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mathematical possibility theory.In this paper some new ideas about the math-ematical relations between probability and pos-sibility are presented in the context of randomset theory. Although some of these results arealready known, I believe that the concepts ofcomplete random sets and distributions, and nu-merical and structural aggregation functions onthem, provide a broad, consistent context notonly in which to place probability and possibil-ity, but also to consider new forms of measuresand distributions which have yet to be studied.Below is a synoptic summary of the mathe-matical ideas to be presented in the full paper.2 General Random Sets andDistributionsAssume a �nite universe 
 := f!ig; 1 � i � n.The function �: 2
 7! [0; 1] is a fuzzy measure[11] if �(;) = 0 and8A;B � 
; A � B ! �(A) � �(B):Then q� : 
 7! [0; 1]; q�(!) := �(f!g);is a distribution of � if there exists a distribu-tion operator function �: [0; 1]2 7! [0; 1] whereh[0; 1];�; 0i is an Abelian monoid (� is a com-mutative, associative, operator with identity 0)and, in operator notation,8A � 
; M!2A q�(!) = �(A):The function m: 2
 7! [0; 1] is an evidencefunction (otherwise known as a basic prob-ability assignment) when m(;) = 0 and
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Aggregation and Completion in Probability and Possibility 2PA�
m(A) = 1. Denote a random set gen-erated from an evidence function asS := fhAj ; mji :mj > 0g;where h�i is a vector, Aj � 
; mj := m(Aj), and1 � j � N := jSj � 2n � 1:Denote the focal set of S as F := fAj : mj >0g.The plausibility and belief measures on8A � 
 arePl(A) := XAj\A6=;mj ; Bel(A) := XAj�Amj :These are generally non-additive fuzzy measures,and are dual, in that 8A � 
;Bel(A) = 1 �Pl(A ). In general only plausibility will be con-sidered below. The plausibility assignment(otherwise known as the one-point coveragefunction) of S is ~Pl = hPlii := hPl(f!ig)i,where Pli := XAj3!i mj :If a distribution operator � exists, then clearly~Pl is the vector representation of q = qPl, whereqi = Pli.Corollary 1 If q is a distribution of Pl on a ran-dom set S, then M!i2
 qi = 1:De�nition 2 Given a random set S with a dis-tribution q, then a function gq:F 7! 
 is astructural aggregation function if it is oneto one.De�nition 3 Given a random set S with ev-idence function m, distribution q, and struc-tural aggregation function gq, then a functionhm;q: [0; 1] 7! [0; 1] is a numerical aggregationfunction if hm;q(m(Aj)) = q(gq(Aj)).Corollary 4 jSj = N � j
j = n.Corollary 5 Under the relabeling!j := gq(Aj); qj := q(!j) = q(gq(Aj)); (6)then hm;q(mj) = qj .


 [0; 1][0; 1]F qm --6 6hm;qgqFigure 1: Relations among random sets and theirdistributions and aggregation functions.These relations are diagrammed in Fig. 1.De�nition 7 Given a random set S with astructural aggregation function gq, then S andits distribution q are complete if N = jSj =n = j
j.Proposition 8 If q is complete, then gq andhm;q are onto, and thus bijections, withg�1q (!j) = Aj ; h�1m;q(qj) = mj :3 ProbabilityWhen 8Aj 2 F ; jAjj = 1, then S is speci�c,and Pr(A) := Pl(A) = Bel(A) is a probabilitymeasurewhich is additive in the traditional way8A;B � 
;Pr(A [B) = Pr(A) + Pr(B)� Pr(A \B):Then ~p = hpii := ~Pl is a probability distribu-tion with additive normalization and operatorXi pi = 1; Pr(A) = X!i2A pi:Theorem 9 If S is speci�c, thengp(Aj) := !i such that Aj = f!igis a structural aggregation function.Theorem 10 If S is speci�c, thenhm;p(mj) := mj = pjis a numerical aggregation function.



Aggregation and Completion in Probability and Possibility 3Proposition 11 When p is complete then8!i; 9Aj = f!ig, and by relabeling, simplyg�1p (!j) = Aj ; h�1m;p(pj) = mj :Corollary 12 If p is complete, then 8!i; pi > 0.4 PossibilityS is consonant (F is a nest) when (without lossof generality for ordering, and letting A0 := ;)Aj�1 � Aj . Now �(A) := Pl(A) is a possibilitymeasure and �(A) := Bel(A) is a necessitymeasure. Since results for necessity are dualto those of possibility, only possibility will bediscussed in the sequel.As Pr is additive, so � is maximal:8A;B � 
; �(A [B) = �(A) _�(B);where _ is the maximum operator. As long asC(F) 6= ; (this is required if F is a nest), then~� = h�ii := ~Pl is a possibility distributionwith maximal normalization and operator_i �i = 1; �(A) = _!i2A�i:Theorem 13 If S is consonant, then a struc-tural aggregation function g� :F 7! 
 exists.Theorem 14 If S is consonant, thenhm;�(mj) := NXk=jmk = �(!j)is a numerical aggregation function.Theorem 15 When S is complete with distri-bution q = �, then, using the relabeling conven-tion of (6),1. g�(Aj) = Aj �Aj�1 = !j ,2. g�1� (!j) = Aj = f!1; !2; : : : ; !jg,3. h�1m;�(�j) = mj = �j��j+1, where �n+1 = 0by convention.Theorem 16 � is complete i�1 = �1 > �2 > � � �> �n > 0:

5 ConclusionThe ideas presented here show the way for-ward to considering other special cases beyondprobability and possibility. In particular, otherstructural and/or numerical aggregation func-tions may generate other forms of distributionswith their own normalization conditions.As an example, consider the functiongr(Aj) := Aj \ Aj�1 = !jas a structural aggregation function. This speci-�es \ring-like" random sets where focal elementsare linked by sharing exactly one element witheach of two other focal elements on \either side"of it. For example, let 
 = fa; b; c; dg, and letF = ffa; bg; fb; cg; fc; dg; fd; agg:Since gr must be one to one, then F can be con-structed if the ordering among the Aj is known.It remains an open question whether a corre-sponding numerical aggregation function or op-erator exists in this case.References[1] Dubois, Didier and Prade, Henri: (1988) Possi-bility Theory, Plenum Press, New York[2] Joslyn, Cli�: (1992) \Possibilistic Measurementand Set Statistics", in: Proc. NAFIPS 1992,v. 2, pp. 458-467, Puerto Vallerta[3] Joslyn, Cli�: (1993) \Empirical Possibility andMinimal Information Distortion", in: FuzzyLogic: State of the Art, ed. R Lowen and MRoubens, pp. 143-152, Kluwer, Dordrecht[4] Joslyn, Cli�: (1993) \Possibilistic Semanticsand Measurement Methods in Complex Sys-tems", in: Proc. 2nd Int. Symposium on Uncer-tainty Modeling and Analysis, ed. Bilal Ayyub,pp. 208-215, IEEE Computer Society[5] Joslyn, Cli�: (1993) \Some New Results onPossibilistic Measurement", in: Proc. NAFIPS1993, pp. 227-231, Allentown PA[6] Joslyn, Cli�: (1994) \On Possibilistic Au-tomata", in: Computer Aided Systems Theory|EUROCAST '93, ed. F. Pichler and R. Moreno-Di�az, pp. 231-242, Springer-Verlag, Berlin
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