likelihood and other estimation methods

are used in statistics to generate continuous approximations to histograms, so it

is desirable to develop continuous or smooth approximations to possibilistic his-

tograms.

De�nition 4.23 (Continuous Approximation) Let �� be a continuous possibil-

ity distribution which approximates a possibilistic histogram �.
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One of the most signi�cant di�erences between possibilistic and stochastic his-

tograms is that the former are collections of the intervals Tk, not discrete points.

Therefore, normal interpolation or approximation methods (such as curve-�tting or

maximum-likelihood estimation) are not appropriate. Instead, a representative set

of points from the intervals Tk should be selected from �, and then a continuous

curve �� �tted to them.

4.3.1 Candidate Points

First it is necessary to characterize these candidate points from the possibilistic

histogram.

De�nition 4.24 (Possibilistic Histogram Candidate Points) Assume a pos-

sibilistic histogram considered as a locus of points

� := fhek ; �(ek)ig � IR � [0; 1]:

Then denote:

� The left and right endpoints of each of the Tk; 1 � k � Q� 1:

tlk :=

(
hek ; �(ek)i ; ek 2 El

hek ; �(ek+1)i ; ek 2 Er
; trk :=

(
hek+1; �(ek)i ; ek 2 El

hek+1; �(ek+1)i ; ek 2 Er
:

� The midpoints of each of the Tk; 1 � k � Q� 1:

hk :=

�
ek + ek+1

2
; �(ek)

�
:

� The midpoint of the core:

c := hQl =

�
l(N) + r(N)

2
; 1

�
:

� The endpoints of the support on the axis:

l := tl1 =
D
l(1); 0

E
; r := trQ�1 =

D
r(1); 0

E
:

� The set of all the interval mid- and end-points to which a continuous curve

may be �t:

K0 := ftlk; t
r
k;hkg:

� The set of all the interval mid- and end-points to which a continuous curve

actually will be �t: K � K0.
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� Finally, the set of all the points to which the curve will be �t:

D := fc; l; rg [K � �:

The structure of D is then characterized by the following principle:

Principle 4.25 (Candidate Point Selection) K may be any subset of K0 such

that 8x 2 U(�), there is at most one point in K for which x is the ordinate.

Note that K = ; is allowed.

Both the de�nition (4.24) and the principle (4.25) are justi�ed by the following

argument:

1. Possibilistic normalization requires at least one point from the core to be

a candidate. c is the only natural single point from the core, and so its

requirement serves as the least restrictive normalization requirement.

2. For �� to be zero outside the support U(�), and since �� is continuous, �� should

drop to the axis through the points l and r.

3. The above two criteria are the only necessary conditions to construct a con-

tinuous possibility distribution with support U(�). Therefore fc; l; rg � D,

but K may be empty.

4. For each interval Tk, the naturally identi�able points, which are also consis-

tent with the ordinal nature of possibilistic information, are dlk; t
r
k, and hk.

Therefore they may be included in K.

5. The �nal requirement in (4.25) is simply a statement that �� must be a function,

so that 8x 2 U(��); 9!��(x). This would preclude, for example, including both

the right limit of a Tk open on the right and the left limit of Dk+1 closed on

the left, which are equal in x but di�er in �(x).

4.3.2 An Example

Consider the example in Fig. 4.3. The left side shows two intervals in dashed lines

below the axis, each of which is observed once. The components of the Tk with

N = M = 2; Q = 3, and c = h2 are also shown. tl1 and t
r
3 are excluded from K due

to conicts with l and r, leaving a candidate set

K0 = fh1; t
r
1; t

l
2; t

r
2; t

l
3;h3; t

r
3g:

Any subset K � K0 (including the empty set) can be chosen as long as it does not

contain either set of conicts ftr1; t
l
2g or fd

r
2; t

l
3g.
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4.3.3 Piecewise Linear Approximations

Once a set of points is selected, a variety of curve-�tting methods are available to

determine ��. The simplest and most direct is to connect them with line segments,

producing a piecewise linear, continuous distribution. Three of these are shown on

the right of Fig. 4.3 for the sets

K = fh1; t
l
2; t

r
2;h3g; ;; ftr1; t

l
3g;

moving from the outside to the inside. Alternatively, nonlinear regression or spline

methods can be used to �t the selected points to one of the exponential or quadratic

forms which are commonly used for fuzzy numbers [54,168,280].
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Figure 4.3: (Left) A simple possibilistic with its candidate points. (Right) Three

example piecewise linear continuous approximations.

An advantage of the line-segment method is that even given very few observa-

tions, �� has the same form as the fuzzy intervals and numbers typically used in

fuzzy systems applications. Some of these are shown in Fig. 4.4, with some example

observed intervals below them which could give rise to them. Case A is a square

distribution produced by a single crisp interval [a; b]; B is the triangular form, pro-

duced in all cases when d = c and K = ;; C is the outermost case of Fig. 4.3 for

the observations [f; i]; [g; h].

In case D it is also common for � to extend to the right by letting m �! 1,

so that 8x � l; �(x) = 1. Either condition can result when point observations j; k; l

are interpreted either as distances from a �xed m (perhaps an upper bound), or as

magnitudes in relation to one or the other in�nities. In this last case, � is simply

equivalent to a cumulative probability distribution; but this approach is in keeping

with the ordinal possibilistic concepts of capacity, distance, and similarity.
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Figure 4.4: Typical fuzzy intervals and numbers used in applications.

4.4 Compatibility of Possibilistic Histograms

We have seen that it is natural and appropriate to derive possibility distributions,

in the form of possibilistic histograms, from consistent or consistently transformed

random sets. Since in Sec. 3.4.2.3 attempts to derive possibility distributions from

probability distributions and speci�c random sets were criticized, it is important

to consider how set-valued data are viewed from a traditional information-theoretic

perspective. In particular, given a possibilistic histogram, compatibility with related

probability distributions and the semantic criteria of Sec. 3.2 should be examined.

4.4.1 Possibilistic Histograms and the Possibility of Occurrence

The primary semantic criteria from Sec. 3.2.4 was that occurrence of an event

requires maximal (unitary) possibility. In a possibilistic histogram the occurring

events are exactly those As 2 ~A which have been observed. So this condition is

easily met by possibilistic histograms.

Corollary 4.26 If FE is consistent, then 8As 2 ~A;�(A) = 1.

Proof: Fix As. Then C(As) � 1, so m(As) � 1=M > 0. The result follows from

the theorem (2.71) and the consistency of FE.

4.4.2 GK-Compatible Probability Distributions

Probability distributions which conform to ppc for a possibilistic histogram should

also be considered. Under the ppc principle (3.5), it is necessary that p(!) = 0

wherever �(!) < 1, that is 8! 62 C(FE). In the example in Fig. 4.2, that would

yield p > 0 only on the interval [1:5; 2). No further information would be provided
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by �, and so the mep would yield the uniform probability density

p�(!) =

(
2; ! 2 [1:5; 2)

0; elsewhere
:

This result makes complete sense in the context of the nature of subset measure-

ments. Given a consistent set of observed intervals, if they are all to be believed

then all that can be said is that the event actually happened somewhere in the core.

There the possibility is unitary, and by ppc the probability is positive. But there is

no further information about the likelihood of the event being anywhere particular

inside the core, thus requiring the maximally uninformative probability distribution.

The fact that 8! 2 U(�); ! 62 C(�); 0 < � < 1 indicates that it is somewhat

possible for another observation, perhaps at another time, to be found somewhere

between the core and the edge of the support, but not completely possible, since

nothing can be said to have been actually observed there yet. Thus the subset

measurements give no likelihood information about the occurrence of an ! in this

region, and by ppc p = 0 there.

If SE is inconsistent, and thus a consistent approximation must be made, then

for a focus !0 2 
;C(SE) = f!0g, and so p will be a Dirac-delta function at !0.

4.4.3 Frequency Distributions from Empirical Random Sets

It is also interesting to see how a purely \probabilistic" treatment would approach

set-statistics. In particular, it is possible to use other counting methods to derive an

ordinary frequency distribution ~f from the counts attached to each observed subset.

4.4.3.1 Frequency Analysis of Subset Measurements

In order to simplify the problem, consider the case of two overlapping observations

on a discrete universe. Let 
 = fa; b; cg, and assume two observations A1 = fa; bg

and A2 = fb; cg, so that C(A1) = C(A2) = 1.

On a pure frequency analysis at the level of the subsets As, then Pr(A1) =

Pr(A2) = 1=2. Under the assumption that Pr should have an additive probability

distribution p: 
 7! [0; 1], then

p(a) + p(b) + p(c) = 1

p(a) + p(b) = 1=2

p(b) + p(c) = 1=2

which has the solution p(a) = p(c) = 1=2; p(b) = 0. This is entirely unsatisfactory,

and maximally incompatible with the possibilistic results above: it eliminates prob-

ability exactly on b, the point where there is the most evidence, and where in the
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possibilistic histogram �(b) = 1. Only slightly more complicated cases, such as the

example in Sec. 4.2.2, reveal that this method frequently does not yield any feasible

solutions for non-negative probabilities.

4.4.3.2 Subset to Element Counts

Another approach is to translate the counts on subsets into counts on elements, thus

establishing a mapping C 7! c. There are a number of ways in which that could be

done.

Duplicated Counts We could say that a nonspeci�c observation is really an

observation of every element of the subset. Then each observation of a subset As

would contribute one element count for every ! 2 As. Then the overall element

count is

8! 2 
; c(!) =
X
Aj3!

Cj : (4:27)

Corollary 4.28

f(!) =
c(!)P

Aj2F
E Cj jAj j

:

Proof:

f(!) =
c(!)P
!2
 c(!)

=
c(!)P

!2


P
Aj3!

Cj
=

c(!)P
Aj2F

E Cj jAj j
:

By this method, the example in Sec. 4.2.2 yields the frequency distribution

~f = h2=9; 4=9; 2=9; 1=9i :

Note that this is identical to ~� for elements having the same numerator, but the

denominator changed from 4 (which is
P
Cj) to 9 (which is

P
c(!) =

P
CjjAj j).

In fact, the e�ect of this count duplication method is to establish a maximum

normalized ratio scale (Sec. 3.4.2.2) between � and f .

Theorem 4.29 Given a consistent FE with a frequency distribution f determined

by (4.27), then 8! 2 
,

f(!) =
�(!)P
�(!)

; �(!) =
f(!)W
f(!)

Proof: From the possibilistic histogram formula (4.12) and (4.27),

8! 2 
; M�(!) =
X
Aj3!

Cj = c(!):
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Therefore from the corollary (4.28),

f(!) =
c(!)P
!2
 c(!)

=
M�(!)P
!2
M�(!)

=
�(!)P
!2
 �(!)

:

The second result follows from the converse of the ratio scale frequency conversion

(3.17).

Thus the disadvantages of duplicating counts like this are clear. First, frequency

additivity is violated because

X
!2Aj

c(!) =
X
!2Aj

X
Ak3w

Ck � Cj:

Also, GK-compatibility is generally violated in virtue of the ratio scale frequency

conversion, as discussed in Sec. 3.4.2.2.

Distributed Counts Instead of a subset count contributing multiple element

counts, the single subset count can be additively distributed amongst the ! 2 A.

Since there is no further information about how to distribute the count, then by the

mep a uniform distribution should be used. Then the element count for each ! 2 


is

8! 2 
; c(!) =
X
Aj3!

Cj

jAj j
: (4:30)

Corollary 4.31 f(!) = c(!)=M .

Proof: Because

X
!2


c(!) =
X
!2


X
Aj3!

Cj

jAj j
=

X
Aj2F

E

Cj jAj j

jAj j
=

X
Aj2F

E

Cj = M;

therefore

f(!) =
c(!)P
!2
 c(!)

=
c(!)

M
:

By this method, the example in Sec. 4.2.2 yields a frequency distribution

~f = h1=4; 11=24; 5=24; 1=12i :

Not surprisingly, this method is closely related to the applications of the mep as

discussed in Sec. 2.6.4.2, Sec. 2.8.3, and Sec. 3.4.2.2 (3.26).

Theorem 4.32 Assume an empirical random set SE and let f be a frequency

distribution determined by (4.30). Then f is the maximum entropy probability

distribution pS
E

from (2.122).
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Proof: From (4.30), (4.31), the set-frequency de�nition (4.4), and the maximum

entropy probability distribution formula (2.122), then 8! 2 
,

f(!) =
c(!)

M
=
X
Aj3!

Cj

jAj jM
=
X
Aj3!

mE
j

jAj j
= pS

E

(!):

4.5 Sources of Set Statistics

While the previous sections have established the mathematical basis for possibilistic

measurement, it remains to be seen what methodological and pragmatic grounds

can generate subset counts, and thus empirical random sets. What are, in fact, the

sources of set statistics?

The disjoint structure of the measurable classes of classical instruments naturally

admits to data governed by stochastics. This is only because the disjointness of C

allows the set-based frequency distribution mE : 2
 7! [0; 1] to be regarded as a

traditional frequency distribution f 0 on a new domain 
0 = C. However, in the

general case of a non-disjoint C this does not hold.

4.5.1 Instrument Ensembles

One way to generate measurements which are intersecting subsets is to use a variety

of classical instruments.

De�nition 4.33 (Instrument Ensemble) Let an instrument ensemble F :=

fCsg be a family of disjoint measuring devices such that

Cs :=
n
As
j0s

o
; 1 � s �M; 1 � j0s � N 0s := jCsj;

8As
j0s
1
; As

j0s
2
2 Cs; As

j0s
1
? As

j0s
2
:

Denote CF :=
SM
s=1 C

s as the general measuring device derived from F.

An ensemble F can be considered as either multiple, heterogeneous instruments

taking separate measurements at the same time, or as a single instrument which is

changing its structure over time. While each of the Cs is disjoint, of course their

combination in CF is not.

A natural partial order is de�ned on F.
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De�nition 4.34 (Ordering of Disjoint Instruments) Given F, let C1 � C2, so

that C1 re�nes C2 and C2 coarsens C1, when

8A2
j02 2 C

2; 9
n
A1
j01

o
� C1; A2

j02 =
[

A1
j01 :

As an example, C1 could be a thermometer reading in tenths of degrees, while C2

could be a mutually calibrated thermometer reading in whole degrees.

De�nition 4.35 (Consonant Ensemble) F is consonant if all the Cs 2 F are

comparable under �.

If F is consonant, then without loss of generality for ordering, let C1 � C2 � � � � �

CM . C1 is the most re�ned, the most accurate of the instruments.

4.5.1.1 Random Sets from Instrument Ensembles

Random sets arise naturally from instrument ensembles when a single sample is

taken from each instrument in the ensemble.

Proposition 4.36 Assume an instrument ensemble F so that CF is a general mea-

suring device, and let As be a single subset observed in device Cs. Then the vector

of observations over F is ~A, and FE; mE, and SE can be derived as in Sec. 4.1.3.

If any of the Cs share common members (in particular, if any of their elements are

equal), then some of the As may be equal, yielding multiple observations in ~A of

certain subsets. Otherwise, all subsets will be observed a single time, but will not

necessarily be disjoint.

Theorem 4.37 If F is consonant and FE consistent, then FE is a nest.

Proof: Let M = 2 so that C1 � C2. Let A1 2 C1 and AM = A2 2 CM = C2. If FE

is consistent, then A1 6? A2. But from the de�nition (4.34), 9
n
A1
j01

o
� C1; A2 =S

A1
j01
. Therefore A1 � A2. By induction to 2 < M 2 W , then 8As 2 ~A;A1 � A2 �

� � � � AM . Since 8Aj 2 F ; 9A
s 2 ~A, therefore 8Aj 2 F

E; A1 � A2 � � � � � AN .

Of course, in this case a possibilistic analysis is less useful than it would be in

others, since there is an absolute gain in accuracy in the move towards the �nest

measurements of C1. Nevertheless, the mathematical analysis is available.
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4.5.1.2 An Example

Fig. 4.5 shows an example of an instrument ensemble which can result in the

measurement record and possibilistic histogram in the example in Sec. 4.2.2. Let


 = [0; 5] � IR and de�ne a family F of four measuring devices

C1 = f[0; 1); [1; 2); [2; 3); [3; 4); [4; 5]g; C2 = f[0; 1); [1; 2); [2; 3:5); [3:5; 5]g;

C3 = f[0; 1:5); [1:5; 3:5); [3:5; 4); [4; 5]g; C4 = f[0; 1:5); [1:5; 4); [4; 5]g;

so that M = 4 and

CF = f[0; 1); [0; 1:5); [1; 2); [1:5; 3:5); [1:5; 4); [2; 3); [2; 3:5); [3; 4); [3:5; 4); [3:5; 5]; [4; 5]g:

F is not consonant, but C3 � C4. The intervals shown would result in the measure-

ment record from Sec. 4.2.2.

C2
C3

C1

C4
A4

A3

A2

A1

Figure 4.5: An example instrument ensemble.

4.5.1.3 Consequences of Instrument Ensembles

Consider two observations from di�erent devices A1 2 C1 and A2 2 C2. It can be

expected that A1 6? A2. In the event that A1 ? A2, then there can be no value

in agreement between the two instruments, so that at least one of the devices C1

or C2 would be regarded as being in error, or perhaps even the assumption of the

\reality" of the quantity being measured would be questioned.

So while there is nothing in the mathematics that would preclude such a re-

sult, pragmatic conditions require that FE be consistent, so that SE has a natural

possibility distribution � and at worst the constructed possibility measure �� from

(2.128). In the event that FE is nevertheless not consistent, and there are pragmatic

reasons for accepting the results of the measurement, then the possibilistic normal-

ization methods outlined in Sec. 2.8 are available to construct consistent random

sets.

Gathering statistics on an ensemble of instruments F is a fundamentally di�erent

process from gathering time-series data on a single classical instrument C. The

former is governed by random set criteria, the latter by stochastic criteria. In

particular, the backdrop of the measurements is changed from multiple time trials
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on a single instrument C to multiple trials over a population of instruments Cs at a

single time.

From the comments in Sec. 3.3.6, we can see the appropriateness of instrument

ensembles for possibilistic measurement on complex systems. If a measurement

on a complex system irreversibly perturbs it, then it may be necessary to change

the measuring device to accommodate the new form of the system, thus creating

time-data from a changing instrument. If getting multiple time samples is di�cult,

then using multiple heterogeneous instruments may allow the extraction of more

information from measurements at a single time.

The instrument ensemble approach described here is very similar to the \hidden

labels" method described by Lemmer [176].

4.5.1.4 Sources of Instrument Ensembles

It is necessary to consider some possible sources of instrument ensembles.

Mutually Discalibrated Instruments: An instrument ensemble can result when

multiple instruments are used to measure a single quantity, but they are all

di�erently calibrated, either in precision, phase, or both. Continuing with the

thermometer examples used above, one may be calibrated in degrees from 0

to 100, and another in third degrees from 0:2 to 100:2.

Multiple Traditional Uncertainty Intervals: Traditional methods for represent-

ing measurements involve uncertainty intervals around point measurements.

For example, an uncertainty interval might be expressed as a 3� standard

deviation or a 95% con�dence interval around a point [8,282]. Thus measure-

ment results expressed in this form are naturally subset observations. So when

multiple such measurements are made, as, for example, when multiple teams

measure the same fundamental physical constant [209], then an empirical ran-

dom set naturally results.

Indirect Measurement: Sometimes some quantity a cannot be measured directly,

but rather knowledge about it must be gained by inference from the knowl-

edge of other quantities b and c, which can be measured. Even if b and c are

measured using classical (disjoint) instruments, still each results in an interval

in the range of b or c. So when inference is made from each of these measure-

ments back to the state of a, then each will result in turn in an interval in

the range of a, creating an empirical random set. Hopefully this set will be

consistent, as argued above indicating the \reality" of the attribute a and/or

the validity of the inference process.
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4.5.2 Point Data from Speci�c Instruments

As discussed in Sec. 4.1.4, any classical (disjoint) instrument generates observations

from a disjoint class of intervals C = fAj0g; Aj0 � 
 � IR which can thereby be

regarded as distinct points Aj0 in a higher-level state space 
0 = C.

In the sequel of this section we will change notation somewhat, and consider a

single measuring device which yields observations as actual data points in a lower-

level state space, a closed interval 
 � IR. We will try to follow the notation as

used in Sec. 4.1 as much as possible, especially concerning indices and bounds.

De�nition 4.38 (Datum, Data Stream, Data Set)

� Denote an observation as a datum d 2 
.

� The data stream is the vector

~D0 =
D
dt
E
; 1 � t �M 0 := j ~D0j:

� Not all of the methods presented below will use the entire data stream. A

subcollection of data is the reduced data stream, a sub-vector of ~D

~D = hdsi ; 1 � s �M := j ~Dj �M 0

where 8ds 2 ~D; ds 2 ~D0.

� The set generated by eliminating duplicates in ~D is the data set

D = fdjg; 1 � j � N := jDj �M;

such that

8dj 2 D; 9ds 2 ~D; dj = ds:

4.5.3 Order Statistical Methods

In Sec. 4.5.1 an empirical random set SE was derived from set-statistics collected

on an instrument ensemble (either a collection of heterogeneous instruments at a

single time or a changing instrument over multiple times), and these non-speci�c

data were contrasted with speci�c time-series data collected on a single, unchanging

instrument. But even given a single measuring device and time-series data gathered

on it, nonspeci�c data can still be generated by constructing intervals from the data

points.
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4.5.3.1 Order Statistics

In approaching a possibilistic analysis of data, we must use semantic criteria which

are natural and appropriate for possibility theory, not for probability theory. As

discussed in Sec. 3.3.1.3, possibility is fundamentally an ordinal measure, relating

to concepts of distance, similarity, intensity, and capacity; while probability relates

to concepts of proportion, likelihood, and frequency.

A possibilistic analysis of ~D will be approached through the order statistics

of ~D [44].

De�nition 4.39 (Order Statistics) Given a reduced data stream ~D, the order

statistics d(s) are a permutation of the ds 2 ~D such that

d(1) � d(2) � � � � � d(M):

d(1) and d(M) are the extremes, and denote the range interval

W :=
h
d(1); d(M)

i
� 
:

Also denote the order statistics of the data set D as d(j) so that

d(1) � d(2) � � � � � d(N):

De�nition 4.40 (Disjoint Intervals) Given a data set D, denote the disjoint

intervals

�j :=
h
d(j); d(j+1)

�
; 1 � j � N � 1:

For completeness denote

�N :=
h
d(N); d(N)

i
=
n
d(N)

o
:

Finally let the set of disjoint intervals be � := f�jg; 1 � j � N .

Corollary 4.41 � is a disjoint measuring device, and the �j partition W , so thatSN
j=1 �j = W .

Proof: Obvious from the de�nition of a disjoint device (4.7) and the disjoint inter-

vals (4.40).
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4.5.3.2 Focused Data Intervals

It is clear that � cannot provide a possibility distribution because it has no focus,

nor any core. Therefore this method is dependent on the predication of a focus

!� 2 
, here denoted u 2 W . The purpose of u is to provide a value on which

all the intervals (yet to be determined) agree; a value for which �(u) = 1. In this

section the entire data set will be used, so let ~D := ~D0 and M := M 0, and the single

index s will be used.

In keeping with possibilistic concepts, we are interested in deriving a possibility

distribution based on the intervals between the various d(s) and the focus u, which

naturally divides W into left and right sub-intervals.

De�nition 4.42 (Focused Data Intervals) Given a data stream ~D and focus

u 2 W , de�ne the following:

� Left and right range intervals:

W l :=
h
d(1); u

�
=
h
d(1); u

�
; W r :=

�
u; d(M)

i
=
�
u; d(N)

i
:

� Focused data intervals for 1 � s �M and 1 � j � N :

As :=

8>><
>>:

h
d(s); u

i
; d(s) 2 W lh

u; d(s)
i
; d(s) 2 W r

[u; u] ; d(s) = u

; Aj :=

8>><
>>:

h
d(j); u

i
; d(j) 2W lh

u; d(j)

i
; d(j) 2W r

[u; u] ; d(j) = u

:

� Left and right focal sets:

F l := fAj : d(j) 2 W lg; F r := fAj : d(j) 2 W rg:

� Empirical focal set: FE := F l [ F r.

� For subset counts, let C(Aj) be the number of occurrences of d(j) in ~D,

which is also the number of As equal to Aj .

� Empirical random set: SE determined from FE and C as in (4.6).

Corollary 4.43 F l and F r are nests, F is a consistent focal set, and SE is a

consistent random set.

Proof: It is obvious that

d(s1); d(s2) 2 W l; s1 � s2 ! As2 � As1 ;
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d(s1); d(s2) 2 W r; s1 � s2 ! As1 � As2 ;

so that the �rst result follows from the de�nition of nest (2.88). Then from the

de�nition of focused data intervals (4.42), 81 � s � M;u 2 As, and because

8d(s); d(s) 2 W l or d(s) 2 W r, therefore

FE = F l [ F r = fAjg

is consistent from the de�nition (2.66). The �nal result is trivial.

Generally, each ordered datum d(s) will generate a single count for the interval

As. However, if

9s1; s2; d(s1) = d(s2); As1 = As2

then multiple counts will be generated as discussed in Sec. 4.1.3.

Corollary 4.44 If u = d(1) or u = d(M) then SE is consonant.

Proof: If u = d(1), then from the de�nition (4.42) W l = [d(1); u) = [u; u) = ;, and

so F l = ;, so that FE = F r, which from (4.43) is a nest, so that SE is consonant.

An Example Consider the example in Fig. 4.6. Let 
 = [0; 5], and assume that

six point observations in 
 are taken giving the data stream ~D = h2; 1; 4; 1:5; 2; 4:5i.

The order statistics and ranges are

d(1) = 1; d(2) = 1:5; d(3) = d(4) = 2; d(5) = 4; d(6) = 4:5;

W l = [1; u]; W r = [u; 4:5]; W = [1; 4:5]:

The corresponding data set is D = f1; 1:5; 2; 4; 4:5g so that N = 5 < M = 6, with

order statistics and disjoint intervals

d(1) = 1; d(2) = 1:5; d(3) = 2; d(4) = 4; d(5) = 4:5

� = f[1; 1:5); [1:5; 2); [2; 4); [4; 4:5); [4:5; 4:5]g

Assume that u 2 [2; 4], then the focused data intervals As and Aj are respectively

[1; u]; [1:5; u]; [2; u]; [2; u]; [u; 4]; [u; 4:5]

[1; u]; [1:5; u]; [2; u]; [u; 4]; [u; 4:5]

so that the focal and random sets are

FE = F l [ F r = f[1; u]; [1:5; u]; [2; u]g[ f[u; 4]; [u; 4:5]g;

SE = fh[1; u]; 1=6i ; h[1:5; u]; 1=6i ; h[2; u]; 1=3i ; h[u; 4]; 1=6i ; h[u; 4:5]; 1=6ig ;

This is illustrated on the left of Fig. 4.6, for u = 3, and the resulting possibility

distribution is shown on the right.
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Figure 4.6: (Left) Consistent family from focused data set. (Right) Resulting pos-

sibilistic histogram.

Choice of Focus So far the method by which the focus u can be chosen has not

been discussed. While a number of methods suggest themselves, further selection of

methods will depend on user methodology and further empirical research. However,

note that the �rst four methods mentioned all yield u 2 [2; 4] in our example, which

is the inner interval of � (see Sec. 4.5.3.3).

Sample Mean Selection of

u = �D =

P
ds

M

is a possibility, although one which is not in keeping with possibilistic concepts.

In the example, this would yield u = 2:5.

Range Midpoint The midpoint of W , denoted �W , is much more in keeping with

possibilistic concepts:

u = �W :=
d(1) + d(M)

2
:

This expresses something like the concept of a \possibilistic sample mean",

and yields u = 2:75 in the example.

Closest to Range Midpoint There may be some value in having u actually be

one of the data points, so that u 2 D. This can be done by selecting that

dj 2 D closest to �W :

u = min
dj2D

jdj � �W j:

This yields u = 2 in the example.
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Data-Set Midpoint The middle point of the data set itself can be chosen:

u =

8<
:

d(N+1
2 ); N odd

d(N2 )
or u = d(N2 +1)

; N even
:

yielding u = 2 in the example. Alternatively, if N is even then the midpoint

of the central interval can be selected:

u =
d(N2 )

+ d(N2 +1)

2
:

Information Principles Finally, the Uncertainty Principles of Sec. 2.6.4 can be

applied.

Selection of u can be regarded as a problem of ampliative reasoning, of mak-

ing an inductive inference beyond the given information. Then the mup of

Sec. 2.6.4.2 can be invoked, and thus u would be chosen for which T(SE) or

T(�) is maximal.

Alternatively, this entire focused intervals method can be regarded as a fre-

quency transformation problem from the frequencies of the ds 2 ~D to a possi-

bility distribution ~�. Then the uip or Minimal Information Distortion principle

(2.146) can be invoked, which will state that u should be chosen so as to make

the total uncertainty T(SE) as close as possible to the entropy of the frequency

distribution derived from ~D.

While frequency conversion methods were criticized in Sec. 3.4.2.2, we are

assuming here that only disjoint time-series data in the form ~D are available.

Thus in this case frequency conversion methods are naturally justi�ed.

4.5.3.3 Interval Cores

A potential disadvantage of the focused interval methods in Sec. 4.5.3.2 is the re-

liance on a singleton-valued core set C(FE) = [u; u] = fug, while the other elements

of the method are the intervals As; �j and Aj . Instead, methods which assume an

interval-valued core can be considered. A disadvantage of these methods is that they

may eliminate some data points, thus loosing some information from the resulting

SE .

De�nition 4.45 (Interval Cores)

� Assume a core

C := C(�) = [Cl;Cr] � W:
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� Given a data stream ~D0, let the reduced data stream be

~D = ~D0 � fdt 2 Cg+ fCl;Crg;

(where the operation �=+ of a set from a vector is just the elimination or

concatenation of the appropriate points from the vector), so that

M = j ~Dj = M 0 � jfdt 2 Cgj+ 2:

� The left and right range intervals are rede�ned as

W l :=
h
d(1);C

l
�
; W r :=

�
Cr; d(N)

i
;

but the overall range

W := [d(1); d(M)] = [d(1); d(N)] = W l [C [W r

is unchanged.

� Also rede�ne the intervals As and Aj as follows:

As :=

8<
:
h
d(s);Cr

i
; d(s) 2 W lh

Cl; d(s)
i
; d(s) 2 W r

; Aj :=

8<
:
h
d(j);C

r
i
; d(j) 2 W lh

Cl; d(j)

i
; d(j) 2 W r

:

� F l;F r;FE, and SE are de�ned as in Sec. 4.5.3.2.

Corollary 4.46 F l and F r are nests, and FE = F l [ F r is consistent with core

C(FE) =
N\
j=1

Aj = C:

Proof: Follows from argument almost identical to the focused data interval result

(4.43), replacing u with C, and noting that from the de�nition (4.45) that 8As;C �

As.

An Example The focused data interval example from (4.5.3.2) is modi�ed as

shown in Fig. 4.7 for a coreC = [2; 4] (other cores are possible). Since fd(3); d(4); d(5)g �

C, therefore ~D = h1; 2:5; 4:5i and M = N = 5. The intervals �; As; Aj ;W
l, and W r

are shown on the left of the �gure, and the resulting possibilistic histogram on the

right.
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Figure 4.7: (Left) Reduced data set and stream from interval core. (Right) Resulting

possibilistic histogram.

Choice of Core As with the selection of point focuses, there are a variety of

methods by which an interval core can be selected.

Central Disjoint Interval IfN is even, then a central disjoint interval is naturally

generated from the data set D:

C = �N=2:

Note that since d(N=2); d(N2 +1)
2 C, all instances of them are eliminated from

~D0 in forming ~D.

Modi�ed Central Interval If N is odd, then there are two disjoint intervals on

either side of d(N+1
2 ). Thus we would select a core:

C = �N�1
2
[ �N+1

2
:

In the example this yields C = [1:5; 4]. This method will eliminate instances

of the three data points d(N�1
2 ); d(N+1

2 ), and d(N+3
2 ) from

~D0.

Alternatively, the midpoints of the two disjoint intervals around d(N+1
2 ) can

be selected as the endpoints of C:

C =

"
d(N�1

2 ) + d(N+1
2 )

2
;
d(N+1

2 ) + d(N+3
2 )

2

#
;

yielding C = [1:75; 3] in the example.
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Disjoint Interval Around a Focus Given a method from Sec. 4.5.3.2 to select

a point focus u, then C can just be selected as the data-generated disjoint

interval around u:

C = �j ; u 2 �j :

As above, instances of d(j) and d(j+1) will be eliminated from ~D0.

Con�dence Interval Around a Focus It may be appropriate for the user to in-

volve some traditional statistical information. Again, given some focus u, then

C can be selected as the interval within a standard deviation of u:

C =
h
u� �( ~D); u+ �( ~D)

i
:

Information Principles Methods of Uncertainty Maximization or Invariance can

be applied, as discussed in Sec. 4.5.3.2.

4.5.3.4 Consonant Intervals from Focused Time-Series Data

Another disadvantage of the methods in Secs. 4.5.3.2 and 4.5.3.3 is that they yield

consistent, but not consonant, families. Thus as discussed in Sec. 2.7.2, while they

have natural maximum normalized possibility distributions �, nevertheless their

plausibility measures Pl are not maximal, and thus are not possibility measures.

The possibility measures �� constructed from the distributions � are not equal to

the plausibilities.

Therefore it may be desirable to generate consonant families from a data stream

~D0. However, as we move through the above methods (from consistent families with

point focuses, through consistent families with interval cores, to consonant classes)

the constraint on SE increases, and more points are taken from the raw data stream

~D0 to produce the reduced data stream ~D, thus loosing information available in the

original ~D0. In point focus methods no points are lost, and roughly half the number

of available intervals are lost in the following consonant methods. Thus as with

the case of an ensemble of measuring devices discussed in Sec. 4.1.3, use of strictly

consonant cases may be less useful than simply consistent cases.

Again, a number of methods present themselves.

Inner Nested Intervals from Interval Core Assume that an interval core C =

[Cl;Cr] has been determined according to somemethod discussed in Sec. 4.5.3.3.

Denote A1 = C, and denote a set of intervals As = [As
l ; A

s
r] such that

As
l ; A

s
r 2 D and As � As+1. Given an interval As, then As+1 is the near-

est interval determined by D containing As:

As+1
l = max

d(j)2D
d(j) < As

l ; As+1
r = min

d(j)2D
d(j) > As

r:



164 CHAPTER 4. POSSIBILISTIC MEASUREMENT

The As are available up to a maximal AN = W . Together the focal set

FE = fAsg form a consonant class. The count of As can be determined as

the maximum number of occurrences of either endpoint of As in ~D.

Inner Nested Intervals from Point Focus Assume instead that a point core

u 2 W has been determined according to some method discussed in Sec. 4.5.3.2.

Now simply let A1 = [u; u] and apply the method above.

Outer Nested Intervals Proceed in the opposite direction from above. Now de-

�ne A1 = W , and construct As+1 from As as follows:

As+1
l = min

d(j)2D
d(j) > As

l ; As+1
r = max

d(j)2D
d(j) < As

r:

4.5.4 Local Extrema

In order statistical methods any natural order of the data set in terms of the ob-

servation times or population against which the data are measured are deliberately

ignored. Instead, the data stream ~D0 =


dt
�
can be ordered strictly in terms of t,

represented as a relation

~D0 :=
nD

t; dt
Eo

� W � 
;

and plotted as a time-series function of t. Then the data stream should be examined

as to its possibilistic information, that is information related to the breadth of the

data set, and the extreme values present.

Clearly if all we are interested in are the global extreme values of ~D0 then

maxdt 2 ~D0; min dt 2 ~D0

alone could be examined, and so possibility 1 assigned to any ! between them. This

is a much too coarse approach. Instead whatever series of strictly local extrema

exist in ~D0 can be used to generate interval observations.

De�nition 4.47 (Local Extrema)

� A point dt 2 ~D0 is a local extremum if any of the following conditions hold:

t = 1; t = M 0; dt�1 < dt and dt+1 < dt; dt�1 > dt and dt+1 > dt:

� Let the reduced data stream ~D be the vector of all local extrema, so that each

ds is a local extremum.
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� Let the observed intervals be those intervals between adjacent extrema:

As :=

(
[ds; ds+1]; ds < ds+1

[ds+1; ds]; ds > ds+1
:

Note that the local extrema must alternate, so that 8j, if ej < ej+1 then ej+1 >

ej+2, and vice versa. Note also that each pair Aj ; Aj+1 share exactly one endpoint.

4.5.4.1 An Example

An example is provided for the data stream

~D0 = h1; 2; 4; 3; 5; 2:5; 1:5i

so that

M = 4; ~D = 1; 4; 3; 5; 1:5; FE = f[1; 4]; [3; 4]; [3; 5]; [1:5; 5]g:

as shown on the left of Fig. 4.8. The resulting possibility distribution is also shown

in the right of the �gure.
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Figure 4.8: Observed intervals and resulting possibilistic histogram from local ex-

trema.

4.5.4.2 Properties

Note how much the possibilistic histograms generated according to this method

reect the properties of possibilistic mathematics, and not those of traditional, ad-

ditive frequency distributions. In the example shown in Fig. 4.9, the single point

for t = 7 a�ects the distribution as much as the other six points together.
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Figure 4.9: An extreme example showing possibilistic properties.

Nor is there any guarantee that the random sets produced by this method will

be consistent. Possibilistic normalization may be required.



Chapter 5

Possibilistic Processes

Other things being equal, a monotonous

environment facilitates mechanisation.

| Arthur Koeslter

Possibilistic models were characterized in Sec. 3.1 and especially Sec. 3.1.5.

When possibility theory is used in modeling, then the elements of the universe ! 2 


and subsets A � 
 represent states and groups of states of the world, possibility

distribution values �(!) represent the possibility of individual states, and possibil-

ity measure value �(A) represent the possibility of aggregates of states. Possibility

values can be determined by the measurement procedures described in Chap. 4, but

so far that allows only a static description. As discussed in Sec. 3.1.2, not only

measurement, but also possibilistic prediction methods, here possibilistic pro-

cesses, which modify and project possibilistic states forward in time, are necessary

to complete the formulation of possibilistic models.

5.1 Mathematical Preliminaries

A number of mathematical ideas are necessary in order to proceed.

5.1.1 Semirings

Semirings are a common construct in abstract algebra, and have been used to ground

general automata theory [92,205]. While we use them here on general sets, they can

be extended to lattices [38].

De�nition 5.1 (Semiring) Assume a value set V = fvg with 0; 1 2 V , and

functions �:V 2 7! V and 
:V 2 7! V . Then R := hV;�;
; 0i (denoted as hV;�;
i,

or just h�;
i where possible without confusion) is a semiring on V if:

167
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� hV;�; 0i is an Abelian monoid (� is a commutative and associative operator

with identity 0);

� hV;
i is a semigroup (
 is an associative operator).

� 
 distributes over �.

De�nition 5.2 (Additive Semiring) A semiring R is additive if � = +.

Corollary 5.3 hIR;+;�i is an additive semiring.

Proof: Follows from the closure of + and � on IR, and the distributivity of � over

+.

Corollary 5.4 If R is additive and 
 = u 2 f^;�;um;uwg, then 
 = �.

Proof: Counterexamples for the other cases are easily constructed.

De�nition 5.5 (Conorm Semiring) A semiring R is a conorm semiring ifR =

h[0; 1];t;ui for some conorm t and norm u.

Note that h+;�i is not (necessarily) a conorm semiring, because + is not (generally)

closed on [0; 1].

Of course h�;
i need not be a dual ht;ui pair to be a conorm semiring. The key

property for ht;ui pairs is DeMorgan, while the key property for h�;
i semirings

is distributivity. Still, some ht;ui pairs are also semirings.

Theorem 5.6 h[0; 1];_;ui is a conorm semiring for all norms u.

Proof: The �rst two conditions of the de�nition of semirings (5.1) are trivial. To

prove distributivity, we need to show that

8x; y; z 2 [0; 1]; x u (y _ z) = (x u y)_ (xu z):

Let y � z. Then x u (y _ z) = x u z. And from the corollary (2.6) in Sec. 2.1.2,

x u y � x u z, so that (x u y) _ (x u z) = x u z. An analogous result holds for

y � z.

Proposition 5.7 If R = h[0; 1];t;ui is a conorm semiring and t and u are dual,

then R = h[0; 1];_;^i.

Proof: Dubois and Prade [64, p. 80] have shown that _ and ^ are the sole distribu-

tive ht;ui dual pairs.
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5.1.2 Fuzzy Relation Composition

The composition of fuzzy relations is a standard subject in fuzzy theory, and treated

in many standard textbooks [138,155] (see also Yeh and Bang [319] and Yager [313]).

Here fuzzy matrix and relation composition is cast anew in terms of semirings.

In this subsection assume four �nite universes of discourse 
1;
2;
3;
4 where

n := j
1j; m := j
2j; p := j
3j; q := j
4j.

De�nition 5.8 (Fuzzy Relation (Matrix) Composition)

� Given two fuzzy relations eR e� 
1 � 
3; eS e� 
3 � 
2 in matrix form Rn�p =

[Rik]; Sp�m = [Skj ], and a conorm semiring R = ht;ui, then the composition

of R and S through R is a fuzzy relation

eT := eR �R
eS e� 
1 � 
2

where, in matrix form

Tn�m := [Tij]; Tij :=

pG
k=1

Rik u Skj :

� Generally R will be �xed, and let � := �R.

� For a square fuzzy matrix Rn�n
e� 
2, let R1 := R, and for 2 � t 2 W , let

Rt := Rt�1 �R.

� A square fuzzy matrix Rn�n
e� 
2 can also be denoted as an n-row vector of

n-column vectors R(j) := hR1j; R2j; : : : ; Rnji
T , for 1 � j � n, so that

R =
D
R(j)

E
=
D
R(1); R(2); : : : ; R(n)

E
=

266664
0BBBB@
R11

R21
...

Rn1

1CCCCA ;

0BBBB@
R12

R22
...

Rn2

1CCCCA ; : : : ;

0BBBB@
R1n

R2n
...

Rnn

1CCCCA
377775 :

The proof of the following well-known result will be useful later.

Corollary 5.9 (Matrix Composition Associativity) [138] Fuzzy matrix com-

position is associative.

Proof: Assume three fuzzy matrices

Rn�p = [Rik] e� 
1 � 
3; Sp�q = [Skl] e� 
3 � 
4; Tq�m = [Tlj] e� 
4 � 
2:
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Then in virtue of the distributivity of u over t, the commutivity of t and u, and

the associativity of t,

( eR � ( eS � eT ))ij =
G
k

Rik u

 G
l

Skl u Tlj

!
=

G
k

G
l

Rik u Skl u Tlj

=
G
l

G
k

Rik u Skl u Tlj

=
G
l

 G
k

Rik u Skl

!
u Tlj

= (( eR � eS) � eT )ij :

5.2 General Processes

The mathematical formulation of general processes, based on semirings, will be

derived �rst. All of the familiar classes of processes and automata follow as special

cases, and possibilistic processes are de�ned as a new special case.

General processes have been treated in the context of category theory, for ex-

ample by Eilenberg [80], Arbib and his colleagues [3, 4], Peeva and his colleagues

[205,288] and Ray and Chatterjee [234]. But the primary source for us here is again

the work of Gaines and Kohout [91,92] which was used extensively in Chap. 3. Our

treatment is slightly more general and complete, however.

De�nition 5.10 (General Process) A system Z� :=



;R; �; �0

�
is a general

process if:

� R is a semiring.

� �: 
2 7! V is the transition function.

� �t: 
 7! V is the state function where �0 is given as an initial state and

8!i 2 
; 1 � t 2 W ,

�t(!i) :=
M
!j2


�t�1(!j)
 �(!i; !j): (5:11)

De�nition 5.12 (Conorm Process) A general process Z� is a conorm process

Z if R is a conorm semiring. Denote Z =


t;u; �; �0

�
.



5.2. GENERAL PROCESSES 171

If not speci�ed otherwise, then in the sequel processes will be presumed to be conorm

processes, and the unquali�ed term \process" will be taken to mean conorm process.

But it is understood that all conorm processes are general processes.

Proposition 5.13 Because t and u are both closed on [0; 1], therefore for a conorm

process Z ,

� �t is a fuzzy subset of 
, denoted e�t e� 
, as in (2.34);

� � is a fuzzy relation on 
, denoted e� e� 
2.

So processes can be cast in terms of the composition of fuzzy relations.

De�nition 5.14 (Process, Matrix Form) A process Z can be de�ned in matrix

form where

� Letting �ij := �(!i; !j); 1 � i; j � n, then � is taken as a matrix �n�n := [�ij ].

� Letting �t
i
:= �t(!i), then �t is taken as a column vector

~�t
n�1 :=

D
�t1; �

t

2; : : : ; �
t

n

E
T

so that the transition function has the form of fuzzy matrix composition

~�t = ~�t�1 � � =

0BBBB@
�t�11

�t�12
...

�t�1
n

1CCCCA �

266664
�11 �12 � � � �1n

�21 �22 � � � �2n
...

...
...

�n1 �n2 � � � �nn

377775 :

The de�nition of a process is justi�ed by the following argument:

1. t indicates discrete time, where t = 0 is an initial condition.

2. �t(!i) 2 [0; 1] represents the degree, extent, or certainty (generically here

called \degree") that !i is the actual state at time t. The purpose of a process

is to move � forward in time.

3. �(!i; !j) 2 [0; 1] represents the (time independent) degree that a transition

will be made from state !j to state !i.

4. 
 combines a current degree with some degree of transition. It should be a

norm because:

� If either the current or transition degrees are maximal, then the combined

degree can only be the other degree;
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� The combined degree should increase with each of the combining degrees

(monotonicity).

5. � aggregates combined degrees over all possible current states at one time. It

should be a conorm because:

� If any of the combined degrees are minimal, then they should not be

factors in the aggregation of degrees;

� The aggregated degrees should increase with each of the aggregating de-

grees (monotonicity).

6. The requirement that h[0; 1];�;
i should be a semiring is a result of the

necessity of distributivity in the proof of the associativity of fuzzy matrix

composition (5.9), so that states can be projected forward arbitrarily in time

by the corollary (5.15).

Corollary 5.15 Given a process Z , then ~�t = ~�0 � �t.

Proof: First, ~�1 = ~�0 �� = ~�0 ��1. Also by fuzzy matrix composition associativity

(5.9),

~�t = ~�t�1 � � = (~�t�2 � �) � � = ~�t�2 � (� � �) = ~�t�2 � �2:

So by induction,

~�t = ~�t�t � �t = ~�0 � �t:

Whereas the !i 2 
 are the actual states of the system, as discussed in Sec. 3.1.4

the state function �t establishes a meta-state representation (\hyper-states" for

Gaines and Kohout) for the process Z . So where �t
i
indicates uncertainty about !i

at time t, the state function (5.11) establishes a deterministic, functional relation

between �t�1 and �t.

5.3 Classes of Processes

A variety of specialized classes of processes are available. Most of these (determin-

istic, nondeterministic, and stochastic) are quite familiar in systems theory. Fuzzy

processes and automata1 have been used in fuzzy theory for a long time as well. Pos-

sibilistic processes will be introduced here as a new concept related to normalization

1This section is about processes only, and automata are not formally introduced until Sec. 5.6.1.

Nevertheless, automata are built directly from processes, and are used more in both theory and

applications than processes are. Therefore automata will be mentioned some in passing in this

section.
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criteria, and the role of normalization in distinguishing stochastic and possibilistic

processes from the other classes will be considered.

5.3.1 Specialization Conditions

The various individual specializations that can applied to general and conorm pro-

cesses are detailed in this section. Their combinations will be considered in the next

section.

Certain concepts developed in Chap. 2 carry over to processes.

De�nition 5.16 (Crisp Process) A state vector ~�t is crisp if 8!i 2 
; �i 2

f0; 1g. A process is crisp if 8t � 0; ~�t is crisp.

De�nition 5.17 (Certain Process) A state vector ~�t is certain if 9!!i 2 
; �i =

1 and 8!k 6= !i; �k = 0. A process is certain if 8t � 0; ~�t is certain.

Of course, crisp and certain vectors and processes recall crisp and certain distribu-

tions from (2.25) and (2.97) respectively.

De�nition 5.18 (Subnormal and Normal Processes) Assume a general pro-

cess Z�.

� A state vector ~�t is subnormal if
L

i
�t
i
� 1, and normal if equality holds.

� Z� is subnormal (resp. normal) if 8t � 0; ~�t is subnormal (normal).

� Z� is transition subnormal (resp. transition normal) if 81 � j � n the

column vector �(j) is subnormal (normal).

Normalization links processes from fuzzy theory into information theory through

distributions. The following was �rst shown by Gaines and Kohout, but is re-proven

here because of its signi�cance and the slightly di�erent concepts used.

Theorem 5.19 (Process Normalization) [92] Given a process Z where ~�0 is

normal and Z is transition normal, then Z is normal.

Proof: Proof by induction. First, ~�0 is normal by premise. Then, let t > 0 be �xed,

assume ~�t�1 is normal, and denote �j := �t�1
j

and xy := x u y. Then in virtue of

the commutivity of t and u and the distributivity of u over tG
i

�t
i
=
G
i

G
j

�j�ij =
G
j

G
i

�j�ij =
G
j

�j
G
i

�ij :
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Now because Z is transition normal, 8j;
F
i
�ij = 1, thereforeG

i

�t
i
=
G
j

�j1;

so that �nally from the identity of 1 for u and the normality of �,G
i

�t
i
=
G
j

�j = 1:

Certainty imposes the highest constraint, and is thus a very special case.

Corollary 5.20 Given a process Z , then if a state vector ~�t (resp. Z itself) is

certain, then ~�t (resp. Z) is both crisp and normal.

Proof: Proof will be made for a single state vector only. The result for Z follows

from the result for all state vectors. Let ~�t be certain. Its crispness is obvious from

the de�nitions (5.16) and (5.18). Its normality follows from the identity of 0 for tG
i

�t
i
= 0 t 0t � � � t 1 t � � � t 0 = 1:

The choice of conorm aggregation operator is also a consideration in character-

izing a conorm process.

De�nition 5.21 (General Fuzzy Process) A process Z is a general fuzzy pro-

cess if t = _.

Note that general fuzzy processes are conorm processes, not general processes.

From the corollary (5.6), _ forms a semiring with any norm u. So general fuzzy

processes are de�ned on semirings of the form h_;ui, and the state function takes

the form

�t
i
=

n_
j=1

�t�1
j

u �ij :

De�nition 5.22 (Proper Fuzzy Process) A general fuzzy process Z is a proper

fuzzy process if R = h_;^i.

In proper fuzzy processes the state function is

�t
i
=

n_
j=1

�t�1
j

^ �ij :

^ is far and away the favored norm used in fuzzy processes. Whereas h_;�i has

been used somewhat, for example by Santos [249,250], little attention has been paid

to the use of other norms (see Sec. 5.5.2.1).
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De�nition 5.23 (Additive General Process) A general process Z� is additive

if R is an additive semiring, that is, if � = +.

Additive processes move toward the standard form of matrix composition

~�t = ~�t�1 � �; �t
i
=

nX
j=1

�t�1
j


 �ij :

Finally there is a degenerate case.

De�nition 5.24 (Degenerate Process) A state vector ~�t is degenerate if 8!i 2


; �i = 0. A process is degenerate if 8t � 0; ~�t is degenerate.

Corollary 5.25 (Degeneracy Conditions) Given a process Z , if 9t0; ~�
t0 is de-

generate, then 8t > t0; ~�
t is degenerate.

Proof: Fix t0, and let ~�
t0 be degenerate, so that 8i; �t0

i
= 0. Then 8i; j; �t0

j
u�ij = 0,

so that 8i; �t0+1
i

= 0 t � � � t 0 = 0. The result follows by induction.

Corollary 5.26 Given a process Z , if ~�0 is degenerate then Z is degenerate.

Proof: Trivial from the de�nition (5.24) and the corollary (5.25).

5.3.2 Combinations of Specializations

In this section all sixteen possible cases of processes, resulting from all the combina-

tions of the conditions introduced in Sec. 5.3.1 (crisp and not crisp, certain and not

certain, additive and general fuzzy, and normal and not necessarily normal), will be

characterized. This consideration leads not only to the identi�cation of the common

classes from automata theory, but also an important new class related strictly to

possibility theory.

5.3.2.1 Deterministic Processes

Deterministic processes and automata are very familiar in systems theory and dis-

crete mathematics generally (Hopcroft and Ullman [122] and Starke [273] are stan-

dard references). They simply follow a mapping of 
 to itself from some initial

state.

De�nition 5.27 (Deterministic Process) [122] A deterministic process is a

system Zd := h
; �; !�i where �: 
 7! 
 is the next state function and !� 2 
 is

the initial state.
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Theorem 5.28 (Deterministic Process Conditions) The classes of determin-

istic and certain processes are equivalent.

Proof:

1. Assume a certain process Z , and denote !t as the unique !i for which �t
i
= 1.

Then construct Zd by letting

!� := !0; �(!�) = �(!0) := !1; �(�(!�)) = �(!1) := !2;

and generally

�t(!�) = �(!t�1) := !t

until a cycle is achieved. Finally, for any !i for which 6 9t > 0; !t = !i, let

�(!i) 2 
 arbitrarily. The construction is valid on its face.

2. Assume a deterministic process Zd, and denote ~�(!i) as the column vector for

which i = j ! �(!i)j = 1 and i 6= j ! �(!i)j = 0. To construct Z , �rst let

~�0 = ~�(!�). Then for 1 � j � n, let �(j) = ~�(�(!j)). Finally, R can be any

conorm semiring. To verify the construction, denote !t = �t(!�), and �x t.

Now �t�1
j

= 1 only if !t�1 = !j , and 8i; �ij = 1 only if �(!j) = !i. Therefore

�t
i
=
F
j
�t�1
j

u �ij = 1 only if !t = �(!t�1).

5.3.2.2 Stochastic Processes

Stochastic processes and automata are also a staple of systems theory, and for years

have been the standard representation of machines which operate under conditions

of uncertainty (see, for example, texts by Carlyle [26], Doberkat [49], Paz [203],

and Starke [273], and descriptions of applications by Glorioso and Osorio [99] and

Grossing and Zeilinger [106].)

De�nition 5.29 (Stochastic Process) [203] A stochastic process is a system

Zp :=
D

;P; ~p 0

E
, where

� The matrix P =
D
P
(j)
E
= [Pij ], so that 8j;P

(j) is the vector representation of

a conditional probability distribution function p(�j!j): 
 7! [0; 1] and Pij :=

p(!ij!j) with
P

i
p(!ij!j) = 1;

� ~p t is a probability distribution on 
 with, 8t > 0,

~p t := ~p t�1
�P; pt

i
:=
X
j

pt�1
j

� p(!ij!j):
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pt
i
= pt(!i) is the probability of being in state !i at time t, and Pij = p(!ij!j) is

the probability of transiting from state !j to !i.

Theorem 5.30 (Stochastic Process Conditions) A stochastic process Zp is an

additive conorm process.

Proof: Assume a stochastic process Zp. Then let

Z :=
D

; h[0; 1];tm;�i ;P; ~p

0
E
:

From the de�nitions of additive general processes (5.23) and conorm processes (5.2),

all we need to show is that h[0; 1];tm;�i acts as an additive conorm semiring on

the matrix P and the state vector ~p 0.

1. From the de�nition of tm in Table 2.1, it is obvious that

8x; y 2 [0; 1]; x+ y � 1! x tm y = (x+ y) ^ 1 = x+ y:

Therefore

8t � 0;
X
i

�t
i
� 1!

X
i

�t
i
=

nG
m

i=1

�t
i
:

2. Because ~p 0 is a probability distribution, it is normal under +, so that from

the above argument
P

i
�0
i
=

nF
m

i=1

�0
i
, and therefore ~p 0 is normal under tm.

3. Because 8j;P(j) is a probability distribution conditional on !j , therefore P is

transition normal under +, and so it is also under tm.

4. Because � is a norm which distributes over +, therefore when tm = + then

htm;�i = h+;�i is a conorm semiring.

5. So at time t = 0, Z is a conorm process satisfying the preconditions for process

normalization (5.19). Therefore by the argument used in that proof, �1 is also

normal under tm. So by induction, 8t � 0; �t is normal under tm, so R is a

conorm semiring for general t.

Restricting � = tm = + forces � = + to be closed on [0; 1], and thus a conorm.

Then transition normalization forces the transition matrix � to be a collection of

conditional probability distributions, one for each of the column vectors �(j). So

�nally, when �0 is also additively normal, then


+;�; �; �0

�
becomes an additive

conorm process, and the state function assumes the familiar form

pt
i
=

nX
j=1

pt�1
j

� p(!ij!j):
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Z is now a Markov process of degree 1 [203, pp. 67 �.].

So while h+;�i is not usually a conorm semiring, it is when h+;�i composition is

used in probability theory, so that + is restricted to tm. This result links traditional

stochastic processes into the world of systems and processes based on git, and shows

that, like probability theory itself, stochastic systems are an important, but single,

component of an overall systems theory including git.

There is one last case of additive processes to consider.

Corollary 5.31 If a normal additive process Z is crisp, then Z is deterministic.

Proof: Fix t. Since Z is crisp, if 9i1; i2 with pt
i1
> 0 < pt

i2
, then pt

i1
= pt

i2
= 1, and

so
P

i
pt
i
> 1, which it cannot since Z is normal. If 8i; pt

i
= 0, then

P
i
pt
i
= 0, which

it also cannot since Z is normal. Therefore Z must be certain, so that from (5.28)

Z is deterministic.

5.3.2.3 Nondeterministic Processes

Another common class of automata is based on nondeterministic processes, which

are used especially in computer science, algorithm theory, and mathematical linguis-

tics. Again, Hopcroft and Ullman [122] and Starke [273] are standard references.

De�nition 5.32 (Nondeterministic Process) [122] A nondeterministic pro-

cess is a system Zn :=



; �; A0

�
where �: 
 7! 2
 is the transition function,

A0 � 
 is the initial state, and the state is

8t > 0; At :=
[

!i2A
t�1

�(!i):

Whereas a deterministic process follows an initial state through a state mapping,

a nondeterministic process follows an initial subset of states through a state subset

mapping.

Theorem 5.33 (Nondeterministic Process Conditions) The classes of crisp,

non-certain, normal, general fuzzy processes and nondeterministic processes are

equivalent.

Proof:

1. Assume a crisp, normal, general fuzzy process Z . Let A(~�) be the set deter-

mined by interpreting � as a characteristic function, so that if �i = 1 then

!i 2 A(~�) and if �i = 0 then !i 62 A(~�). Then construct Zn by �rst letting
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A0 := A(~�0), and then, 8!j 2 
, letting �(!j) := A(�(j)). To verify this

construction, �x t and i. Then

�t
i
= 1!

G
j

�t�1
j

u �ij = 1:

This will only be the case if 9j; �t�1
j

= 1 and �ij = 1. Similarly, !i 2 At if

!i 2
S
!j2A

t�1 �(!j), or in other words if 9j; !j 2 At�1 and !i 2 �(!j).

2. Assume a nondeterministic process Zn. Now let Z := h_;u; �; �
A
0i for some

norm u, recalling that �A is the characteristic function of A � 
, and 81 �

j � n, letting �(j) := ��(!j). To verify the construction, �x t. Then !i 2 At

if !i 2
S
!j2A

t�1 �(!j), so that 9!j0 2 At�1; !i 2 �(!j0). This will only be the

case if �t�1
j0

= 1 (so that !j0 2 At�1), and �ij0 = 1 (so that !i 2 �(!j0)). Then

�t�1
j0

u �ij0 = 1, so that �t
i
=
W
j
�t�1
j

u �ij = 1, so that !i 2 At.

Corollary 5.34 A crisp, subnormal, general fuzzy process Z is degenerate.

Proof: Let ~� := ~�0. Since Z is crisp, 8i; �i 2 f0; 1g. But subnormality of a general

fuzzy process requires that
W
i
�i < 1, so that 8i; �i = 0. The result then follows

from the second degeneracy corollary (5.26).

5.3.2.4 Possibilistic Processes

So far in this section we have considered all crisp, additive, and certain processes.

The only two classes left are non-crisp, non-certain, general fuzzy processes, both

normal and subnormal.

So �nally, we arrive at the de�nition and characterization of possibilistic pro-

cesses.

De�nition 5.35 (Possibilistic Process) A possibilistic process is a system

Z� :=



;u;�; ~�0

�
for some norm u, where:

� The matrix� = [�ij ] =
D
�

(j)
E
, so that 8j;�(j) is the vector representation

of a conditional possibility distribution function �(�j!j): 
 7! [0; 1] and�ij :=

�(!ij!j) with _
i

�(!ij!j) = 1; (5:36)

� ~�t is a possibility distribution on 
 with, 8t > 0,

~�t := ~�t�1 ��; �t
i
:=
_
j

�t�1
j

u �(!ij!j):
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�t
i
= �t(!i) is the possibility of being in state !i at time t, and �ij = �(!ij!j) is

the possibility of transiting from state !j to !i. Conditional possibility will be fully

discussed in Sec. 5.5.3, and (5.36) will be proved with corollary (5.51).

Theorem 5.37 (Possibilistic Process Conditions) A possibilistic process Z�

is a normal general fuzzy process.

Proof: Assume a possibilistic process Z�. Then let Z :=


_;u;�; ~�0

�
.

1. Clearly by the de�nition (5.21) Z is a general fuzzy process.

2. ~�0 is normal under _ because it is a possibility distribution. Then from (5.36)

and the de�nition (5.18), Z is transition normal under _. So from process

normalization (5.19), Z is normal.

5.3.2.5 Fuzzy Processes Proper

This is in fact the end of the speci�cation of classes of processes. The remaining

case of non-crisp, non-certain, subnormal, general fuzzy processes are simply general

fuzzy processes from their de�nition (5.21). These encompass the general case of

processes which use h_;ui composition, but which are not necessarily normal.

General fuzzy automata, based on general fuzzy processes, were introduced and

examined in the late 1960's in a series of papers by Santos [246], Santos and Wee

[252], and Wee and Fu [302]. Properties of fuzzy automata (and languages based

on them [175, 186, 247]) were investigated (see for example Dubois and Prade [55],

Kandel and Lee [135], Santos [248], and Pedrycz [204]), and some applications where

made, for example in pattern recognition [285] and parameter optimization [308].

Fuzzy automata and languages have received considerably less attention since the

1980's. Some theoretical progress continues, for example by Mo�ckor [189], but fuzzy

automata get only a very short consideration in recent systems theory texts (for

example, Dougherty and Giardina [50]).

It should also be noted that, because not only does ^ distribute over _, but also

_ distributes over ^, that so-called optimistic fuzzy automata are de�ned on the

semiring h[0; 1];^;_i when the ordering � on [0; 1] is reversed to � [252].

5.3.3 Relations Among the Classes

The relations among these concepts are not obvious. Table 5.1 summarizes the six-

teen possible combinations detailed in Sec. 5.3.2. Each entry includes a description

of the class and a reference to the de�nition or theorem which establishes it. A �
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General Fuzzy: � = _ Additive: � = tm

Normal General Normal General

Crisp Certain Deterministic � Deterministic �

(5.28) (5.20) (5.28) (5.20)

Not Nondeterministic Degenerate Deterministic Additive General

certain (5.33) (5.34) (5.31) (5.23)

Not Certain � � � �

crisp (5.20) (5.20) (5.20) (5.20)

Not Possibilistic General fuzzy Stochastic Additive General

certain (5.37) (5.21) (5.30) (5.23)

Table 5.1: Classes of processes and automata.

mark indicates that this possibility does not exist, with a reference to the theorem

which determines this.

Not all of the di�erent cases are mutually exclusive. For example, the possi-

bilistic process conditions (5.37) establishes that a possibilistic process is a normal

general fuzzy process. Nothing is said about the status of its crispness or certainty.

Therefore crisp normal general fuzzy processes, that is nondeterministic processes

from (5.33), are also possibilistic processes.

The various implication relations and subclasses are summarized in Fig. 5.1. The

nodes are labels for the most relevant descriptions of each of the primary classes of

processes. The arcs are labeled by the specializations made from general processes to

reach the di�erent classes. Some of the implications of the diagram will be discussed

below in Sec. 5.5.2.

5.4 Properties of Possibilistic Processes

Some properties of possibilistic processes are now discussed. First, it should be

noted that both the stochastic (5.30) and possibilistic process conditions (5.37)

establish only su�cient, and not necessary, conditions. That is, in general, state

vector normalization does not require transition normalization, and the converse of

(5.19) does not generally hold.

In this section, denote the following:

� t will be �xed, and denote ~� := ~�t;

� Denote the next-state vector as ~�0 := ~�t+1 =� � �.
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Figure 5.1: Relations among classes of processes

� For each row i of �, let �(i) := f�i
k
g be the set of indices (if any) for which

�
i;�

i
k
= 1, where 1 � �i

k
� n and 1 � k � j�(i)j � n.

� Let �(i) be the unique such index in each row i, if it exists.

The actions of possibilistic processes are dependent on a maximally normalized

initial state vector �0 and a transition normal conditional matrix � , and thus on

the presence of 1's in the columns of �. The following lemma will be useful.

Lemma 5.38 Let

Rn�p := [Rik] e� 
1�
3; Sp�m := [Skj ] e� 
3�
2; Tn�m := [Tij] e� 
1�
2;

be fuzzy matrices, let R = h_;ui, and let R � S = T . If 9Ri�k� = 1, then 8j; Ti�j �

Sk�j .

Proof: Assume Ri�k� = 1. Then 8j,

Ti�j =

p_
k=1

Ri�k u Skj

=

0B@ _
1�k�n

k 6=k�

Ri�k u Skj

1CA _ (Ri�k� u Sk�j) =

0B@ _
1�k�n

k 6=k�

Ri�k u Skj

1CA _ Sk�j

� Sk�j :
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Whereas each column of � is guaranteed to have at least one unitary value,

this is not necessarily the case for the rows. The column positions of the unitary

elements in a row determine which elements of the state vector will provide lower

bounds for the corresponding element of the next-state vector. If there are multiple

unitary elements in a row, then the bound will be the maximum of all corresponding

state values.

Theorem 5.39 8i, if �(i) 6= ;, then

�0
i
�

_
�
i
k
2�(i)

�
�
i
k
:

Proof: 8i; 8�i
k
2 �(i);�

i;�
i
k
= 1. Under the assignments Rn�n = � ; Sn�1 =

�; Tn�1 = �0, then by the lemma (5.38), 8i; 8�i
k
2 �(i); �0

i
� �

�
i
k
, and so the conclu-

sion follows.

Corollary 5.40 8i, if �(i) exists then �0
i
� ��(i).

Proof: Follows directly from the theorem (5.39) under the assumption that �(i) =

f�(i)g.

If each row of� has a distinct and unique unitary element, then �(i) exists and

is an injective function creating a cyclic group permuting the elements of 
 through

at most n steps. Similarly, the bounds of the state vector will cyclically permute

through a maximum of the n elements of �.

Theorem 5.41 If 8i; �(i) exists, and 8i1 6= i2; �(i1) 6= �(i2), then 8i there is an

index �(i); 1 � �(i) � n such that �
�(i)
i

� �0
i
.

Proof: Let dxe be any value such that dxe 2 [x; 1], and let �0 = h�1; �2; : : : ; �ni
T .

By the corollary (5.40), the action of the automaton in the �rst step a�ects the

transformation

�0 7! �1 =
D
d��(1)e; d��(2)e; : : : ; d��(n)e

E
T

:

The next step of the automaton a�ects the further transformation

�1 7! �2 =
D
d��2(1)e; d��2(2)e; : : : ; d��2(n)e

E
T

:

In general,

�t =
D
d��t(1)e; d��t(2)e; : : : ; d��t(n)e

E
T

:
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Since 8i; 9�(i); 1� �(i) � n; ��(i)(i) = i, therefore

8i; �
�(i)
i

= d�
��(i)(i)e = d�ie � �i:

The placement of a unitary value on the diagonal of � guarantees a monotonic

increase of the corresponding state vector value.

Corollary 5.42 If 9i; �(i) = i, then �0
i
� �i.

Proof: Follows immediately from the corollary (5.40).

Finally, if� has unitary values on all diagonal elements, then a result of Pedrycz

[204] is recovered.

Corollary 5.43 If 8i; �(i) = i, then �0 � �.

Proof: Follows immediately from the application of the corollary (5.42) to all

columns.

5.5 Discussion

Possibilistic processes are de�ned analogously to stochastic processes, but replac-

ing probabilistic with possibilistic mathematics, and thus the additive operator +

with _. As we have shown in Chap. 2, possibilistic normalization is the key criteria

distinguishing possibility distributions from general fuzzy sets (just as additive nor-

malization distinguishes probability distributions from general fuzzy sets). Similarly,

whereas processes which use the _ operator are already available as fuzzy processes,

possibilistic processes are distinct in virtue of their possibilistic normalization.

This section draws a number of conclusions about the nature of possibilistic

processes, their relation to the other classes of processes, and to the rest of git and

modeling within git.

5.5.1 Examples

First, some simple examples of possibilistic processes on a universe 
 = fx; y; zg are

presented.

1. Consider the state transition diagram shown in Fig. 5.2. Each node is a state

!i. The arcs indicate state transitions, each of which is non-additively weighted
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with the conditional possibility of the transition. So, for example, �(xjy) = :8,

and the entire transition matrix is

� =

264 0:0 0:8 0:0

1:0 0:0 0:0

0:2 1:0 1:0

375 :
� is transition normal, with a 1 in each column.

z

6

y

x
HHHHHj

�
��
��*���

���

?

1

1

:2

1
:8

Figure 5.2: Weighted state transition diagram for a possibilistic process.

Possibilistic transition normalization requires that each node have an out-arc

labeled 1. Nodes may have multiple out-arcs, however, so that a unitary weight

does not indicate a necessary, but rather a completely possible transition. For

example, from state x, transition to z is :2 possible, but transition to y is also

(completely) possible. z is an absorbing state, with self-transition the only

possibility.

Now let u = ^, and assume that at time t = 0 the system begins de�nitely

in state x. Then ~�0 = h1; 0; 0iT , a certain state vector, which is, of course,

normal. Then the state vector at t = 1 is determined by

~�1 = ~�0 �� =

0B@ 1

0

0

1CA �

264 0:0 0:8 0:0

1:0 0:0 0:0

0:2 1:0 1:0

375 :
so that

�11 = (1^ 0) _ (0 ^ :8)_ (0^ 0) = 0;

�12 = (1^ 1) _ (0 ^ 0) _ (0 ^ 0) = 1;

�13 = (1^ :2) _ (0 ^ 1)_ (0^ 1) = :2:

~�1 is not a certain vector, so the system is now not unequivocally in one state.

While it is completely possible that y is the system state, z is also :2 possible

of being the system state, while x is impossible.

Other future state vectors (and their nonspeci�city values) are
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t 0 1 2 3 4

~�t 1.0 0.0 0.8 0.0 0.8

0.0 1.0 0.0 0.8 0.0

0.0 0.2 1.0 1.0 1.0

N(~�t) 0.0 0.2 0.8 0.8 0.8

.

Since �2 = �4, the cycle will repeat. This is completely in keeping with

the periodic behavior of proper fuzzy h_;^i matrix composition, as shown by

Thomason [285]. He has also shown [286] some su�cient conditions for the

convergence of proper fuzzy processes.

Process normalization means that at each time, there is one state that is

completely possible, and at various times that state can be any of x; y or z.

The process settles into a normal element of state z, which acts as a kind of

attractor or absorbing state. But nevertheless, in virtue of the cycle between x

and y with transition possibilities of 1 and :8 respectively, each of those states

in turn remains :8 possible. But state y can never recover the 1 possibility it

has at t = 1, because the system is never again unequivocally in state x.

Note that no new elements are introduced in the sequence of the �t
i
. In other

words,

8t > 0; 8i; �t
i
2 f�0

i
g [ f�ijg:

This is because both _ and ^ are \conservative", in the sense that

8x; y 2 IR; x _ y 2 fx; yg; x ^ y 2 fx; yg:

Note also how the theorems and corollaries of Sec. 5.4 is adhered to. In

particular,

�(1) = ;; �(2) = f1g; �(2) = 1; �(3) = f2; 3g;

and so, for example, by theorem (5.39),

�23 = 1 �
_

�2�(3)

�1
�
= �12 _ �13 = 1 _ :2 = 1;

and by corollary (5.40),

�12 = 1 � �0
�(2) = �01 = 1:

Finally, the nonspeci�city values of the state vectors are shown. In this case

they increase monotonically, but that is by no means necessary.
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2. For a slightly more complex example, let u = ^, �0 = h0:3; 1:0; 0:6iT and let

� be �xed at

� =

264 0:1 0:0 0:4

1:0 0:5 1:0

0:2 1:0 0:7

375 :
The state vectors are:

t 0 1 2 3 4

~�t 0.300 0.400 0.400 0.400 0.400

1.000 0.600 1.000 0.700 1.000

0.600 1.000 0.700 1.000 0.700

N(~�t) 0.775 0.834 0.934 0.934 0.934

.

Here the normalizing element rotates between i = 2; 3.

3. Take the above example, but use h_;�i. Then:

t 0 1 2 3 4

~�t 0.300 0.240 0.400 0.280 0.400

1.000 0.600 1.000 0.700 1.000

0.600 1.000 0.700 1.000 0.700

N(~�t) 0.775 0.740 0.934 0.864 0.934

.

Again, a cycle is achieved, and now the nonspeci�city initially decreases, and

then cycles.

4. Finally consider the same example using h_;umi, recalling that x um y :=

(x+ y � 1) _ 0 from Table 2.1. Then:

t 0 1 2 3 4

~�t 0.300 0.000 0.400 0.100 0.400

1.000 0.600 1.000 0.700 1.000

0.600 1.000 0.700 1.000 0.700

N(~�t) 0.775 0.600 0.934 0.758 0.934

.

5.5.2 Relation to Other Classes of Processes

The position of possibilistic process among the classes of processes has been illus-

trated in Fig. 5.1. The following general points are noted.
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� Stochastic processes are direct generalizations of deterministic processes when

the value set V is generalized from f0; 1g, the range of the characteristic func-

tion �, to the unit interval [0; 1], the range of the fuzzy membership �. How-

ever, these are both necessarily normal, additive processes.

� Fuzzy processes are similarly direct generalizations of nondeterministic pro-

cesses moving from V = f0; 1g to V = [0; 1].

� Possibilistic processes result when normalization is imposed on fuzzy processes,

while normalization is required for both stochastic and deterministic processes.

Since for nondeterministic processes

8i; j �t
i
;�i;j 2 f0; 1g;

therefore all nondeterministic processes are also possibilistic processes, and are

in fact crisp possibilistic processes. So possibility theory has the potential

to provide insights about the operation of nondeterministic, that is general

binary, systems. For example, Kanerva [136] uses such bit-string based systems

to explore the high dimensionality, low cardinality, properties of such systems

as genetic algorithms, cellular automata, and associative memories.

� Thus possibilistic processes proper (that is, non-crisp possibilistic processes)

are also direct generalizations of nondeterministic processes, in e�ect, grad-

ually weighted nondeterministic processes. And it is signi�cant to note that

stochastic processes are not generalizations of nondeterministic processes, de-

spite years of commitment to them as the sole embodiment of machines with

quanti�ed uncertainty.

Finally, note that not all fuzzy relations which are normal in the sense of fuzzy

sets are normal in the sense of possibilistic transition matrices (while the converse is

true). Treating � as a fuzzy relation, fuzzy set normalization (2.41) only requires

that _
!i;!j2


�(!ij!j) = 1;

which is that there is some unitary element in �, not that there is some unitary

element in each column of � .

5.5.2.1 Possibilistic Processes and Fuzzy Theory

Whereas we have emphasized in Sec. 2.9 that probability distributions are fuzzy

sets as possibility distributions are, and therefore that possibility theory has no
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privileged relation to fuzzy theory, this appears to be counteracted here in that

possibilistic processes are a case of fuzzy processes, but stochastic processes are not.

I believe that this is the result of yet another unfortunate historical accident, which

is the conation of h_;^i as a dual conorm/norm pair, with h_;^i as a semiring on

[0; 1].

First, as argued in Sec. 2.9.5.5, one reason why possibility theory has been

conated with fuzzy theory is the fact that while _ is naturally the only possibilistic

distribution operator, it is also the primary fuzzy union operator. ^ is the dual norm

of _, so naturally many fuzzy applications have focused on systems which use h_;^i

pairs.

But h_;^i is also a semiring. In fact by (5.7), it is the only conorm semiring

where t and u are also dual. But in process theory (unlike, say, fuzzy logic) the

DeMorgan property of dual ht;ui pairs is not utilized. In fact, negation itself has

not been used so far in process theory! Rather it is the distributivity of semirings

which is crucial, as shown in many of the proofs in this chapter.

Thus it is not possibility theory which has a special status with respect to fuzzy

theory, but rather h_;^i which has a special status as the only pair of operators

which both form a conorm semiring and a dual conorm/norm pair. It is easy to

overlook that possibilistic processes can be based on any h_;ui semiring, as long as

it is normal.

Similarly, it is easy to overlook the fact that fuzzy theory can use union operators

other than _, and that fuzzy relation composition (possibilistic or otherwise) can

use semirings other than h_;ui, let alone h_;^i. For example, we have shown

that htm;�i can be used for fuzzy matrix composition, since + is a conorm when

restricted to [0; 1] (which is always the case in stochastic processes). And there

may be yet other conorm semirings. In fact, by this argument, ordinary matrix

arithmetic should be considered as a case of fuzzy matrix composition!

So it seems that the identi�cation of general fuzzy processes with even h_;ui

semirings may be too restrictive: whereas possibility theory is indeed wedded to

_, fuzzy theory in general is not and should not be. All conorm processes rely on

conorm semirings with V = [0; 1], and use the fuzzy relation e� to operate on the

fuzzy set e�0 to create new fuzzy sets e�t, be they possibility distributions, probability

distributions, or general fuzzy sets. So from a \pure" git perspective, we should call

h_;ui processes general possibilistic, to distinguish them from proper (normal-

ized) possibilistic processes. As all possibilistic processes are general possibilistic,

so all general possibilistic and all additive processes, that is all conorm processes,

should be identi�ed as \fuzzy processes".

h_;ui fuzzy relation composition has actually been discussed a fair amount in the
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literature. Kaufmann introduces it as a generalization of h_;^i composition [138].

And Santos discusses h_;�i processes in some depth [249,250]. Akiyama et al. have

shown the following important result.

Proposition 5.44 [2] Crisp general fuzzy processes are identical for all u.

Thus as long as Z is crisp (for example, for nondeterministic processes), h_;ui

composition does not depend on the choice of u.

5.5.2.2 Possibilistic Processes and Probability Theory

Nevertheless, the h_;^i semirings of proper fuzzy processes are the standard form

for fuzzy relation composition. h_;^i composition is used most commonly in fuzzy

applications, and is discussed in all the textbooks.

However, _ and ^ do arise in probability theory, as has been observed by Gaines

and Kohout [92], among others, in that

A � B ! Pr(A [ B) = Pr(A)_ Pr(B); Pr(A \B) = Pr(A)^ Pr(B):

This would seem to justify the idea that h_;^i plays a strictly analogous role to

h+;�i in probability theory. There is a corresponding desire to construct possibility

theory and possibilistic applications by simply taking stochastic formula and globally

replacing + with _ and � with ^.

While we have justi�ed this approach for _, the same is not the case for ^. Most

theoreticians are aware of this (see Cumani [41], for example), although there are

some exceptions.

� Hisdal is quick to say

In the theory of possibility the ^ (min) operation replaces the mul-

tiplication operation of the theory of probability. [118]

� Sudkamp [275] has noted that Dempster's rule (2.61) applied to consonant

random sets results in a multiplicative combination rule for possibility distri-

butions, denoted �1��2 = �1��2. He goes on, then, to introduce a norm-dual

probabilistic sum operator �1 ? �2, calling this a \plausibilistic" approach. He

then moves to de�ne a pure \possibilistic" approach where similar dual op-

erators are �1 ^ �2 and �1 _ �2, despite the fact that (at least) ^ should be

generalized to u.

� And more popular, application-oriented texts, for example Dougherty and

Giardina [50], are quick to ignore anything other than h_;^i composition.
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Pr(A [B) Pr(A \B)

General case a + b� Pr(A \B) Pr(A \B)

A � B a + b� (a ^ b) = a _ b a ^ b

A ? B a + b 0

A independent from B a ? b = a+ b� ab a� b

Table 5.2: Structural conditions in probability, where a = Pr(A); b = Pr(B).

But consider a more complete examination of the di�erent values of Pr(A [ B)

and Pr(A \ B) based on the topological relations between A;B � 
, as detailed

in Table 5.2, where a = Pr(A) and b = Pr(B). While Pr(A [ B) is commonly a

conorm function of a and b, the corresponding function for Pr(A \ B) is almost

never the dual norm. + is only achieved for A ? B, for which Pr(A \ B) = 0, not

Pr(A)� Pr(B). � is achieved only for stochastic independence, which results in ?

for the conorm operator, not +.

5.5.2.3 Compatibility with Stochastic Processes

The ppc principle (3.5) is consistent with the operation of possibilistic processes.

In particular, a stochastic process which is then converted to a possibilistic process

according to GK-compatibility is equivalent to one which is converted �rst, and then

operated by possibilistic formulae.

Theorem 5.45 (Stochastic-Possibilistic Process Compatibility) LetR = h_;ui,

and assume fuzzy matrices Rn�n = [Rik]; Sn�n = [Skj ] (no normalization of any kind

assumed). Let R := [Rik ], where

Rik :=

(
1; Rik > 0

0; Rik = 0
;

according to ppc (and similarly for S), and let R�S denote matrix composition under

an additive semiring (i.e., standard matrix multiplication). Then R � S = R � S.

Proof: Let Tn�n = [Tij ] := R � S, so that R � S = T = [Tij ]. Also let U = [Uij ] :=

R � S. We need to show that 8i; j; Tij = Uij . First, Tij =
P

n

k=1Rik � Skj , so that

Tij =

8<: 0; 8
1�k�m

Rik = 0 or Skj = 0

1; Otherwise
:

Then

Uij =
m_
k=1

�
Rik ^ Sik

�
=

8<: 0; 8
1�k�m

Rik = 0 or Sik = 0

1; Otherwise
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=

8<: 0; 8
1�k�m

Rik = 0 or Sik = 0

1; Otherwise

= Tij :

5.5.3 Conditional Possibility

The concept of conditional possibility was introduced in Sec. 5.3.2.4 in the de�nition

of possibilistic processes (5.35). Fuller consideration to this idea will be given here.

Although possibility theory is usually seen as an extension of fuzzy theory, some

researchers have considered it in its information theoretic form, and therefore tried

to develop concepts, like conditionality, that are analogous to similar ideas in prob-

ability theory. These ideas were �rst introduced in 1978 in a series of papers be-

ginning with Zadeh's founding paper for possibility theory [325], and continued by

Hisdal [118] and Nguyen [191].

As above, we generalize this discussion slightly to discuss concepts of jointness,

marginality, and conditionality in the context of general fuzzy measures with dis-

tributions, and operations on semirings. Then the speci�c concepts of conditional

possibility are introduced.

In this section assume two �nite universes 
1 := fxig;
2 := fyjg with A �


1; B � 
2. Let � be a fuzzy measure with distribution q, and let R := ht;ui be a

conorm semiring where t is the distribution operator of q.

De�nition 5.46 (Joints) A joint fuzzy measure �: 2
1�
2 7! [0; 1] is a fuzzy

measure on 
1 � 
2. Then the joint distribution q: 
1� 
2 7! [0; 1] is

q(xi; yj) := �(fhxi; yjig):

De�nition 5.47 (Marginals) Given a joint fuzzy measure �, then �1: 2
1 7! [0; 1]

is a marginal fuzzy measure and q1: 
1 7! [0; 1] is a marginal distribution

where

�1(A) := �(A� 
2) =
G

hxi;yji2A�
2

q(xi; yj);

q1(xi) :=
G
yj

q(xi; yj) = �(fxig � 
2): (5.48)

and similarly for �2 and q2.
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De�nition 5.49 (Conditionals) Assume a joint fuzzy measure � and distribution

q. Then the conditional fuzzy measures

�(�jB): 2
1 7! [0; 1]; �(�jA): 2
2 7! [0; 1]

and conditional distributions

q(�jyj): 
1 7! [0; 1]; q(�jxi): 
2 7! [0; 1]

are de�ned by the functional equations

�(A;B) = �1(A) u �(BjA) = �2(B) u �(AjB);

q(xi; yj) = q1(xi)u q(yj jxi) = q2(yj) u q(xijyj): (5.50)

The following corollary has already been used in its possibilistic form in (5.36)

in the de�nition of possibilistic processes.

Corollary 5.51 (Conditional Normalization)

8yj ;
G
xi

q(xijyj) = 1; 8xi;
G
yj

q(yj jxi) = 1:

Proof: From the de�nition of marginals (5.48),
F
yj
q(xi; yj) = q1(xi). Similarly,

from the de�nition of conditional distributions (5.50) and the distributivity of u

over t, G
yj

q(xi; yj) =
G
yj

q1(xi) u q(yj jxi) = q1(xi) u

0@G
yj

q(yj jxi)

1A :

Therefore
F
yj
q(yj jxi) = 1 because 1 is the identity for u. The analogous argument

holds for the other case.

Corollary 5.52

q(xijyj) � q(xi; yj) � q(yj jxi)

Proof: In general for x; y 2 IR,

x u y � x ^ y; x ^ y � x; x ^ y � y:

Therefore

q(xi; yj) = q1(xi) u q(yj jxi) � q1(xi) ^ q(yj jxi) � q(yj jxi):

A similar argument holds for q(xi; yj) � q(xijyj).
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Proposition 5.53 (Conditional Probability) When � = Pr; q = p, and ht;ui =

h+;�i, then

p(xi; yj) = Pr(fhxi; yjig);

Pr1(A) = Pr(A� 
2) =
X

hxi;yji2A�
2

p(xi; yj);

p1(xi) =
X
yj

p(xi; yj) = Pr(fxig � 
2);

Pr(A;B) = Pr1(A)� Pr(BjA) = Pr2(B)� Pr(AjB);

p(xi; yj) = p1(xi)� p(yj jxi) = p2(yj)� p(xijyj):

Proposition 5.54 (Conditional Possibility) When � = �; q = �, and ht;ui =

h_;ui, then u remains a free parameter, so that

� [155] Given a joint possibility measure �: 2
1�
2 7! [0; 1] on 
1�
2, then

the joint possibility distribution �: 
1� 
2 7! [0; 1] is

�(xi; yj) := �(fhxi; yjig):

� [155] Given a joint possibility measure �, then �1: 2
1 7! [0; 1] is amarginal

possibility measure and �1: 
1 7! [0; 1] is a marginal possibility distri-

bution where

�1(A) := �(A� 
2) =
_

hxi;yji2A�
2

�(xi; yj);

�1(xi) :=
_
yj

�(xi; yj) = �(fxig � 
2):

and similarly for �2 and �2.

� [67] Assume a joint possibility measure and distribution, and a norm u. Then

the conditional possibility measures

�(�juB): 2

1 7! [0; 1]; �(�juA): 2


2 7! [0; 1]

and conditional possibility distributions

�(�juyj): 
1 7! [0; 1]; �(�juxi): 
2 7! [0; 1]

are de�ned by the functional equations (a form of \possibilistic Bayes theo-

rem")

�(A;B) = �1(A)u �(BjuA) = �2(B) u�(AjuB);

�(xi; yj) = �1(xi) u �(yj juxi) = �2(yj) u �(xijuyj):
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Proposition 5.55 Some major classes of conditional possibility distributions are

�(xij^yj) =

(
[�(xi; yj); 1]; �(xi; yj) = �2(yj)

�(xi; yj); �(xi; yj) < �2(yj)
;

�(xij�yj) =
�(xi; yj)

�2(yj)
;

�(xijumyj) =

(
[0; 1� �2(yj)]; �(xi; yj) = 0

1� �2(yj) + �(xi; yj); �(xi; yj) > 0
;

and correspondingly for �(yj juxi).

Note that conditional possibility is frequently not determinative. Cooman2 has

shown that it will only be so for norms such that

8x; y; z 2 [0; 1]; x u y � x u z ! x = 0 or y < z:

This is not an overwhelming limitation, however. By comparison, a unique con-

ditional probability is not always available, either. In particular, the conditional

probability p(xjy) = p(x; y)=p(y) is not de�ned when p(y) = 0.

There are a variety of di�erent approaches to this material, and still some out-

standing issues. For example:

� Bouchon [18] de�nes joint distributions in terms of (deterministic) condition-

als, rather than the other way around;

� Ramer [228] suggests a de�nition of conditional possibility by a method similar

to the maximum plausibility focused consistent transformation normalization

method presented in Sec. 2.8.1.2;

� Comman et al. [38] unify joint and conditional possibility using a measure-

theoretic approach;

� There is also a strong developing movement in so-called \measure-free condi-

tionals" or \conditional events", which views the construct xijyj as a (non-

deterministic) event in an abstract algebra [67,103,105];

� From the mup, and the fact that ^ � u for all norms u, Ramer and Puea-

Ramer [232] have justi�ed ^ as the appropriate u operator. Furthermore,

possibilistic non-interaction is frequently de�ned [155] as the condition

�(xi; yj) = �1(xi) ^ �2(yj):

2Personal communication.
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Some of the properties of \min-related" fuzzy numbers have been explored by

Rao and Rashed [233].

� Dubois and Prade [67] have suggested that

�(xi; yj) = �(yj)! �(xij^yj) := 1

on the basis of applying the mup to [�(xi; yj); 1];

� And Zadeh [325] originally suggested

�(xijyj) := �(xi; yj):

Aside from the generalization to general fuzzy measures, distributions, and

conorm semirings made here, we have little to add to the speci�c issues surrounding

the nature of conditional possibility. Our interest is in the use of conditional possi-

bility in possibilistic processes, their meaning and measurement. Recall that � is

a vector of conditional possibility distributions on 
2, each of which is normalized

so that

8!j 2 
;
_

!i2Q

�(!ij!j) = 1:

So in the context of possibilistic processes, this condition states that no matter what

the current state, there must be at least one state to which it is completely possible

to transit, one out arrow weighted 1 in a possibilistic state transition diagram.

Were this not to hold, then formally � would simply be a general fuzzy rela-

tion, with no possibilistic constraints whatsoever. And semantically, a process might

arrive in a state !j for which 6 9i;�ij = 1, so that the process would be \possi-

bilistically blocked" from any future progress. Note that this is di�erent from an

\absorbing" state, which is inde�nitely transiting only to itself. So when transition

possibilities are determined from measurement, normalization is expressed as the

requirement that some state be identi�ed for future progress, or in other words as

a commitment that future measurements can indeed be made.

5.5.4 Other Approaches

Finally, some of the approaches that other researchers have taken to some of these

issues should be mentioned.

� Gaines and Kohout [92] discussed both possibilistic state and transition nor-

malization, but they did so only in the context of general automata theory

on semirings, and not in the special context of possibility theory, possibility



5.6. POSSIBILISTIC SYSTEMS 197

distributions, and conditional possibility distributions. This is despite the fact

that in the same paper they also laid out many of the key semantic conditions

for possibility theory which were used so heavily in Chap. 3.

� Santos [246] identi�ed Z� as a restricted fuzzy process, but gave it no

further consideration.

� Yager [317] generalizes the fuzzy integral, which, like fuzzy relation composi-

tion, was also originally based on h_;^i composition, to general ht;ui pairs,

but is not concerned with distributivity. This is contrasted with the approach

of Cooman et. al [38], who generalize fuzzy integrals to \possibilistic integrals"

using conorm semirings on lattices.

� Dal Cin [42,43] discusses fuzzy automata, but these are of a decidedly di�erent

formal nature from the systems discussed in this chapter.

� Wee and Fu [302] use the term \normalized fuzzy automata" to refer to a fuzzy

automata which is stochastically transition normal.

5.6 Possibilistic Systems

As with stochastic processes, possibilistic processes form the mathematical core

around which other possibilistic systems and machines can be developed.

5.6.1 Automata

Automata have been mentioned many times in the above sections, but will be mathe-

matically de�ned here by extending general processes to include input and/or output

functions.

De�nition 5.56 (Automaton) Assume a �nite input alphabet Y := fykg and

de�ne the transition function as �: 
 � Y � 
 7! [0; 1]. For a given yk 2 Y , then

denote �(�; yk; �): 
2 7! [0; 1] as the projection of � through yk. Then the system

A :=



; Y;�;
; �; �0

�
is an automaton if 8yk 2 Y;




;�;
; �(�; yk; �); �

0
�
is a

process.

An automaton is a process whose state transitions are paramaterized by its input.

Each input symbol yk establishes a di�erent transition function �(�; yk; �).

Some of the other familiar forms of automata with output [273] are also available.
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De�nition 5.57 (Mealy Automaton) Assume an automatonA, a �nite output

alphabet Z := fzg, and de�ne an output function �: 
� Y � Z 7! [0; 1]. Then


; Y; Z;�;
; �; �0; �

�
is a Mealy automaton.

De�nition 5.58 (Moore Automaton) A Mealy automaton A is a Moore au-

tomaton if

8
yk1

;yk2
2Y

8
!i2


8
z2Z

�(!i; yk1 ; z) = �(!i; yk2 ; z):

�(!i; yk; z) represents the degree to which z is output given being in state !i and

receiving input symbol yk.

Possibilistic automata follow naturally when h�;
i = h_;ui and �t and �

are normal and transition normal respectively.

General automata have actually been discussed very little in the literature, which

concentrates almost entirely on the special cases discussed in Sec. 5.3. Exceptions

are Santos [251], who early on explored areas beyond h_;^i composition, and Gaines

and Kohout [92], which again forms the inspiration for much of this work.

5.6.2 Possibilistic Monte Carlo Methods

Another major component of stochastic process theory is the ability to move from

the distribution-level meta-state description ~p t to a speci�c state-level description.

That is, even though the state vector ~p t is available at each time t, it is desirable

to select a single state !i 2 
 as being selected at time t. This is done by Monte

Carlo methods, which through the generation of random numbers, simulate the

movement of speci�c states forward in time in accordance with the probability dis-

tributions in question.

First we state the de�nition of the standard (probabilistic) Monte Carlo method.

De�nition 5.59 (Monte Carlo Method) Assume a cumulative probability dis-

tribution function P : IR 7! [0; 1], where

P (x) := Pr([�1; x]) =

Z
x

�1

p(y) dy

for some probability distribution p: IR 7! [0; 1], and let U be a uniform random

variable on [0; 1]. Then the Monte Carlo method selects that x0 2 IR such that

Pr([�1; x0]) = U , which is P�1(U).

This de�nition is dependent on the fact that P is both a probability measure and

a monotonic nondecreasing transform of p. P , being the de�nite integral of a non-

negative probability distribution, is bijective on [0; 1]. Thus P�1(U) exists for a

unique x0, so that P�1 maps a probability U 2 [0; 1] to a unique event [�1; x0].
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When making the movement to the possibilistic case, the situation is not so

straightforward. There are a variety of approaches, each with advantages and dis-

advantages.

First, note that in the probabilistic case, P being bijective depends on the or-

dering � of IR and the topological structure of the sets [�1; x], so that

x1 � x2 ! [�1; x1] � [�1; x2]:

Thus the sets [�1; x] form a nest, and P actually has a form similar to a possibility

distribution. Where P is the sum (integral, in the continuous case) of probabilities

p on x 2 IR, � is the sum of \probabilities" (evidence values) m on Aj 2 2
.

It therefore might make sense to have a possibilistic Monte Carlo method select

!0 2 
 such that !0 = ��1(U). However, this overlooks the very di�erent semantics

of possibility and probability, as has been discussed repeatedly. U is a probability,

and it makes little sense to compare it to a possibility value.

Moreover, while generally

x1 6= x2 ! P (x1) 6= P (x2)

(this fails to hold only when 8x 2 [x1; x2]; p(x) = 0), from (2.96) the corresponding

condition for possibility distributions

x1 6= x2 ! �(x1) 6= �(x2)

only holds when � is complete. Otherwise, ��1(U) may not be unique. Complete

possibility distributions are generally rare, requiring (at least) a point focus for a

core. Note that this is usually not the case for possibilistic histograms.

In fact, it is a general principle in possibility theory that results tend to be

interval-valued. Further, in keeping with the random set interpretation of possibility

theory, it is perhaps better to concentrate on a Monte-Carlo method at the level of

S. In this approach, as suggested by Chanas and Nowakowski [31], U would be used

only to select an entire focal element.

De�nition 5.60 (Random Set Monte Carlo Method) [31] Given a random

set S, consider the mj as probabilities, and then:

1. Select an Aj by a probabilistic Monte Carlo method;

2. Select !0 2 Aj by iterating a Monte Carlo method from a uniform mep distri-

bution on Aj .
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Proposition 5.61 [31] Pr(!0 = !) = pS(!), recalling that pS is the maximum

entropy probability distribution on S (2.122).

Proposition 5.62 [31] Consider a possibility distribution �, with a consonant

constructed random set S� from (2.128), as a fuzzy set e�. Then selecting !0 from

the random set Monte Carlo method (5.60) is equivalent to:

1. Select the alpha cut e�U ;
2. Select !0 by a Monte Carlo method from a uniform mep distribution on e�U .

Proposition 5.63 Selecting !0 from (5.62) is equivalent to selecting !0 by a Monte

Carlo method from a uniform mep distribution on S(U), as determined by (2.134).

Wong and Shen [308] suggest that !0 should be chosen from a general fuzzy set

as that state which has maximal membership grade. In the context of possibility

distributions, this is equivalent to selecting !0 by a Monte Carlo method from a

uniform mep distribution on C(�). The disadvantage of this method is that no

information about properly possible values 0 < �(!) < 1 is used. However, this

method is to be chosen by GK-compatibility. Under ppc, it is equivalent to selecting

!0 by a Monte Carlo method from a uniform mep distribution on f! : p(!) > 0g.

An alternative would be to select !0 by a Monte Carlo method from a uniform

mep distribution on U(�). But as above, this would also ignore all information

about the possibilistic structure of �.

5.6.3 Possibilistic Markov Processes

Note that in a possibilistic process a state vector ~�t is a function only of the time-

invariant transition matrix � and the previous time state vector ~�t�1. It is inter-

esting to consider cases where more past states a�ect the current state, for example

by considering � as a vector of conditional possibility distributions of the form

�(!t
i
j!t�1

j
; !t�2

k
). Analogously to stochastic processes, the above example can be

considered as a possibilistic Markov process of degree 2. Thus Z� is a possi-

bilistic Markov process of degree 1, and generalizations to degree n are evident.

5.6.4 Other Forms

As with stochastic processes, a variety of other forms of possibilistic systems have

either been considered in the literature already (although not in this context of

mathematical possibilistic process theory), or suggest themselves immediately.
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� Notice that the transition graph of a possibilistic process, as in Fig. 5.2, has

the form of a network diagram. Possibilistic processes can therefore be gener-

ally described as possibilistic networks, where states indicate nodes of the

network and transition possibilities are non-additive, possibilistically normal,

connection weights. Since these weights are conditional possibilities, possibilis-

tic networks are possibilistic correlates to the Bayesian networks of classical

information theory.

� Dubois and Prade [73] have considered possibilistic hypergraphs.

� Yager [316] has introduced possibilistic production systems.

� While coin toss and ball-in-urn thought experiments are a staple of probability

theory, there are as of yet no such simple, canonical examples for possibility

theory. However, it is interesting to consider those classical examples converted

to possibility theory using the uip. Klir has done this [153] for a simple ball-

in-urn problem.

� Possibilistic analogs to cellular automata [37,287], L-systems [177], and neural

nets [243] should be considered. Fuzzy Petri nets [208] have already been

considered by Looney [178] and Person [207].



Chapter 6

Implementation of Possibilistic

Models

You'll hear that programmers succeeded in

bringing the Central Computer under control,

cutting its higher reasoning centers while new

programs could be written, leaving the merely

mechanical parts of me intact so I could

continue running things. They probably believe

that, too, but they're wrong. If their schemes

had reached fruition, I wouldn't be talking to

you now because we'd both be dead, and so

would every other human soul on Luna.

| John Varley

Mathematics has traditionally been concerned with continuous systems, for ex-

ample functions on IRn. So while both mathematics and systems theory are con-

cerned with systems of all types, both discrete and continuous, systems theory has

tended as a matter of course to focus more on discrete systems.

The distinction between discrete and continuous systems is closely mirrored by

that between digital and analog machines. So it is not surprising that there is an

intimate relationship between systems theory and computer technologies, at many

levels and in many ways.

First, there is a strong historical relationship. Many of the �rst systems the-

orists and cyberneticians, such as von Neumann and Weiner, were also some of

the pioneering computer scientists. Also, cybernetics was speci�cally intended to

develop the mind-machine analogy, in particular the metaphor of the brain as a

digital computer.

But beyond that, digital technology is both appropriate and even necessary for

research on the kinds of discrete systems typically studied by systems science. For-

202
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mally, computer systems (as �nite Turing machines) are in fact cases of discrete

systems. This class also includes the kinds of systems with high dimensionality con-

sidered by Kampis (components systems) [130] and Kanerva (the Hamming metric

space of bit strings) [136].

Moreover, in virtue of their high combinatorial complexity, discrete systems do

not generally yield to the kinds of simple mechanical or electrical analog models

that continuous systems, such as systems of di�erential equations, do. In fact, their

physical representation or modeling requires digital technology.

Klir has observed that systems methods cannot be fully developed or explored

without computer-based implementations of them.

Systems knowledge can also be obtained experimentally. Although sys-

tems (knowledge structures) are not objects of reality, they can be simu-

lated on computers and in this sense made real. We can then experiment

with the simulated systems for the purpose of discovering or validating

various hypotheses in the same way as other scientists do with objects

of their interest in their laboratories. In this sense, computers, may be

viewed as laboratories of systems science. Experimentation with systems

on computers is not merely possible, but it may give us knowledge that

is otherwise unobtainable. [149, p. 102]

He has also suggested that the lack of computing machines has (until recently)

allowed only for the full development of either continuous or very simple discrete

mathematical systems. For example, he remarks1 that Laplace had considered non-

additive \probabilities" (in other words the kinds of belief and plausibility values

later developed by Dempster and Shafer into evidence theory), but was not able to

continue because of the enormous combinatorial complexity of the calculations on

2
 that would have been required.

As described by Horgan [123], as the complexity of problems increases, this

situation is becoming common generally in mathematics. The result is the growth of

so-called \experimental" or \computer-aided" mathematics, where computer-based

tools are used to empirically investigate the properties of mathematical systems.

Therefore, in this chapter an architecture for the computer-based implementa-

tions of possibilistic models in an object-oriented environment, in particular the

C++ programming language, is proposed. Such a system is crucial not only as a

platform for the application of possibilistic qualitative modeling (discussed below in

Chap. 7), but also for the empirical investigation of the properties of possibilistic

1
Personal communication.
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processes. Examples of many of the open questions that require empirical inves-

tigation include the e�ects of the choices of continuous approximations and focus

values in the possibilistic measurement methods from Chap. 4, and the evolution

of the values of information measures under the operation of possibilistic processes

and normalization methods.

6.1 Computer-Aided Systems Theory (cast)

In presenting this architecture, we will also discuss some of the issues related to

the development of computer-based modeling environments and implementations

of systems theoretic methods in general. This task is perhaps best exempli�ed

by the Computer-Aided Systems Theory (cast) school. cast includes the work

of (especially) Pichler and his colleagues [184, 210{214, 219, 220], Zeigler and his

colleagues in their approach to discrete event modeling [218,326,327], Paul Fishwick

[85{87], Tuncer �Oren [195,196], and others [281].

While cast can be broadly characterized as any attempt at computer-based

implementations of systems theoretic methods, it has tended to focus on the con-

struction of generalized, integrated modeling environments that encompass multiple

methodologies, allowing for their representation in a common framework and for

transformations among them.

In a well-engineered cast environment, implementations of speci�c, complex

systems theoretic methods would be built from and depend upon those of more

general, foundational methods. In fact, a general purpose systems theoretic model-

ing language (built around such concepts as state spaces, relations, functions, and

deterministic processes, for example) could provide a robust environment in which

to implement more detailed methods (for example Turing machines or Petri nets).

This is the approach of Pichler's group, for example, where basic implementations

of �nite state machines are then used to develop a variety of specialized cases.

Existing cast implementations (for example Pichler's and Zeigler's) are deter-

ministic. The extension of these implementations, and the development of new envi-

ronments, to include representations of indeterminism, uncertainty, and information

is crucial. For example, existing systems could not implement neural networks with

(stochastic) noise.

It is also clear that the fundamental categories for the representation of uncer-

tainty and information should be included in that �rst category of basic systems

methods, on the basis of which more complex methods are built. These categories

should include the entire repertoire of git, allowing, for example, the use of meth-

ods from probability and statistics and fuzzy theory, as well as random sets and
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possibility theory.

git-based cast implementations should allow the handling of hybrid sources

and representations of uncertainty, the integration of multiple sources of informa-

tion, and the transformation between representational forms of information, as with

the uip. For example, Klir's General Systems Problem Solver (gsps) [28,81,145,194]

was designed speci�cally to accommodate both probabilistic and possibilistic repre-

sentations of information, and is best implemented in a git-based general systems

theoretic cast environment.

There has recently been an explosion of implementations of fuzzy systems meth-

ods for both the commercial and academic markets (Janzen [126] and Sosnowski

and Pedrycz [272] are examples). The same is not the case for general git meth-

ods, however, and certainly not in possibility theory. One exception is the work of

Galway [93], who has implemented a system for manipulating random subsets of

IR2.

6.2 Object-Oriented Environments

One of the most successful programming paradigms of recent years is the object-

oriented approach [36,40]. This methodology is based on the concepts of objects,

which are complex data elements, and classes, or \intelligent data types" for ob-

jects, which isolate type-speci�c procedures within type-speci�c levels. Logical re-

lations among classes allow for the inheritance of procedures from more general

classes to their specialized cases. Classes and objects have attributes, either other

objects (data attributes) ormethods (procedural attributes). A class invariant is

a logical condition which must always be true of every object of the class in order

for it to be existing in a legal state.

Popular object-oriented programming languages include Smalltalk [101], Ei�el

[7,39], Objective C [40], and Loops [141] and Scoops [327] (object-oriented extensions

to Lisp and Scheme respectively). The target language for the proposed architecture

below is C++ [21, 274]. It was selected for its popularity and e�ciency, and because

of the availability of standard, inexpensive compilation environments and software

support libraries.

The main results of this chapter are summarized in Figs. 6.1{6.3, which show

Entity-Relationsip (er) diagrams of the proposed class hierarchies. er diagrams

[36,163] are a common form for the representation of the most prominent semantic

relations among classes. The er diagrams used here are a slight modi�cation of

the standard form presented by Coad and Yourdon [36]. Each node denotes a class

(data type). Nodes are linked by labeled arcs, each indicating one of the following
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relations, where X and Y are classes:

� X
is-a
�! Y : Y inherits from X , so that Y is a speci�cation of X and has all

the properties of X . X is called a parent and Y a child. For example

bird
is-a
�! robin

would require that robins inherit from birds. Multiple inheritance results

when a class inherits from multiple parent classes. For engineering reasons

or to capture e�ciencies present in the special cases, some attributes may be

implemented redundantly in child classes. For example, the formula for N(S)

(2.99) is greatly simpli�ed in the consonant case by N(�) (2.110).

� X
collection
�! Y : Y objects are implemented as a collection (for example, a list,

set, bag, or vector) of X objects. For example

bird
collection
�! flock

could mean that a flock object is a set of bird objects.

� X
has-a
�! Y : Y is a component of X , so that each X-object contains a Y

sub-object. For example

bird
has-a
�! wing

would require that each bird object contain a wing object. When Y is a

sub-object of X , then Y may have access to X-speci�c information. For engi-

neering or e�ciency reasons, it may be that Y can be implemented separately

from X , or a Y may be constructed from an X , copying the appropriate X-

speci�c information into Y . In fact, at the strictly logical level this relation

simply requires that each X object determines a unique Y object, or that a

procedure exists to construct a Y object from an X object. This is the sense

that will frequently be used below.

Note that while arrows always move from the more general to the more speci�c,

this is not always mirrored by the English translation of the arcs. For example,

X
is-a
�! Y is read that \Y is an X", while X

has-a
�! Y is read that \X has a Y ".

6.3 Fundamental Classes

Each of the er diagrams below describes a di�erent portion of the overall archi-

tecture, and is accompanied by a set of descriptions of the classes included in the
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�gure. Only the most basic methods and procedures are included here; supplemen-

tary methods are described in Sec. 6.4.2.

The er diagrams and class descriptions are written in a kind of non-C++-speci�c

class design \pseudo-code". Only the logical relations among the classes are de-

scribed. For example, in Fig. 6.1 it is not speci�ed exactly how a plausibility as-

signment is determined from a plausibility measure. It will be presumed that if

X
has-a
�! Y , then Y will have access to X-speci�c information.

The �gures share the class Poss_Dist, for possibility distributions, in common.

6.3.1 Random Sets

Fig. 6.1 shows the class hierarchy including random sets, a class of fuzzy measures on

them, and those measures' distributions. The class Random_Set is the most general,

and therefore one of the most heavily laden, classes in the proposed architecture.
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Figure 6.1: Random sets, evidence measures, and distributions.
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Random Set | A random set S.

Data Attributes Universe Integer n = j
j

Card Integer N = jSj

Data A list of haj ; mji pairs, with oats mj and integers

aj , where aj is an n-long bit-mask determining the

characteristic function �Aj of the subset Aj � 


Invariants 1 � n

1 � j � N � 2n � 1

1 � aj � 2n � 1

0 � mj � 1P
N

j=1mj = 1

Methods Strife S(S)

Nonspec N(S)

Total T(S)

Core C(S)

Monte_Set Select a focal element Aj

Monte Select a universe element !i

+ The Dempster combination operator � which com-

bines this Random_Set with another, producing a

combined Random_Set

<= The random set inclusion relation � (2.131), a

boolean reporting whether this Random_Set is in-

cluded within another

Complete? Boolean: is S complete?

Consistent RS | A consistent random set.

Invariant C(S) 6= ;

Consonant RS | A consonant random set.

Data Attribute Ordering A list ha�|i permuting the aj according to the inclusion

relation among the A�|

Invariants 81 � �|1 � �|2 � N;A�|1 � A�|2

1 � N � n
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Specific RS | A speci�c random set.

Invariants 81 � j � N; jAjj = 1

1 � N � n

Pl Measure| A plausibility measure Pl on a random set.

Method Value Given 0 � aj � 2n � 1, returns a oat Plj := Pl(Aj).

Poss Measure | A possibility measure �.

Invariant 8a1; a2;Pl(A1 [A2) = Pl1 _ Pl2.

Prob Measure | A probability measure Pr.

Invariant 8a1; a2;Pl(A1 [A2) = Pl1 + Pl2 � Pl(A1 \ A2).

Pl Assignment| A plausibility assignment ~Pl from a random set.

Data Attribute Data A list of oats hPlii, where Pli = Pl(f!ig)

Invariant 1 � i � n

Poss Dist | A possibility distribution �.

Invariant
W
i
Pli = 1

Methods Nonspec N(�)

Strife S(�)

Total T(�)

Core C(�)

Prob Dist | A probability distribution p.

Invariant
P

i
Pli = 1

Method Entropy H(p)



210 CHAPTER 6. IMPLEMENTATION OF POSSIBILISTIC MODELS
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Figure 6.2: Distributions and fuzzy sets.

6.3.2 General Distributions

Fig. 6.2 shows the class hierarchy of distributions and fuzzy sets.

Element | A generic element of a distribution or fuzzy set.

Data Attribute Value A oating-point \�t" (fuzzy digit), f .

Invariant 0 � f � 1

Dist Elem | An element of a distribution qi.

Methods + The distribution operator � which aggregates this

Dist_Elem with another, producing an aggregated

Dist_Elem. At this level of generality � is not spec-

i�ed (Dist_Elem is a virtual base class), but it must

be a conorm t.

* The combination operator 
 which combines this

Dist_Elem with another, producing a combined

Dist_Elem. At this level of generality 
 is not spec-

i�ed (Dist_Elem is a virtual base class), but h�;
i

must be a conorm semiring ht;ui.
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Fuzzy Set | A collection of elements comprising �.

Data Attributes Universe Integer n = j
j

Data A list of Elements hfii.

Invariant 1 � i � n

Poss Elem | Element of a possibility distribution �i.

Invariant f1 t f2 = f1 _ f2.

Poss Dist | A possibility distribution �.

Data Attributes Universe Integer n = j
j

Data A list of Poss_Elems h�ii

Invariant 1 � i � nW
n

i=1 �i = 1

Prob Elem | Element of a probability distribution pi.

Invariant f1 t f2 = f1 + f2.

Prob Dist | A probability distribution p.

Data Attributes Universe Integer n = j
j

Data A list of Prob_Elems hpii

Invariant 1 � i � nP
n

i=1 pi = 1

Note that Poss_Dist and Prob_Dist are repeated here as collections of their

elements, inheriting from Pl_Assignment from Fig. 6.1.

6.3.3 Possibilistic Processes

Finally, Fig. 6.3 shows the class hierarchy of possibilistic processes. Poss_Dist has

been speci�ed above.

Transit Matrix | A possibilistic transition matrix �.

Data Attributes Universe Integer n = j
j

Data A list of Poss_Dists
D
�

(j)
E
.

Invariant 1 � j � n
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Poss Dist

Transit Matrix State Dist

Poss Process

? ?

HHHHHHj

�������
collection has-a is-a has-a

Figure 6.3: Possibilistic processes.

State Dist | The current state possibility distribution �t.

Data Attribute Time The current time, an integer t

Invariant 0 � t

Poss Process | A possibilistic process Z� .

Method Advance Determine next state function �t = �t�1 �� .

6.4 Extensions to the Basic Architecture

Of course, the architecture described above is merely the core for a broader imple-

mentation of possibilistic models, which must also involve a variety of measurement

methods and links into cast implementations of other aspects of git, let alone the

input/output routines necessary for any software system.

6.4.1 Engineering E�ciencies and Algorithms

Some researchers have considered computationally e�cient representations and al-

gorithms for git.

6.4.1.1 The Bayesian Approximation

Probabilistic approximations of non-speci�c random sets have been suggested. One

is the maximum entropy probability distribution pS (2.122) discussed in Sec. 2.6.4.2.

Voorbaak has also suggested the following speci�c approximation to a general

random set.

De�nition 6.1 (Bayesian Approximation) [293] Given a random set S, let

m: 2
 7! [0; 1] be its Bayesian approximation, where 8A � 
,

m(A) :=

8><
>:

P
Aj�A

mjPN

j=1
mjjAj j

; jAj = 1;

0; jAj 6= 1

:
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Corollary 6.2 Given a random set S, then m is an evidence function, and S is

speci�c with probability distribution p where 8!i 2 
,

p(!i) = p
i
:=m(f!ig) =

PliP
n

i=1 Pli
:

Proof: Since m(A) > 0 only for non-singleton A, therefore we need only consider

the values of p de�ned on the elements of 
. From the de�nition of evidence function

(2.52), we need to show that

nX
i=1

p
i
=

nX
i=1

P
Aj3!i

mjP
N

j=1mj jAj j
=

P
n

i=1

P
Aj3!i

mjP
N

j=1mj jAj j
=

P
N

j=1mj jAj jP
N

j=1mj jAj j
= 1;

so that it is obvious that p is a probability distribution, m is an evidence function,

and S is a speci�c random set. The �nal result then follows from the plausibility

assignment formula (2.68) and the lemma (2.69).

Voorbaak introduced this approximation for its computational e�ciency in Dempster-

combination problems, because it is invariant under the Dempster-combination op-

eration �.

Proposition 6.3 [293] Given two random sets S1;S2, then m1 �m2 = m1 �m2.

However, this result is not crucial for this work, since Dempster combination is not

crucial for possibility theory or process theory.

6.4.1.2 The M�obius Transform

Of more importance is the so-called M�obius transform [143] or fast M�obius

transform [284], which is an algorithm utilizing the M�obius inversion formula (2.59)

to calculate among belief measures and evidence functions.

Proposition 6.4 (Fast M�obius Transform) [143,284] Let the !i 2 
 be taken

in some arbitrary order, and assume a random set S.

1. Assume the evidence function m of S, and let m0 := m. Then 8A � 
, and

1 � i � n, determine mi by the algorithm

mi(A) :=

(
mi�1(A) +mi�1(A� f!ig); !i 2 A

mi�1(A); !i 62 A
:

Then mn = Bel, where Bel is the belief function of S.
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2. Assume the belief function Bel of S, and let mn := Bel. Then 8A � 
, and

n � i � 1, determine mi by the algorithm

mi�1(A) :=

(
mi(A)�mi(A� f!ig); !i 2 A

mi(A); !i 62 A
:

Then m1 = m, where m is the evidence function of S.

The fast M�obius transformation is extremely e�cient, and will be used in imple-

menting the relation

Random Set
has-a
�! Pl Measure

from Fig. 6.1.

6.4.2 Supplementary Methods

A number of procedures have been described in the preceding chapters which are

special or supplementary to the basic procedures, but which it would nevertheless

be bene�cial to implement explicitly. Most of these are transformations of one of the

classes to another. The following relations can be appended to the basic diagrams

above as appropriate.

Distribution Operations:

Poss Dist
has-a
�! Poss Measure; Prob Dist

has-a
�! Prob Measure:

From corollary (2.24), given a possibility distribution �, a possibility measure

� can be constructed; similarly, from (2.83), given a probability distribution

p, a probability measure Pr can be constructed.

Probabilistic Approximations:

Random Set
has-a
�! Prob Dist:

Probability distribution approximations of random sets are available either

as the maximum entropy probability distribution pS (2.122), or the Bayesian

approximation �p (6.1).

Compatibility Measures: Given a Prob_Dist p and Poss_Dist �, a variety of

compatibility measures (�; p) can be calculated (Sec. 2.6.3.3).

Consonant Approximation:

Consistent RS
has-a
�! Consonant RS:

From (2.128), a consonant random set S� can be constructed from a consistent

random set S.
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Frequency Conversions:

Prob Dist
has-a
�! Poss Dist; Poss Dist

has-a
�! Prob Dist:

Probability and possibility distributions are co-determining from the meth-

ods presented in Sec. 3.4.2.2: maximum normalization ((3.16) and (3.17)),

log-interval scaled uip ((3.21) and (3.23)), probabilistic di�erence (3.25), and

probabilistic nests (3.28).

Possibilistic Normalization:

Random Set
has-a
�! Consistent RS; Pl Assignment

has-a
�! Poss Dist:

A consistent random set can be constructed from a random set S, and a pos-

sibility distribution � from a plausibility assignment ~Pl, either by dimensional

extension ((2.150) and (2.152) respectively), or by focused consistent trans-

formation (assuming a given i, where 1 � i � n, from (2.142) and (2.143)

respectively). In the focused consistent transformation case, various methods

from Sec. 2.8.1.2 to choose i (maximum plausibility (2.144), minimal informa-

tion distortion (2.148) and alternate minimal information distortion (2.149))

can be implemented and compared.

Measurement: The result of all the measurement methods presented in Chap. 4 is

the construction of a random set, hopefully consistent. Therefore, while they

require explicit implementation, they fall outside of the regular class hierarchy

which has one root in the class Random_Set.

Automata Implementations of possibilistic processes can be extended to automata,

as described in Sec. 5.6.1.

6.4.3 Other Extensions

There are further extensions which can be made to link the implementation of

possibilistic methods with other git methods and other cast implementations.

These extensions can be considered either as a part of this research program, or as

extensions to the research programs which have been or may be launched by others.

� Bernard de Baets of the University of Ghent is currently2 implementing some

of the methods described in Sec. 2.1 and Sec. 2.2.1 which generalize possibility

theory beyond [0; 1] to valuation on general lattices L. There is therefore the

opportunity to integrate these approaches.

2
Personal communication.
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� The origin of the cast program is with the implementations of deterministic �-

nite state machines of Pichler and his colleagues [213]. There is a clear relation

to the possibilistic approach described here, and the opportunity to generalize

to a variety of di�erent git-based representations of �nite state machines with

uncertainty, including nondeterministic and stochastic machines.

� There has been some work [28, 81, 194] on the implementation of Klir's gsps

system [145]. It would certainly be very valuable to relate these e�orts directly.

� In addition to the measurement methods described in Chap. 4, the possibilistic

clustering methods from Sec. 3.4.4.3, including possibilistic c-means and the

mountain method, can be integrated.

� While we have criticized the traditional dependence of possibility theory on

fuzzy theory, the relationship is certainly worth maintaining. And although

it is not our speci�c focus, there is value in relating possibilistic implemen-

tations with those of the variety of fuzzy set operations and concepts listed

in Sec. 2.4.2, along with many others. There is by now a huge literature on

these methods (see Kosko [165] and Terano, Asai, and Sugeno [283] for just

two examples), and many academic and corporate e�orts to develop fuzzy

theoretical systems. Hopefully other researchers are building cast-based im-

plementations of fuzzy systems methods, which could then be integrated into

this speci�cally possibilistic system. In particular, the action of conorm pro-

cesses is just a case of fuzzy relation composition, so a generalized fuzzy cast

system implementing fuzzy relations can be used as a base for possibilistic

automata.

� The architecture presented above (for example the class Random_Set) is de-

�ned on a discrete universe, while (as discussed in Sec. 4.1.6) the measurement

methods of Chap. 4 are generally used on continuous universes. But also as

discussed in Sec. 4.1.6, �nite random sets on continuous universes can be

rede�ned as random sets on discrete universes. Nevertheless, there are op-

portunities to reengineer this architecture in terms of continuous universes,

and thereby make more general representations of fuzzy numbers, possibilistic

histograms, and their continuous approximations, as discussed in Chap. 4.

� Finally, possibility measures, as extreme plausibility measures, exist within

the more general Dempster-Shafer evidence theory. Therefore the exten-

sion of possibility theoretic implementations to include necessity measures

(as the extreme belief measures dual to possibility measures), and general be-
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lief/plausibility pairs, may be very useful. Beyond that, of course, both belief

and plausibility measures are special fuzzy measures, and so the ultimate ex-

tension is to the construction of cast-based systems for fuzzy measures in

general.

6.5 Empirical Investigations

As discussed at the beginning of this chapter, it is common in systems theory that

computer-based implementation and simulation are necessary in order to investigate

the properties of the systems under consideration, and this is the case with possi-

bilistic systems, processes, and models. There are a number of issues which would

be desirable to investigate empirically.

Nonspeci�city Calculations: Determination of informational properties, and in

particular nonspeci�city values and the changes in these values, is of great

interest. This would include, for example:

� Calculation of N(�t) of the state vector of a possibilistic process as a

function of t;

� Calculation of N(�) where � is a possibilistic histogram, and the depen-

dence of N(�) on the measurement method used;

� The change from T(S) to T(�) under normalization, and the dependence

on both the general normalization method chosen from Sec. 2.8 and the

various sub-choices required within some of the methods (for example, the

choice of focus !� for a focused consistent transformation (Sec. 2.8.1.1)).

� Determination ofN(�) under the cases where � is a special fuzzy number,

for example a parallelogram or triangle.

Possibilistic Processes: Aside from nonspeci�city calculations, there are a num-

ber of other properties of possibilistic processes which require empirical in-

vestigation, for example the dependence of the form of possibilistic processes

on the choice of norm operator u and the choice of conditional possibility

measure.

Measurement Methods: It is natural to explore the properties of the various

measurement methods presented in Chap. 4 empirically, comparing the results

of one data source using multiple methods.



218 CHAPTER 6. IMPLEMENTATION OF POSSIBILISTIC MODELS

Uncertainty Invariance Transformations: The uip has already been mentioned

in Sec. 6.4.2 as a frequency conversion method to be implemented as a sup-

plementary method to the basic possibilistic architecture. While Klir and

Parviz [158,160] have begun to empirically examine some results of frequency

conversion methods, including the uip, there are still many unanswered ques-

tions about the uip. In the context of this work, it would be interesting to

compare the time evolution of similar stochastic and possibilistic processes,

and then compare those against their respective uip transformations.



Chapter 7

Application to Model-Based

Diagnosis and Trend Analysis

of Spacecraft

Ground control to Major Tom: your circuit's

dead, there's something wrong.

| David Bowie

As possibility theory exists within the wider domain of git and Systems Sci-

ence in general, so possibilistic models exist within a wider domain of modeling

methodologies which utilize imprecision and uncertainty. These so-called qualita-

tive modeling (qm) methods include traditional stochastic models, general fuzzy

models, and others outside the range of git. Possibility theory promises to provide

an important new approach within the qm movement.

Qualitative methods are appropriate for modeling complex systems, where the

interaction among the large number of parts and varying environmental conditions

results in the possibility of unpredictable behavior and long-run departure from

established steady-state domains. Therefore one of the important applications of

qualitative models is in themodel-based diagnostic (mbd) approach to the iden-

ti�cation of faults in complex systems such as spacecraft. These methods invoke

multiple models of and measured data from the system in order to produce a set of

candidate components for which there is a high con�dence of failure.

This chapter examines the potential for the application of possibilistic models

to the fault diagnosis and trend analysis of spacecraft systems.

219
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7.1 Qualitative Modeling

Qualitative Modeling (qm), usually considered a part of arti�cial intelligence,

can be broadly described as the attempt to deliberately model systems at a high

level of abstraction from the actual systems themselves. Of course this approach

produces models which are less precise than they might be, but with the tradeo�

of potentially greater tractibility and accuracy (the less you say, the better your

chance of being right).

The idea of reducing speci�city in order to gain other important qualities in our

models has long been a motivation for the use of git methods in Systems Science.

As the complexity of a system increases, our ability to make precise and

yet signi�cant statements about its behavior diminishes until a threshold

is reached beyond which precision and signi�cance (or relevance) become

almost mutually exclusive characteristics. [322]

Thus qm as a whole is well within the tradition of git, and many of the speci�c

methods of qm are directly related to git methods.

qmmethods can be useful when there is only a poor model of the original system,

or when there are missing or incomplete data. This can happen when systems are

incompletely speci�ed, when they have parameters or states which aren't always

known with certainty, or when complexity makes detailed prediction di�cult. For

more information about qm in general, see the anthologies edited by Bobrow [16],

and Fishwick and Luker [88], and survey articles by Fishwick [84] and Guariso,

Rizzoli and Werthner [108].

There are a variety of broad approaches within qm, which come under the names

of naive physics, qualitative physics, qualitative simulation, qualitative reasoning,

qualitative dynamics, etc. There are also a number of speci�c methods, including

bond graphs, causal loop modeling, natural language modeling, \lumped" state

space models, and inductive approaches.

Here we are most interested in qm methods which use uncertainty distributions

on state variables, and mixed interval- and point-valued dynamical systems. Models

using uncertainty distributions are familiar from the discussion in Sec. 3.1.5, where

both stochastic and possibilistic models were �rst introduced. In these methods

the uncertainty about some attribute is represented mathematically by weights on

all possible values. The set of weights, as a distribution, acts as a meta-state in

the space of all possible distributions, and functional equations relating these meta-

states produce predictions about the distribution meta-state at future times.

Models using probability distributions are also quite familiar (for example, Markov
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processes), and their correlates in possibility theory (for example, possibilistic au-

tomata) were introduced in Chap. 5. These methods are actually semi-qualitative,

since the numerical representation of the distribution adds a quantitative compo-

nent.

In an interval-valued dynamical modeling system like qsim [171], a precise point-

valued dynamical system of di�erential or di�erence equations is replaced by a ho-

momorphic interval-valued process. Typically qualitative variables are identi�ed

within certain intervals, some relatively unconstrained (for example x 2 [0;1)),

and some constrained by \landmark values" (for example x 2 [xmin; xmax]).

Qualitative variables are then generally related in three ways:

Functional: For example, if y = M�(x) then y is a monotonically decreasing

function of x, so that if x 2 [0; xmax) then y 2 (�1; 0] or y 2 (M�(xmax); 0].

Arithmetic: Standard mathematical operations can also be represented qualita-

tively, for example if x 2 [0; xmax] and y 2 (�1; 0], then xy 2 (�1; 0], but

x+ y is unknown.

Dynamic: Change of state is represented by qualitative magnitude and direction.

Qualitative di�erential relations link directions with magnitudes, for example

given y = dx=dt, then

x increasing ! y 2 (0;1); x decreasing! y 2 (�1; 0):

Of course, determinative results may not be available in such a qualitative model.

For example, we saw above that x + y could be any value in (�1;1). Similarly,

the existence of landmark values leads to uncertainty as to whether a landmark has

been crossed. To account for each possibility, two alternatives must be branched

o�. Therefore in general, qm systems have a tree of possible system behaviors, and

external factors (heuristics or other constraints) may be required to prune that tree.

7.2 Model-Based Diagnosis (mbd)

A serious problem for NASA-Goddard is the diagnosis of faults in complex systems

(spacecraft) given only the knowledge of their outputs (telemetry data). Trend

analysis is similar to long-range diagnosis, in which, given the persistence of a

potentially anomalous condition, and assuming continuation of the trend, the goal

is to predict future states and failure modes.

There are many approaches to diagnosis and trend analysis. The model-based

approach (mbd) [116] is based on the premise that knowledge about the internal
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structure of a system can be useful in diagnosing its failure. In mbd, a software

model of the system, given inputs from the real system, generates and tests various

failure hypotheses.

A typical mbd approach (derived from some of the standard literature [45, 77,

113]) to diagnosing a spacecraft (here described as some internal system whose

sensor measurements output to a telemetry stream) is shown in Fig. 7.1.
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Figure 7.1: A typical model-based diagnostic system.

An alarm is a report that some observed system attributes have departed from

nominal, and entered error, conditions, usually by exceeding some threshold values;

a prediction is a report that some system attributes should be in certain states;

a fault hypothesis is a list of system components which may have failed; and an

error is a report of a discrepancy between predicted and measured system attribute

states.

The overall mbd system then involves two distinct spacecraft models. The fault

generation model (fgm) takes inputs from telemetry, alarms, and errors, and

either produces anew, or modi�es existing, fault hypotheses. The behavior model

takes inputs from telemetry and fault hypotheses, and outputs predictions. These

are then corroborated against telemetry to produce errors. The fault hypotheses

act to modify the behavior model so that it predicts system behavior as if the

hypothetical system components had actually failed.
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Both models can be di�cult to construct, typically involving delicate tradeo�s

among accuracy, precision, and tractibility. But the fgm, as the heart of the mbd

approach, is particularly complex and involved. The fgm could be, for example, an

inversion of the behavior model (as for Dvorak and Kuipers [77]) or a decision tree

(as for Shen and Leitch [265]). Through backwards reasoning a variety of subsets of

components can be identi�ed, any of which are consistent with the given telemetry

and alarms.

Filtering is the process by which error output is used to prune the set of fault

hypotheses. If the prediction of the behavior model as modi�ed by a particular fault

hypothesis produces errors, then that fault hypothesis is not retained. As the system

is monitored over time, further observations narrow the class of fault hypotheses.

Achieving the null set indicates model insu�ciency. But if the overall mbd system

stabilizes to a non-empty set of fault-hypotheses, then these are advanced as possible

causes of the failure.

qm has been applied to mbd to produce qualitative model-based diagnostic sys-

tems. For example, in the approach of Dvorak and Kuipers [77], model predic-

tions are intervals of possible system state values. Stochastic methods, for example

Bayesian networks [96] and Markov processes [107], have been used extensively in

mbd applications. And recently Shen and Leitch [265,266] have advanced the FuSim

method for qualitative mbd which uses fuzzy arithmetic.

7.3 Possibility Theory as a QualitativeModelingMethod

As discussed in Sec. 3.3.6, possibilistic models my be appropriate where stochastic

concepts and methods are not, including situations where long-run frequencies are

di�cult if not impossible to obtain, or where small sample sizes prevail. This is

true in reliability analysis, for example, where failures and system entry into non-

nominal behavior domains are very rare; and trend-analysis, where even though

observations are made over a long time, the state variables of concern change only

very slowly, and new domains of behavior are only very rarely seen. In these cases

the weakness of the possibilistic representation is matched by the weak evidence

available.

There are many reasons why it can be hoped, and even expected, that possibility

theory can come to play an important role in qm in general, and in the application

of qm to mbd in particular.

Hamscher et al. have noticed some of the weaknesses of stochastic methods for

mbd.
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It is usually assumed that reliable failure statistics will be available,

but this is in fact rare in practice. What is needed : : : is a way of

working with likelihoods that could be speci�ed ordinally rather than

quantitatively. [116, p. 452]

This is exactly what possibility theory provides, a non-additive, ordinal approach to

qm which hybridizes interval-valued dynamics and uncertainty distribution methods.

From (2.46), and under the de�nition

�� :=

(
fx 2 IR : �(x) � �g; � 2 (0; 1]

U(�); � = 0
;

� can be represented as a set of nested intervals �� weighted by the possibility

values � (see Fig. 7.2). Thus as discussed in Sec. 2.4.3, fuzzy intervals, for example

possibilistic histograms and their continuous approximations, and the mathematical

operations on them, generalize the methods of interval analysis [187].
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Figure 7.2: (Left) A possibility distribution as a collection of weighted intervals.

(Right) The special case of a crisp interval.

Fuzzy arithmetic methods are very popular, and because all fuzzy intervals and

numbers as in fact possibility distributions, therefore qm methods which use fuzzy

arithmetic are essentially possibilistic (for example the recent work of Sugeno and

Takahiro [278]). Fuzzy arithmetic has been used as a qm method for mbd, for ex-

ample by Shen and Leitch [266] and Fishwick [87]. They use the standard methods

of fuzzy control systems, where a set of overlapping fuzzy intervals divide a quantity

space into a few linguistic values like \large positive" and \small negative". These

fuzzy sets are not measured properties of the system being modeled, and are de-

pendent on the heuristic speci�cation of the system modeler. Thus, as critiqued in

Sec. 3.4.1.2, they are essentially modeling the cognitive state of some human expert,

rather than directly modeling the system in question.

This contrasts sharply with qm methods based on possibilistic processes. First,

they are cast strictly within the context of mathematical possibility theory (including
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possibilistic processes) speci�cally, rather than fuzzy theory generally. Also, they

are based on measurement of the system in question.

7.4 A Possibilistic Approach to mbd

At both the general level and in some speci�c ways, there are areas of mbd for which

it is appropriate to consider a possibilistic approach.

7.4.1 Possibilistic Symptom and Error Detection

Typically the symptom and error detectors simply compare the measured value

against a crisp interval of nominal or predicted values (for example in Dvorak and

Kuipers [77]). This is inadequate because the resulting cuto� from nominal to error

condition is essentially arbitrary. It is natural to use a fuzzy interval to general-

ize this, measuring either prediction errors or fault symptoms as the possibilistic

distance of the telemetry from the predicted or nominal system state respectively.

Consider a measured value x compared against an error fuzzy interval of the

form of Fig. 7.2. Such a possibility distribution could be the output of the behavior

model, for instance, and would then serve as input to the error detector. Then �(x)

is the strength of the error or alarm raised. When x 2 C(�), then �(x) = 1 and

there is no alarm. When x 62 U(�), then �(x) = 0 and the alarm is complete. In

between, an intermediate alarm is raised.

Even in situations where crisp thresholds are acceptable, they may be dynamic,

varying as a result of changing system and environmental conditions. Doyle et

al. consider the situation of an earth-orbiting spacecraft as it proceeds through

sunlight and shadow.

Impingent solar radiation changes the thermal pro�le of the spacecraft,

as does the con�guration of currently active and consequently, heat-

generating subsystems on board. Thresholds on temperature sensors

should be adjusted accordingly. A particular temperature value may

be indicative of a problem when the spacecraft is in shadow or mostly

inactive, but may be within acceptable limits when the spacecraft is in

sunlight or many on-board systems are operating. [51]

This situation is shown in Fig. 7.3. Assume a variable, say the temperature t

of a given component, must be kept in a critical range as the spacecraft moves in

and out of daylight. As it does so, the range shifts as shown in the upper �gure,

where the transition periods begin at a change in sunlight, and continue to thermal
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equilibrium. For simplicity, assume that that interval is sampled uniformly six times

during the orbital day, twice each for daylight Di, night Ni, and transition period

Ti. The possibilistic histogram for the possibility �(t) of t holding a value at any

given time and a parallelogram approximation are shown.
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Figure 7.3: (Left) Variable critical range of a component through a day-night cycle.

(Right) Its possibilistic histogram and a parallelogram approximation.

A combination of these two approaches is also possible, where instead of a crisp

interval changing over time, rather a whole possibility distribution itself changes

with time.

7.4.2 Sensor Modeling

Although the mbd system contains two models, the behavior model and the fgm,

as a whole, it is itself also a model of the spacecraft. As such, it is dependent on its

inputs from measurement, and thus on the sensor output of the spacecraft. Thus

there are modeling issues in mbd concerning the sensors themselves.

When modeling complex systems, sensor data may be sparsely distributed, with

missing observations, and sometimes very small samples sizes. As discussed in

Sec. 3.3.6, these are important conditions for the inapplicability of stochastic meth-

ods, and when they hold, possibilistic methods should be considered.

In this respect, there is strong support in the literature for the idea that possi-

bility, as distinct from probability, has a role to play in qm. For example, Luo and

Kay observe

When additional information from a sensor becomes available and the

number of unknown propositions is large relative to the number of known
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propositions, an intuitively unsatisfying result of the Bayesian approach

is that the probabilities of known propositions become unstable. [180]

While Durrant-Whyte takes a typical statistical approach, he also notes

A robot system uses notably diverse sensors, which often supply only

sparse observations that cannot be modeled accurately. [76]

Dvorak and Kuipers make a similar observation in the context of model-based mon-

itoring.

All measurements come from sensors, which can be expensive and/or

unreliable and/or invasive. Monitoring is typically based on a small

subset of the system parameters, with limited opportunity to probe other

parameters. [77]

7.4.2.1 Data Fusion

Possibilistic measurement, as outlined in Chap. 4, is predicated on the observation

of subsets or intervals which are partially overlapping. It is therefore imperative to

consider the source of these intervals, some of which are described in Sec. 4.5.1.4. All

of these conditions arise in mbd when considering the problem of data fusion [180],

that is the combination of data from di�erent instruments which measure the same

system attribute, either directly or indirectly.

Hackett and Shah discuss data fusion in general, including indirect measure-

ments, and the Dempster-Shafer (that is, random set) approach.

Every sensor is sensitive to a di�erent property of the environment; in

order to sense multiple properties, it is necessary to use multiple sensors.

A system using multiple sensors that sense a single property can be

used. [110]

Dubois, Lang, and Prade [53] have also considered the data fusion problem using

possibilistic logic.

Indirect Measurements First consider the situation where measurements of a

component are not made directly, but rather knowledge of the state of the com-

ponent is only gained indirectly by inference from the outputs of sensors of other

components. Doyle et al. [51] o�er an example from jet aircraft: low engine thrust

can be indicated by either low exhaust temperature or low turbine rotation speed,

or both.
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This situation is illustrated in Fig. 7.4. Here component A is not monitored.

Its state can only be inferred from the sensors D and E, which monitor components

B and C, and which in turn are causally connected to A. Each of the intervals

reported by D and E individually is distinct and disjoint. But since the knowledge

of A provided by D and E is mediated by B and C, together they may indicate that

A exists in two di�erent, possibly overlapping, intervals.
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Figure 7.4: Indirect measurements of the state of a spacecraft component.

So as the amount of sensor \penetration" (sensor/component ratio) drops, stan-

dard measurement methods yielding frequency distributions may become less ten-

able, leaving only observations of random sets.

Redundant Measurements Alternatively, a system component may be mon-

itored redundantly by multiple instruments. If these sensors are identical, and

identically calibrated, then the result will simply be as if there was a time-series

of observations from a single instrument. But if they are mutually discalibrated, ei-

ther out of phase, or scale, or both, then the intervals reported from each instrument

may overlap.

If the sensors measure distinct modalities (e.g. pressure and temperature) of

a single component, then a process of registration [110] is required to derive a

report from one in the modality of the other, or two new reports from each in a

third modality. In any event, the argument here is very similar to the one above in

the case of indirect measurements, and possibly overlapping intervals my result.
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7.4.2.2 Sensor Failure Modeling

As mentioned above, in mbd data are not only combined from disparate sensors, they

are also sometimes incomplete, degraded, or missing altogether. Even when standard

(disjoint) observations are made, under these conditions there is the potential for

the application of git and possibility theory.

First, as discussed in Sec. 4.1.5, in git missing observation are represented as

observations of the entire universe 
, resulting in empirical random sets from aug-

mented speci�c measuring devices C+. While this does not result in a speci�cally

possibilistic situation, neither does it result in a frequency or probability distribu-

tion.

When sensor data are not missing, but rather degraded, compromised, or suspect

in some way, a con�dence weighting on each sensor's output is naturally not additive:

our con�dence about the sensors is not divided among them, since all could be

perfect or any number of them could be in any state of degradation. Instead it

is natural to represent this con�dence as a possibility distribution on each sensor's

output. Again, an observation in the core indicates complete con�dence, while one

outside the support indicates complete sensor failure.

Representation of a graduated degree of sensor failure allows a corresponding

graduated degree of con�dence in model predictions. The need for this has been

noted by Fulton.

When we detect a broken sensor, great di�cult arises if we continue

diagnosing other failures, because typical rule-based systems do not de-

grade gently when sensors fail (because the mapping is dependent on a

complete and accurate set of sensor data). [89]

7.4.3 Possibilistic Models Proper

In the sequel, the term system model will refer to the fgm or the behavior model

generally. So �nally, it is useful to consider possibilistic methods applied directly to

the system models themselves, constructing them as possibilistic processes such as

possibilistic automata, and not as fuzzy arithmetic systems as discussed in Sec. 7.3.

Input to these systems may or may not be proper possibility distributions, since

both crisp (standard) intervals and point values are special cases of possibility dis-

tributions. But if they are, then it was discussed how telemetry, alarms, and errors

can be possibilistically weighted. A possibilistic fgm then would be responsible for

producing as its output a set of fault hypotheses which are possibilistically weighted

for input to the behavior model. This would in turn generate model prediction

errors with possibilistic weights.
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A system model which is a possibilistic automata can also be cast as a possibilis-

tic Markov process. The semantics of the transition matrix � in a system model is

understood in terms of a subsystem-level model where the conditional possibilistic

weight indicates a non-additive coupling or relatedness among subsystems. This

could be, for example, the e�ciency of the subsystem, as in the approach of Doyle

et al. [51]. Or, when considering the system model as a causal graph, as in the

approach of Hall et al. [113], the weights indicate the degree of causal connectivity

between subsystems.

Thus in the possibilistic approach a system model is essentially a possibilistic

network, where nonadditive, possibilistic weights are placed on the arcs of a causal

graph. The corresponding network appears similar to a Bayesian network, but the

mathematics is possibilistic, not stochastic.



Appendix A

Original Contributions

This dissertation makes the following original contributions in each of the following

chapters:

1. Introduction: Science and Information: It is argued that while classical

information theory has historically been closely linked to the physical sciences,

the new Generalized Information Theory (git) is decidely not so linked.

2. Mathematical Possibility Theory: Both a review of git and some original

developments are provided.

� Sec. 2.2.1, p. 19: A new algebraic axiomatization of possibility is

provided.

� Sec. 2.3, p. 22: Distributions of fuzzy measures are introduced to

provide a link between fuzzy measures and fuzzy sets through random

sets; and the historical relation between the terms \fuzzy set" and

\fuzzy measure" is explicated.

� Sec. 2.5.2, p. 32: Distributions on random sets, as well as their

operators, their completion, and their structural and numerical

aggregation functions are introduced; the special cases of probability

and possibility are derived.

� Sec. 2.7.3.1, p. 49: It is proved that the optimal approximation to a

consistent random set is the unique consonant approximation, and

that

� Sec. 2.7.3.4, p. 51: it is also the canonical random set which is one-

point equivalent to a given maximally normalized fuzzy set.
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� Sec. 2.8, p. 51: Methods for possibilistic normalization of possibility

distributions, and thus for constructing possibilistic approximations

of random sets, are de�ned and developed, including dimensional ex-

tension and focused consistent transformation.

� Sec. 2.8.1.2, p. 55: Focus selection methods for focused consistent

transformations are described, including maximum plausibility and

minimal information distortion.

� Sec. 2.8.3, p. 61: Other methods for consistent approximations are

rejected, including maximum compatibility with the one-point proba-

bilistic approximation andmaximum entropy of the evidence function.

� Sec. 2.9, p. 61: It is argued that possibility theory is distinct and au-

tonomous from fuzzy theory, and that there is no special relationship

between fuzzy theory and possibility theory. The argument is made on

the basis of possibilistic normalization, the ubiquity of fuzzy sets

in git, the relation between alpha cuts and focal elements of random

sets, and the relation between the possibilistic operator and fuzzy

unions.

� Sec. 2.10, p. 72: It is argued that possibility theory is formally inde-

pendent of but weakly related to probability theory.

3. Possibilistic Semantics: Development of the fundamental conceptual cate-

gories of possibility theory.

� Sec. 3.1, p. 76: It is argued that a semantics of graduated, de re

possibility must be derived from the perspective of semiotics and gen-

eral modeling relations, where interpretations are constrained, but

not determined, from possibilistic mathematics alone.

� Sec. 3.2, p. 82: It is argued that possibilistic semantics must be em-

bedded in the contexts of the modal, logical, stochastic, and natural

language concepts of possibility.

� Sec. 3.2.4, p. 86: It is argued that the observation of an event must be

identi�ed with its complete possibility.

� Sec. 3.2.5, p. 87: A strong compatibility criterion for probability and

possibility is advanced and developed.

� Sec. 3.3, p. 94: The conceptual basis for the interpretation of possi-

bility statements is developed with respect to mathematical possibil-

ity theory, possibilistic processes, complex systems, and physical

systems.
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� Sec. 3.4, p. 108: Existing semantics of possibility are critiqued, in-

cluding:

{ Sec. 3.4.1, p. 108: The insu�ciency (and predominance) of subjec-

tive evaluation methods;

{ Sec. 3.4.2, p. 118: Conversion of frequency or probability dis-

tributions to determine possibility distributions, including com-

patibility calculations of the various conversion methods;

{ Sec. 3.4.3, p. 124: Interepretation of possibilities as statistical like-

lihoods;

{ Sec. 3.4.4, p. 128: Existing objective measurement methods for

possibility theory.

4. Possibilistic Measurement: De�nition and development of possibilistic

measurement methods.

� Sec. 4.1, p. 132: It is argued that set statistics (interval data) are the

only legitimate basis for possibilistic measurement.

� Sec. 4.1.3, p. 133: Empirical random sets are de�ned from set-

frequencies.

� Sec. 4.1.5, p. 135: Incomplete observations are interpreted in the

context of set statistics.

� Sec. 4.2, p. 137: Possibilistic histograms are de�ned and characterized

as piecewise constant possibility distributions resulting from consistent

empirical random sets.

� Sec. 4.2.3, p. 142: Possibilistic histograms are shown to be fuzzy inter-

vlas.

� Sec. 4.3, p. 143: Continuous approximations of possibilistic his-

tograms are developed.

� Sec. 4.4, p. 147: The compatibility of possibilistic histograms with

probability distributions is explored.

� Sec. 4.5, p. 151: Sources of set statistics are considered, including:

{ Sec. 4.5.1, p. 151: Ensembles of multiple, di�erently calibrated

instruments;

{ Sec. 4.5.3, p. 155: Order statitics on speci�c (point) data, includ-

ing focused intervals, interval cores, and consonant intervals;

{ Sec. 4.5.4, p. 164: Local extrema of a point data stream.
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5. Possibilistic Processes: De�nition and development of possibilistic pro-

cesses.

� Sec. 5.1.1, p. 167: Introduction of conorm semirings, and the clari-

�cation of the relationship between norm/conorm operator pairs and

semirings.

� Sec. 5.1.2, p. 169: Use of conorm semirings in fuzzy matrix composi-

tion.

� Sec. 5.2, p. 170: Introduction of conorm processes using conorm semir-

ings.

� Sec. 5.3.2.2, p. 176: Casting of stochastic processes in terms of conorm

processes.

� Sec. 5.3.2.4, p. 179: Introduction of possibilistic processes as possi-

bilistically normal general fuzzy processes.

� Sec. 5.4, p. 181: Derivation of properties of possibilistic processes.

� Sec. 5.5.2.3, p. 191: The strong compatibility of possibilistic with

stochastic processes is demonstrated.

� Sec. 5.5.3, p. 192: Conditional fuzzy measures and distributions are

de�ned in terms of conorm semirings, and in particular conditional pos-

sibility is de�ned, and some of its properties established.

� Sec. 5.6.1, p. 197: Possibilistic automata are de�ned by extending

possibilistic processes to include input and output functions.

� Sec. 5.6.2, p. 198: A possibilistic Monte Carlo methods is de�ned

and developed.

� Sec. 5.6.3, p. 200: Possibilistic Markov processes are de�ned.

6. Software Implementation: Proposed architecture of C++ classes to imple-

ment possibilistic processes and models.

7. Qualitative Model-Based Diagnosis: Application of possibilistic measure-

ment and processes to the qualitative modeling of a complex system.

� Consideration of possibility theory in the context of other qualitative

modeling methods.

� Descripton of a possibilistic approach to model-based diagnosis, in-

cluding:
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{ The use of fuzzy intervals for graduated symptom and error

detection;

{ The representation of dynamic crisp error thresholds by possi-

bilistic histograms;

{ The use of random set measurement in data fusion problems, in-

cluding indirect and redundant situations;

{ Possibilistic representations of sensor degradation and sensor fail-

ure;

{ And the representation of system models as possibilistic net-

works.
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Further Work

This dissertation leaves many open avenues of research, including both speci�c ques-

tions and general directions. Some of these are pointed out here.

Possibility Theory and git:

� Further development of lattice-valued possibility theory.

� The search for fuzzy measures other than probability and possibility

which have distributions and structural and numerical aggregation func-

tions.

� Proof of (2.129), p. 49.

� Development of other well-justi�ed possibilistic normalization methods.

� Further exploration of minimal distortion possibilistic normalization, in-

cluding the change in strife vs. nonspeci�city levels and the a�ect of the

choice of distortion function.

� Further exploration of the general nature of distributions of fuzzy mea-

sures in the context of random sets.

Possibilistic Semantics:

� Further research of the historical use of graduated and/or de re possibility

in philosophy.

� Further consideration of the relation between modal logic and possibility

theory.

� Further development of possibilistic concepts, especially with relation to

the action and operation of real complex systems which can be seen as

having elastic constraints.
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� Further research on the interaction between fuzzy logic and quantum

theory.

� Continued study of new frequency conversion methods with respect to

compatibility.

� Exploration in particular of uncertainty invariance frequency conversion.

� Continued research on new possibilistic clustering methods as objective

measurement techniques.

Possibilistic Measurement:

� Investigation of real measurement systems which produce subset or in-

terval results.

� Further investigation of the empirical properties of possibility distribu-

tions determined from the di�erent measurement methods presented in

Sec. 4.5, for example order statistical data and local extrema.

� Comparison of the empirical properties, including the nonspeci�city mea-

sures, of possibilistic histograms produced from the various continuous

approximation methods presented in Sec. 4.3.

Possibilistic Systems:

� Empirical investigation of the behavior of possibilistic processes and au-

tomata, especially the development of their information measures over

model time.

� Since measured possibility distributions are fuzzy numbers, it would be

interesting to consider fuzzy arithmetic as a possibilistic process, in par-

ticular any general formulae for changes in nonspeci�city with fuzzy arith-

metic operations.

� Consideration of the existence of other conorm semirings.

� Establishment of the necessary, and not just su�cient, conditions for

stochastic and possibilistic automata.

� Consideration of processes converted from stochastic to possibilistic forms

through uncertainty invariance.

� Consideration of the properties of random set Monte Carlo selection

speci�cally in the possibilistic (consonant random set) case.

� What are the conditions under which the fuzzy interval status of state

vectors of possibilistic processes is preserved?
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Implementations: The entire research program for the implementation of possi-

bilistic systems and models described in Chap. 6 requires ful�llment.

Model-Based Diagnosis: The entire research program described in Chap. 7 also

requires fu�llment.



Appendix C

Related Publications

The following papers were presented and published in conjunction with and during

the writing of this dissertation.

� \Hierarchy, Strict Hierarchy, and Generalized Information Theory," Proceed-

ings of the 1991 Conference of the International Society for the Systems Sci-

ences, �Ostersund, Sweden, v. 1, pp. 123-132, 1991. Winner, Vickers Memorial

Award for Best Student Paper.

Strict hierarchy as tree, loose hierarchy as DAG; loose structural hierarchies

as class relations; proposed measure of looseness of random sets.

� \Towards an Empirical Semantics of Possibility Through Maximum Uncer-

tainty," Proceedings of the 4th World Congress of the International Fuzzy Sys-

tems Association: Arti�cial Intelligence, Free University of Brussels, Belgium,

pp. 86-89, 1991.

Chap. 2: Extended abstract: application of maximum nonspeci�city as a nor-

malization method for possibilistic random sets.

� \Possibilistic Measurement and Set Statistics", in: Proceedings of the 1992

Conference of the North American Fuzzy Information Processing Society, v. 2,

pp. 458-467, 1992.

Chap. 4: Set-based statistics to generate possibility distributions from mea-

sured data; physical measurements methods to generate statistical data.

� \Minimal Information Loss Possibilistic Approximations of Random Sets",

with George Klir. In: Proceedings of the 1992 IEEE Int. Conf. on Fuzzy

Systems, San Diego, IEEE, pp. 1081-1088, 1992.
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Chap. 2: An empirical measuring procedure which yields data governed by

possibility theory. Set-based statistics are used to generate empirically de-

rived random sets. Normal possibility distributions are available for all con-

sistent random sets, and a set of \consistent transformations" are available

for all inconsistent random sets. The Principle of Uncertainty Invariance is

used in a modi�ed form to select the consistent transformation with minimal

information loss from the original random set.

� \Possibilistic Semantics and Measurement Methods in Complex Systems", in:

Proceedings of the Second International Symposium on Uncertainty Modeling

and Analysis, University of Maryland, ed. Bilal Ayyub, pp. 208-215, IEEE

Computer Society, 1993.

Chap. 3: Towards development of a strictly possibilistic semantics of natural

systems: the semantics of possibility statements in relation to modal logic,

natural language, and mathematical possibility; strong consistency relation

for probability and possibility; and the application of possibility theory to

complex systems.

� \On Possibilistic Automata", in: Computer Aided Systems Theory|EUROCAST

'93, ed. F. Pichler and R. Moreno-D�iaz, pp. 231-242, Springer-Verlag, Berlin.

Selected for publication in the select proceedings of the 1993 Computer-Aided

Systems Theory (cast) Conference.

Chap. 5: Possibilistic automata as pessimistic fuzzy automata which are nor-

mal in the sense of general automata; properties of possibilistic automata; pos-

sibilistic automata are identical with strongly consistent stochastic automata.

� \Some New Results on Possibilistic Measurement", Proceedings of the 1993

Conference of the North American Fuzzy Information Processing Society, Al-

lentown Pennsylvania, pp. 227-231, 1993.

Chap. 4: Possibilistic histograms, their interpretation as fuzzy numbers, and

their continuous approximations.

� \Empirical Possibility and Minimal Information Distortion", in: Fuzzy Logic:

State of the Art, edited by R. Lowen and M. Roubens, Kluwer, pp. 143-152,

1993. Invited paper.

Chap. 2: Normal possibility distributions are available for consistent random

sets, and a set of focused consistent transformations is available for inconsistent

random sets. The Principle of Uncertainty Invariance is modi�ed to provide a
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method which selects that consistent transformation with Minimal Information

Distortion from the measured random set.

� \Qualitative Model-Based Diagnosis Using Possibility Theory", to be pre-

sented at the 1994 Goddard Conference on Space Applications of Arti�cial

Intelligence.

Chap. 7: Possibility theory as a qualitative modeling method for the model-

based diagnosis of spacecraft system faults: possibilistic symptom and model

prediction error detection; sensor failure modeling and data fusion through in-

direct and redundant measurements; and fault generation and behavior models

as possibilistic networks and nonadditive causal networks.

� \An Object-Oriented Architecture for Possibility Theoretic Implementations",

to be presented at the 1994 Computer-Aided Systems Theory Conference.

Chap. 6: Design for C++ classes for random sets, probability and possibility

distributions, and possibilistic processes.



Appendix D

Summary of Possibility Theory

Table D.1 summarizes the main formulae of possibility theory.
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RANDOM SET DISTRIBUTIONS: i $ j

Probability Possibility

Focal Set Any Singletons: Ai = f!ig Nest: Ai = f!1; : : : ; !ig

f!ig = Ai f!ig = Ai � Ai�1; A0 := ;

Structure None Partition Total order

Belief Bel(A) =
P

Aj�A

mj Pr(A) := Bel(A) �(A) := Bel(A)

Plausibility Pl(A) =
P

Aj\A6=;

mj Pr(A) := Pl(A) �(A) := Pl(A)

Relation Bel(A) = 1� Pl(A) Bel(A) = Pl(A) = Pr(A) �(A) = 1� �(A )

Distribution Pli =
P

Aj3!i

mj pi := Pli = mi �i := Pli =
nP
j=i

mj

mi = pi mi = �i � �i+1; �n+1 := 0

Measure Pr(A [B) = Pr(A)+ �(A [B)

Pr(B) � Pr(A \B) = �(A) _�(B)

Normalization
P
i

pi = 1
W
i

�i = 1

Operator Pr(A) =
P

!i2A

pi �(A) =
W

!i2A

�i

Nonspeci�city
P
j

mj log2 jAjj 0
nP
i=2

�i log2

h
i

i�1

i
=

nP
i=1

(�i � �i+1) log2(i)

Strife �
P
j

mj log2

�
nP

k=1

mk
jAj\Akj

jAjj

�
�
P
i

pi log2(pi)
nP
i=2

�i � �i+1 log2

�
i
2P

i

j=1
�j

�
< :892

Semiring h�;
i h+;�i h_;ui

Marginals p(x) =
P
y

p(x; y) �(x) =
W
y

�(x; y)

Conditionals p(x; y) = p(xjy)� p(y) �(x; y) = �(xjuy) u �(y)

p(xjy) = p(x; y)=p(y) �(xjuy) 2 [�(x; y); 1]

8y;
P
x

p(xjy) = 1 8y;
W
x

�(xjuy) = 1

P := [p(xjy)] � := [�(xjuy)]

Process p0 = p �P �0 = � ��

p0(x) =
P
y

p(y) � p(xjy) �0(x) =
W
y

�(y) u �(xjuy)

Concepts Division among Coherence around

distinct hypotheses certain hypotheses

Frequency Capacity

Chance Ease of attainment

Likelihood Distance, similarity

Table D.1: Summary of probability and possibility in git.
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Mathematical Notation

Symbol Meaning

0 Boolean algebra in�mum

1 Boolean algebra supremum
~1i Certain distribution

2
 Power set of 


[0; 1]
 Fuzzy power set of 


A;B Subsets of 


Aj Element of F
~A Measurement record

C Count of subset of 


D Data set

E Endpoints in possibilistic histogram

F Subset of 
eF; eG Fuzzy subsets of 
eF� Alpha cut of fuzzy subset

Gk Domain invterval of possibilistic histogram

M j ~Aj, set of model states

N jSj

O Model

P Frequency measure, cumulative probability distribution

Q jEj

R Fuzzy matrix

R(j) j'th column of a fuzzy matrix

Si Modeling or modeled system

Tk Function interval of possibilistic histogram

U Uniform random variable on [0; 1]

V Value set of semirings

W Range of order statistics, set of world states in a model

244



245

Symbol Meaning

X Input alphabet of automaton

Y Output alphabet of automaton

a Atom of boolean algebra

b Bit; element of boolean algebra

c Count of singletons

d Data point

e Endpoint of possibilistic histogram

f Fit, frequency, model prediction function

g Structural aggregation function

h Numerical aggregation function

i Counter on 
 to n

j Counter on S to N

k Counter on E to Q

l Left interval endpoint

m Evidence function, states of a model

n j
j

o Observation function in a model

p; ~p Probability distribution

~p � Maximally uninformative (uniform) probability distribution

q; ~q Generalized distribution

q� Distribution of a fuzzy measure

r Right interval endpoint, \reality" function in a model

s Index of observations in ~A

t Time

u Possibilistic focus

v Hyperstate

w Sugeno's measure of fuzziness

x; y; z Dimensions of 
 in examples, elements of L

C Core

D Selected points for possibilistic histogram continuous approximation

F Instrument ensemble

H Entropy

K Candidate points for possibilistic histogram continuous approximation

N Nonspeci�city

P Conditional probability matrix

S Strife

T Total uncertainty

U Support of fuzzy set or possibility distribution

c Midpoint of possibilistic histogram core

h Midpoints of Tk
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Symbol Meaning

l Left endpoint of support of � at the origin

r Right endpoint of support of � at the origin

tl; tr Left and right endpoints of Tk
A Automata

B Boolean algebra

C Class on 
, general measuring device

F Focal set

F̂ Consistently transformed focal set

L Lattice

M Atoms of an algebra B

R Semiring

S Random set

Ŝ Consistently transformed random set

Ŝi Focused consistently transformed random set

S� Constructed consonant random set

W Whole numbers

Z Conorm process

Z
� General process

IR Real numbers

Bel Belief

Pl Plausibility
~Pl Plausibility assignment

Pli Element of plausibility assignment

Pr Probability

� Random set problem solution set

�(S) Set of focused, consistent transformations of S

� Set of data intervals

� Set of unitary column elements for row of �

� Level set

� Possibility measure

�� Possibility measure constructed from possibility distribution

� Conditional possibility matrix

� Sigma-�eld of 



 Universe of discourse

� 2 [0; 1], for alpha-cuts

� Bound column in possibilistic process

 Compatibility function

� Data interval, state transition function

� Necessity

� Unitary column element for row of �
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Symbol Meaning

� Automaton output function

� Membership function of

� Fuzzy measure

� Loss function

�;~� Possibility distribution

~�� Maximally uninformative possibility distribution

� State transition function

� State function

' Complement operator

� Charactersitic function of

! Element of universe 


!� Focus of a possibility distribution

t T-conorm operator

u T-norm operator

tm;um Nilpotent conorm/norm operators

tw ;uw Crisp conorm/norm operators

? Monotonic conorm operator

_ Maximum operator, lattice join

^ Minimum operator, lattice meet

� Generalized disjunction/normalization operator


 Generalized conjunction operator

� Fuzzy matrix composition

� Ordinary matrix multiplaction

� Dempster combination of evidence functions

h�i Vectore� Fuzzy subset relation

� Consonance ordering of disjoint devices

? Disjointness relation

:= De�nition

max Maximal optimization

min Minimal optimization

X
is-a
�! Y Class Y inherits from class X

X
collection
�! Y Objects of class Y are a collection of objects of class X

X
has-a
�! Y Objects of class X logically determine objects of class Y
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