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Abstract. General automata are considered with respect to normal-
ization over semirings. Possibilistic automata are defined as normal pes-
simistic fuzzy automata. Possibilistic automata are analogous to stochas-
tic automata where stochastic (+/×) semirings are replaced by possi-
bilistic (∨/∧) semirings; but where stochastic automata must be normal,
fuzzy automata may be (resulting in possibilistic automata) or may not
be (resulting in fuzzy automata proper). While possibilistic automata are
direct generalizations of nondeterministic automata, stochastic automata
are not. Some properties of possibilistic automata are considered, and
the identity of possibilistic automata strongly consistent with stochastic
automata is shown.

1 Introduction

Fuzzy automata were introduced and examined in the late 1960’s in a series of
papers by Santos [20], Santos and Wee [22], and Wee and Fu [25]. Their most
commonly considered form is the pessimistic max-min fuzzy automata, a
system Ã : =

〈
Q, A, F, µ0

〉
, where Q : = {qi} is a finite set of states, 1 ≤ i ≤

N = |Q|; A : = {ak} is a finite input alphabet; F : = {F k} is a set of fuzzy
binary relations on Q, denoted F k ⊂̃ Q2, one for each input symbol ak; and the
initial state µ0 ⊂̃ Q is a fuzzy subset of Q. The transition function is then
µn : = F (n) ◦ µn−1 at time n ∈ {1, 2, . . .}, where ◦ is max-min composition and
F (n) : = F (ak(n)) = F k ∈ F is the binary relation for the symbol ak(n) input

to Ã at time n.
Some properties of fuzzy automata and languages were investigated [3, 18],

and they were incorporated into a general theory of automata in the context of
category theory [1]. Fuzzy automata and languages have received considerably
less attention since the 1980’s, but some progress continues [16, 17].

Gaines and Kohout [6] expanded the idea of fuzzy automata to include “pos-
sible automata”, and in so doing described the basic concepts of possibility

theory that would later be developed by Lotfi Zadeh [26] and others [5, 10].
Researchers have advanced possibility theory as a form of information theory
which is distinct from, but related to, both probability theory and fuzzy theory.
Therefore, an explicit definition of possibilistic automata is now required.
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2 Automata

2.1 General Automata

A general automaton can be defined [6, 21] as a process over an ordered, com-
mutative semiring V : = 〈V,⊕,⊗, 0, 1,≤〉, where V : = {v}; ⊕ and ⊗ are general
operators over V ; 0, 1 ∈ V are the identities for ⊕ and ⊗ respectively; usually
V ⊆ IR with {0, 1} ⊆ V ⊆ [0, 1]; and ≤ is a (usually complete) order on V . For
convenience, denote V = 〈V,⊕,⊗〉.

Definition1 General Finite Automaton. A system A : =
〈
Q, A,V, σ, φ0

〉

is a general automaton where:

– σ: Q × A × Q 7→ V is the transition function;
– φ0: Q 7→ V is the initial state; and
– φn: Q 7→ V is the state function for time n with

φn(qi) : =
⊕

qj∈Q

σ(qi, ak(n), qj) ⊗ φn−1(qj) . (1)

Ã results when: V = 〈 [0, 1],∨,∧〉; ∨ and ∧ are the maximum and minimum
operators; µn = φn; and F (n) = σ(·, ak(n), ·) is taken to be an N × N tran-

sition matrix. Other classes of fuzzy automata include max-product fuzzy

automata for V = 〈 [0, 1],∨,×〉 and optimistic min-max fuzzy automata

for V = 〈 [0, 1],∧,∨〉 and the ordering ≤ on [0, 1] reversed to ≥.

2.2 Normal General Automata

Stochastic automata result for V = 〈 [0, 1], +,×〉. Letting i and j be general in-
dices over Q, and denoting pn

i : = φn(qi) and pk
ij = p(qi|ak, qj) : = σ(qi, ak, qj) as

the state and transition probabilities respectively, then the well-known stochastic
transition function is

pn
i =

N∑

j=1

pk
ij pn−1

j . (2)

However, v, v′ ∈ [0, 1] 6→ v + v′ ∈ [0, 1]. In general pn
i ∈ [0, 2] 6= V . To guar-

antee the closure of state transitions the following stochastic normalization

conditions are required:

N∑

i=1

p0
i = 1, ∀

ak∈A

N

∀
j=1

N∑

i=1

pk
ij = 1 . (3)

On generalization of (3) to V the following general normalization conditions

are obtained.

Definition2 State Normalization. A state function φ: Q 7→ V is normal
when ⊕

qi∈Q

φ(qi) = 1 . (4)



Definition3 Automaton Normalization. An automaton A is normal when
φ0 is normal and

∀
ak∈A

∀
qj∈Q

⊕

qi∈Q

σ(qi, ak, qj) = 1 . (5)

If A is normal, then state normalization holds in general [6].

Theorem4. If A is normal, then ∀n ≥ 0, φn is normal.

Proof. Proof by induction. (1) Since A is normal, φ0 is normal. (2) For n ≥ 1,
assume φn−1 is normal. Fix ak and n, and denote

φ′
i : = φn(qi), φj : = φn−1(qj), σij : = σ(qi, ak, qj), vv′ : = v ⊗ v′ . (6)

Then in virtue of the commutivity of ⊕ and ⊗, the distributivity of ⊗ over ⊕,
the normality of A, the identity of 1 for ⊗, and the normality of φ (respectively),
we have

⊕

i

φ′
i =

⊕

i

⊕

j

σijφj =
⊕

j

⊕

i

φjσij

=
⊕

j

φj

⊕

i

σij =
⊕

j

φj1 =
⊕

j

φj = 1 . (7)

ut

When, and only when, normalization holds, then the final classes of classical
automata can be recovered for discrete V : nondeterministic automata for
V = 〈 {0, 1},∨,∧〉 and deterministic automata for V = 〈 {0, 1}, +,×〉 [6].

3 Possibility Theory

Possibility theory is a new form of mathematical information theory. It is re-
lated to, but distinct from, both probability and fuzzy set theory, and arises
independently in both Dempster-Shafer evidence theory and fuzzy set theory
[5, 7, 14].

3.1 Mathematical Possibility Theory

A set function m: 2Q 7→ [0, 1] is an evidence function (otherwise known as a
basic probability assignment) when m(∅) = 0 and

∑
G⊆Q m(G) = 1. The

random set generated by an evidence function is

S : = {〈Gj , mj 〉 : mj > 0} , (8)

where 〈 · 〉 is a vector, Gj ⊆ Q, mj : = m(Gj), and 1 ≤ j ≤ |S| ≤ 2n − 1. S has
focal set F : = {Gj : mj > 0}.



The dual belief and plausibility measures are

∀G ⊆ Q, Bel(G) : =
∑

Gj⊆G

mj Pl(G) : =
∑

Gj∩G 6=∅

mj (9)

respectively. Both are fuzzy measures [24]. The plausibility assignment

(otherwise known as the contour function, falling shadow, or one-point

coverage function) of S is

Pl : = 〈Pl({qi}) 〉 = 〈Pli 〉 , Pli : =
∑

Gj3qi

mj . (10)

When ∀Gj ∈ F , |Gj| = 1, then S is specific, and ∀G ⊆ Q, Pr(G) : =
Bel(G) = Pl(G) is a probability measure with probability distribution

p = 〈pi 〉 : = Pl, additive normalization
∑

i pi = 1, and operator Pr(G) =∑
qi∈G pi.
S is consonant (F is a nest) when (without loss of generality for ordering,

and letting G0 = ∅) Gj−1 ⊆ Gj. Now Π(G) : = Pl(G) is a possibility measure

with dual necessity measure η(G) : = Bel(G). As Pr is additive, so Π is
maximal in the sense that

∀G1, G2 ∈ F , Π(G1 ∪ G2) = Π(G1) ∨ Π(G2) . (11)

Denoting Gi : = {q1, q2, . . . , qi}, and assuming that F is complete (∀qi ∈ Q, ∃Gi ∈
F), then π = 〈πi 〉 : = Pl is a possibility distribution with maximal normal-
ization and operator

n∨

i=1

πi = π1 = 1, Π(G) =
∨

qi∈G

πi . (12)

3.2 Possibility and Fuzzy Theory

It is clear that π is a normal fuzzy set, and indeed, Zadeh defined possibility
strictly in terms of fuzzy sets in his original introduction of possibility theory
[26]. But the relation between possibility and fuzziness is actually a bit more
involved.

Let the cardinality of a fuzzy set φ ⊂̃ Q with membership function µφ: Q 7→
[0, 1] be |φ| : =

∑
i µφ(qi). Kampè de Fériet has shown [12] that for countable Q,

and for some random set S and fuzzy set φ taken as a vector, that:

– |φ| ≥ 1 iff φ can be taken as a plausibility assignment Pl;
– similarly, |φ| ≤ 1 iff φ can be taken as a “belief assignment” Bel : =

〈Bel({qi}) 〉; and finally
– |φ| = 1 iff φ can be taken as a probability distribution p.

In the first two cases, only a mapping back to an equivalence class of random
sets is guaranteed, while in the last case each additive fuzzy set maps to a
unique specific (probabilistic) random set. Finally, if

∨
i µφ(qi) = 1 then the first

case holds, but also Pl = π is a possibility distribution mapping back to an
equivalence class of consonant (possibilistic) random sets [7].



3.3 Interpretations of Possibility

While possibility theory has almost invariably been related directly to fuzzy
set theory, probability theory has been regarded as independent from it. This
confusion may be a result of the fact that possibility theory is a very weak rep-
resentation of uncertainty, whereas probability makes very strong requirements.

Furthermore, the wedding of possibility theory to fuzzy sets has relegated
possibility to be interpreted strictly in accordance with fuzzy semantics. Since the
founding of fuzzy theory by Zadeh in the 1960’s, fuzziness has been interpreted
almost exclusively as a psychological form of uncertainty, expressed in natural
language (or “linguistic variables”), and measured by the subjective evaluations
of human subjects.

A number of researchers are developing possibility theory into a complete, al-
ternative information theory. Unique measures of information, analogs of stochas-
tic entropy, are being developed [13], along with a possibilistic semantics of nat-

ural systems which is independent of both fuzzy sets and probability [9, 10, 11].

4 Possibilistic Automata

4.1 Definition

Let Π(Q) : = {π} be the set of all possibility distributions on Q so that π: Q 7→
[0, 1] and

∀π ∈ Π(Q),
∨

qi∈Q

π(qi) = 1 (13)

is the normalization requirement.

Definition5 Possibilistic Automaton. A system Aπ : =
〈
Q, A, π, π0

〉
is a

possibilistic automaton if
〈
Q, A, 〈 [0, 1],∨,∧〉 , π, π0

〉
is a normal general finite

automaton, π ∈ Π(Q|A × Q) is the transition function, and π0 ∈ Π(Q) is
the initial state.

π(qi|ak, qj) is the conditional possibility4 of transiting to state qi from
state qj given an input symbol ak. The normalization condition (5) becomes

∀ak, qj,
∨

qi∈Q

π(qi|ak, qj) = 1 , (14)

which states that no matter what the current state, there must be at least one
state to which it is completely possible to transit.

The state function is

πn = 〈πn
i 〉 = π(n) ◦ πn−1 , (15)

4 An exact mathematical definition or interpretation of conditional possibility is still
somewhat controversial [8, 19].



where: πn
i : = πn(qi) is the possibility of being in state qi at time n; and π(n) =

[π(n)ij] : = π(·|ak(n), ·) is the N × N transition matrix at time n. πn is a
column vector; i indexes the rows of πn and π(n); and j indexes the columns of
π(n). In general

πn
i =

N∨

j=1

π(n)ij ∧ πn−1
j . (16)

Aπ is a special case of Ã, under the assignments F (n) = π(n) and φn = πn.
Santos identified Aπ as a restricted fuzzy automaton [20].

4.2 An Example

For a simple example, let π0 = 〈0.3, 1.0, 0.6 〉T and let π be fixed at

π =




0.1 0.0 0.4
1.0 0.5 1.0
0.2 1.0 0.7



 . (17)

π0 is normal, as is π, with a 1 in each column. The state vector changes as
follows:

n 0 1 2 3 4
πn 0.3 0.4 0.4 0.4 0.4

1.0 0.6 1.0 0.7 1.0
0.6 1.0 0.7 1.0 0.7

.

Since π2 = π4, the cycle will repeat. This is completely in keeping with
the periodic behavior of fuzzy matrix composition [23]. By Thm. 4, each πn

is normal, although the normalizing element rotates among the πn
i . Further

properties are considered in Sec. 5.

4.3 Discussion

It is significant to note that not all fuzzy relations which are normal in the sense
of fuzzy sets are normal in the sense of possibilistic transition matrices (while
the converse is true). Unlike (14), fuzzy relation normalization [14] only requires
that

∀ak,
∨

qi,qj∈Q

π(qi|ak, qj) = 1 ; (18)

that is, that there is some unitary element in each π(n), not that there is some
unitary element in each column of each π(n).

When ⊕ = ∨, then we call V a possibilistic semiring. Contrary to stochas-
tic automata, v, v′ ∈ [0, 1] → v ⊕ v′ ∈ [0, 1]. Therefore for fuzzy automata with
possibilistic semirings, φn(qi) ∈ [0, 1] whether A is normal or not. By Thm. 4,
πn will be normal in general. But while this is also true for stochastic automata,
it is not the case for all fuzzy automata.



In Sec. 2.2 it was shown that both deterministic and stochastic automata are
based on the same algebraic structure which we will call a stochastic semiring

〈⊕,⊗〉 = 〈+,×〉. In fact, stochastic automata are direct generalizations of de-
terministic automata when V = {0, 1} is replaced by its superset V = [0, 1]. Sim-
ilarly, fuzzy automata are direct generalizations of nondeterministic automata
for V = [0, 1] with possibilistic semirings. Finally, possibilistic automata result
when normalization is imposed on fuzzy automata, while normalization is auto-
matic for both stochastic and deterministic automata. Since for nondeterministic
automata

∀i, j πn
i , π(n)i,j ∈ {0, 1} , (19)

therefore all nondeterministic automata are also possibilistic automata, and are
identified as crisp possibilistic automata.

Thus proper (non-crisp) possibilistic automata are also direct generalizations
of nondeterministic automata. And it is significant to note that stochastic au-
tomata are not generalizations of nondeterministic automata, despite years of
commitment to them as the sole embodiment of machines with quantified un-
certainty. These relations among these classes of automata are summarized in
Fig. 1.
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5 Properties

The actions of possibilistic automata are dependent on a maximally normalized
initial state vector π0 and conditional transition matrices π(n), and thus on the
presence of 1’s in π. In investigating their properties, the following lemma will
be useful.

Lemma6. Let R : = [rij], S : = [sij], T : = [tij] be N × N matrices with 0 ≤
rij, sij, tij ≤ 1, and let R ◦ S = T . If ∃ri∗j∗ = 1, then ∀j, ti∗j ≥ sj∗j.

Proof. Assume ri∗j∗ = 1. Then ∀j,

ti∗j =

N∨

k=1

ri∗k ∧ skj

=




∨

1≤k≤N

k 6=j∗

ri∗k ∧ skj


 ∨ (ri∗j∗ ∧ sj∗j) =




∨

1≤k≤N

k 6=j∗

ri∗k ∧ skj


 ∨ sj∗j

≥ sj∗j . (20)

ut

In the sequel, assume a possibilistic automaton Aπ with fixed input symbol
an(k) and single transition matrix π : = [πij]. Given a state vector π, then the
next-state vector is π′ : = π ◦ π. Where appropriate, the nth step state vector
will be denoted πn.

Whereas each column of π is guaranteed to have at least one unitary value,
this is not necessarily the case for the rows. For each row i, let C(i) : = {ci

k} be
the set of indices (if any) for which

πi,ci
k

= 1, 1 ≤ k ≤ |C(i)| ≤ N , (21)

and let c(i) be the unique such index in each row i, if it exists. The column
positions of the unitary elements in a row determine which elements of the state
vector will provide lower bounds for the corresponding element of the next-state
vector. Where there are multiple unitary elements in a row, then the bound will
be the maximum of all corresponding state values.

Theorem7. ∀i, if C(i) 6= ∅, then

π′
i ≥

∨

ci
k
∈C(i)

πci
k

. (22)

Proof. ∀i, ∀ci
k ∈ C(i), πi,ci

k
= 1. Under the assignments RN×N = π, SN×1 =

π, TN×1 = π′, then by Lem. 6, ∀i, ∀ci
k ∈ C(i), π′

i ≥ πci
k
, and so the conclusion

follows. ut



Corollary 8. ∀i, if c(i) exists then π′
i ≥ πc(i).

Proof. Follows directly from Thm. 7 under the assumption that C(i) = {c(i)}.
ut

If each row of π has a unique unitary element, then c(i) exists and is an
injective function creating a cyclic group permuting the elements of Q through
at most N steps. Similarly, the bounds of the state vector will cyclically permute
through a maximum of N elements of π.

Theorem9. If ∀i, c(i) exists, then ∀i, ∃e(i), 1 ≤ e(i) ≤ N such that π
e(i)
i ≥ π0

i .

Proof. Let dxe be any value such that dxe ∈ [x, 1], and let π0 = 〈π1, π2, . . . , πN 〉T .
By Cor. 8, the action of the automaton in the first step affects the transformation

π0 7→ π1 =
〈
dπc(1)e, dπc(2)e, . . . , dπc(N)e

〉T
. (23)

The next step of the automaton affects the further transformation

π1 7→ π2 =
〈
dπc2(1)e, dπc2(2)e, . . . , dπc2(N)e

〉T
. (24)

In general,

πn =
〈
dπcn(1)e, dπcn(2)e, . . . , dπcn(N)e

〉T
. (25)

Since ∀i, ∃e(i) ≤ N, ce(i)(i) = i, therefore

∀i, π
e(i)
i = dπce(i)(i)e = dπie ≥ πi . (26)

ut

The placement of unitary values on the diagonal of π guarantee a monotonic
increase of state vector values.

Corollary 10. If ∃i, c(i) = i, then π′
i ≥ πi.

Proof. Follows immediately from Cor. 8. ut

Finally, if π has unitary values on all diagonal elements, then a result of
Pedrycz [18] is recovered.

Corollary 11. If ∀i, c(i) = i, then π′ ≥ π.

Proof. Follows immediately from the application of Cor. 10 to all columns. ut

6 Consistency with Stochastic Concepts of Possibility

While the mathematical syntax of possibility theory has become relatively well
established, the semantics of possibility values has not been developed in its
own right. Instead, possibility values have only been interpreted in the context
of either fuzzy sets or probability. As mentioned in Sec. 3.3, possibility values
are typically interpreted as membership grades of a fuzzy set. Possibility values
are then determined from a given fuzzy set, which is itself usually determined
by some subjective valuation procedure.



6.1 Strong Probability–Possibility Consistency

The other major set of methods developed to date derive possibility values by
converting a given probability or frequency distribution. Such conversion meth-
ods have been guided by a principle of probability-possibility consistency,
briefly stated by Delgado and Moral as “the intuitive idea according to which as
an event is more probable, then it is more possible [2],” and summarized most
generally by the formula

∀G ⊆ Q, Pr(G) ≤ Π(G) . (27)

In Zadeh’s initial introduction of possibility theory [26] he also proposed a quan-
titative measure of this consistency

γ(π, p) : =
∑

i

πipi ∈ [0, 1] , (28)

such that γ(π, p) = 0 indicates complete inconsistency and γ(π, p) = 1 complete
consistency. This measure has been generalized by Delgado and Moral [2].

Given a probability distribution p = 〈pi 〉 ,
∑

i pi = 1, then the most tradi-
tional conversion formula is “maximum normalization” according to the formula

πi =
pi∨N

i=1 pi

. (29)

Other methods have also been suggested [4, 15].

However, recently Joslyn [10] has proposed a reconsideration of the relation
between probability and possibility based on semantic criteria, and in particular
the natural meaning of probability and possibility. This view incorporates both
the modal sense of possibility and necessity, which accommodate only crisp pos-
sibility values (πi ∈ {0, 1}); and a “stochastic” interpretation of possibility, in
which an event with any positive probability must be completely possible.

The following strong compatibility principle [10] results,

∀G ⊆ Q, Pr(G) > 0 ↔ Π(G) = 1 (30)

which implies

∀G ⊆ Q, Pr(G) = 0 ↔ Π(G) < 1 . (31)

According to this principle, positive probability and complete possibility are
synonymous, and thus the domains of applicability of probability and possibility
should be considered as essentially distinct. Furthermore, when (30) holds, then
γ(π, p) = 1; (27) holds; and the distributions are also strongly compatible [10]:

∀qi, pi > 0 ↔ πi = 1, pi = 0 ↔ πi < 1 . (32)



6.2 Consistency and Automaton Action

Strong compatibility of (30) is consistent with the operation of possibilistic au-
tomata. In particular, the operation of a stochastic automaton which is then
converted to a possibilistic automaton according to (30) is equivalent to one
which is converted first, and then operated by possibilistic formula.

Assume matrices R and S with rij, sij ∈ [0, 1] (no normalization of any kind
assumed). Let R : = [rij], where

rij : =

{
1, rij > 0
0, rij = 0

, (33)

(and similarly for S), and let RS denote matrix composition under a stochastic
semiring (i.e., standard matrix multiplication).

Theorem12. RS = R ◦ S.

Proof. Let T = [tij] : = RS, so that RS = T = [ tij ]. Also let U = [uij] : = R◦S.
We need to prove that ∀i, j, tij = uij. First, we have tij =

∑n
k=1 rikskj , so that

tij =

{
0, ∀

1≤k≤m
rik = 0 or skj = 0

1, Otherwise
. (34)

Then

uij =
m∨

k=1

(rik ∧ sik) =

{
0, ∀

1≤k≤m
rik = 0 or sik = 0

1, Otherwise

=

{
0, ∀

1≤k≤m
rik = 0 or sik = 0

1, Otherwise

= tij . (35)

ut

References

1. Arbib, Michael A and Manes, Ernst: (1977) “A Category Theoretic Approach to
Systems in a Fuzzy World”, in: Systems: Approahces, Theories, and Applications,
ed. WE Hartnett, pp. 1-26, D. Reidel

2. Delgado, M and Moral, S: (1987) “On the Concept of Possibility-Probability Con-
sistency”, Fuzzy Sets and Systems, v. 21, pp. 311-318

3. Dubois, Didier and Prade, H: (1980) Fuzzy Sets and Systems: Theory and Appli-

cations, Academic Press, New York
4. Dubois, Didier and Prade, Henri: (1986) “Fuzzy Sets and Statistical Data”, Euro-

pean J. of Operations Research, v. 25, pp. 345-356
5. Dubois, Didier and Prade, Henri: (1988) Possibility Theory, Plenum Press, New

York



6. Gaines, Brian R and Kohout, Ladislav J: (1976) “Logic of Automata”, Int. J.

General Systems, v. 2:4, pp. 191-208
7. Goodman, IR and Nguyen, HT: (1986) Uncertainty Models for Knowledge-Based

Systems, North-Holland, Amsterdam
8. Hisdal, E: (1978) “Conditional Possibilities: Independence and Noninteraction”,

Fuzzy Sets and Systems, v. 1:4, pp. 283-297
9. Joslyn, Cliff: (1992) “Possibilistic Measurement and Set Statistics”, in: Proc. 1992

NAFIPS Conference, v. 2, pp. 458-467
10. Joslyn, Cliff: (1993) “Possibilistic Semantics and Measurement Methods in Com-

plex Systems”, in: Proc. of the 2nd International Symposium on Uncertainty Mod-

eling and Analysis, ed. Bilal Ayyub, pp. 208-215, IEEE Computer Socety Press
11. Joslyn, Cliff: (1993) “Some New Results on Possibilistic Measurement”, to appear

in: Proc. 1993 NAFIPS Conference
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