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1 Introduction

Possibility theory [1] is an alternative infor-
mation theory to that based on probability.
Although possibility theory is logically indepen-
dent of probability theory, they are related: both
arise in Dempster-Shafer evidence theory as
fuzzy measures defined on random sets; and
their distributions are both fuzzy sets. So pos-
sibility theory is a component of a broader Gen-
eralized Information Theory (GIT), which in-

cludes all of these fields [9].

Possibility theory was originally developed by
Zadeh in the context of fuzzy systems theory [12].
Possibility distributions have traditionally been
interpreted strictly as fuzzy sets, and were thus
related to the kinds of cognitive modeling that

fuzzy sets are usually used for.

More recently, possibility theory is being de-
veloped on the alternative basis of the interaction
between random set theory [8] and evidence
theory [10], and thus independently of both
fuzzy sets and probability. In particular, the au-
thor is developing [7] the mathematics and se-
mantics of possibility theory based on consistent
random sets [3, 4]. These methods include ob-
jective possibilistic measurement procedures
based on set-statistics [2, 5] and possibilistic
processes such as possibilistic automata [6]
— generalizations of nondeterministic processes
whose non-additive weights adhere to the laws of
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mathematical possibility theory.

In this paper some new ideas about the math-
ematical relations between probability and pos-
sibility are presented in the context of random
set theory. Although some of these results are
already known, I believe that the concepts of
complete random sets and distributions, and nu-
merical and structural aggregation functions on
them, provide a broad, consistent context not
only in which to place probability and possibil-
ity, but also to consider new forms of measures
and distributions which have yet to be studied.

Below is a synoptic summary of the mathe-
matical ideas to be presented in the full paper.

2 General Random Sets and
Distributions

Assume a finite universe Q = {w;},1 < i < n.
The function v:2% — [0,1] is a fuzzy measure

[11] if »(0) = 0 and
VA, BCQ, ACB—u(A)<u(B)
Then

q,: Q2 —[0,1], g (w) == rv({w}),

is a distribution of v if there exists a distribu-
tion operator function &:[0,1]? — [0,1] where
([0,1],4,0) is an Abelian monoid (& is a com-
mutative, associative, operator with identity 0)
and, in operator notation,

VA CQ, @ ¢ (w) =v(A).
weA

The function m:2% — [0,1] is an evidence
function (otherwise known as a basic prob-
ability assignment) when m(f) = 0 and
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Yacqm(A) = 1. Denote a random set gen-
erated from an evidence function as

S = {<Aj,m]‘> 1My > 0},
where (-) is a vector, A; C Q,m; := m(A4;), and
I<j<N:=[5]<2" - L

Denote the focal set of S as F := {A4; : m; >

0}.
The plausibility and belief measures on

VA C Q are
PI(A) := Z m;,

A;NAZD

Bel(A) := Z m;.

A;jCA

These are generally non-additive fuzzy measures,

and are dual, in that VA C Q,Bel(4) = 1 —
PI( A). In general only plausibility will be con-
sidered below. The plausibility assignment

(otherwise known as the one-point coverage

function) of § is Pl = (PL) := (Pl({w;})),

where
Pl; .= Z m;.
Ajdw;
If a distribution operator ¢ exists, then clearly
Pl is the vector representation of ¢ = gp;, where
q; = Pl;.

Corollary 1 If ¢ is a distribution of Pl on a ran-
dom set &, then

P =1

w; €N

Definition 2 Given a random set § with a dis-
tribution ¢, then a function g, F — Q is a
structural aggregation function if it is one
to one.

Definition 3 Given a random set & with ev-
idence function m, distribution ¢, and struc-
tural aggregation function g¢,, then a function
hi i 10, 1] — [0, 1] is a numerical aggregation
function if A, ,(m(A4;)) = q(g.(A;)).
Corollary 4 |S|= N < |Q]| = n.
Corollary 5 Under the relabeling
wit=g9(Aj)s g5 1= glw)) = alge(4y)), (6)

then hy, ,(m;) = g;.

q
Q [0, 1]
9, Pong
F [0,1]
m

Figure 1: Relations among random sets and their
distributions and aggregation functions.

These relations are diagrammed in Fig. 1.

Definition 7 Given a random set & with a
structural aggregation function g¢,, then & and
its distribution ¢ are complete if N = |§] =
n = ||

Proposition 8 If ¢ is complete, then g, and
g are onto, and thus bijections, with

g, (wi) = A5, hyl(g) =m;.

3 Probability
When VA; € F,|A;| = 1, then S is specific,
and Pr(A) := PI(A) = Bel(4) is a probability

measure which is additive in the traditional way

VA, B C Q,
Pr(AU B) = Pr(A) + Pr(B) — Pr(AN B).

Then p = (p;) := Plis a probability distribu-
tion with additive normalization and operator

Zpi =1, Pr(A) = Z ;.

wi€A
Theorem 9 If § is specific, then
gp(A;) := w; such that A; = {w;}
is a structural aggregation function.
Theorem 10 If § is specific, then
hmp(mj) := m; = p;

is a numerical aggregation function.
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Proposition 11 When p is complete then
Vw;,3A; = {w;}, and by relabeling, simply

gp_l(wj) = Aj,

Corollary 12 If pis complete, then Yw;, p; > 0.

hoto(ps) = mj.

4 Possibility

S is consonant (F is a nest) when (without loss
of generality for ordering, and letting Ag := 0)
A;_1 C Aj. Now l[(A) := PI(A) is a possibility
measure and 7(A) := Bel(A4) is a necessity
Since results for necessity are dual
to those of possibility, only possibility will be
discussed in the sequel.
As Pr is additive, so II is maximal:

measure.

YA, BCQ, I(AUB)=II(A)VII(B),

where V is the maximum operator. As long as
C(F) # 0 (this is required if F is a nest), then
7 = (m;) := Pl is a possibility distribution
with maximal normalization and operator

\/7TZ’ =1, II(A) = \/ .

w; €A

Theorem 13 If § is consonant, then a struc-
tural aggregation function g,: F +— ) exists.

Theorem 14 If § is consonant, then
N

hnr(my) 1= Y me = m(wj)
k=j

is a numerical aggregation function.

Theorem 15 When § is complete with distri-
bution ¢ = 7, then, using the relabeling conven-
tion of (6),

L. g-(A;)=A; — A1 = wy,
L] wj}v

2. g;l(wj) =A; ={wi,wy,..

-1
3. hyp(mj) =mj =7 — w41, where 7,1 = 0
by convention.

Theorem 16 7 is complete iff

l=m>m9>--->m, >0.

5 Conclusion

The ideas presented here show the way for-
ward to considering other special cases beyond
probability and possibility. In particular, other
structural and/or numerical aggregation func-
tions may generate other forms of distributions
with their own normalization conditions.

As an example, consider the function

gT(A]‘) = AJ‘ N Aj_l =wj

as a structural aggregation function. This speci-
fies “ring-like” random sets where focal elements
are linked by sharing exactly one element with
each of two other focal elements on “either side”
of it. For example, let Q = {a,b, c,d}, and let

F = {{a,b}.{b.c}. {e,d). {d.a}}.

Since g, must be one to one, then F can be con-
structed if the ordering among the A; is known.
It remains an open question whether a corre-
sponding numerical aggregation function or op-
erator exists in this case.
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